Рефетека.ру / Биографии

Реферат: Принцип относительности Эйнштейна

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

БУРЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Реферат по физике на тему:

Принцип относительности Эйнштейна

Выполнил: студент 07202 группы Баторов А.П.

Улан-Удэ 2001

Содержание

Биография Альберта Эйнштейна (1879-1955)....................................................... 3

Рождение теории относительности....................................................................... 5

Специальная теория относительности.................................................................. 5

Относительность одновременности событий...................................................... 5

Преобразования Лоренца........................................................................................ 6

Зависимость массы тела от скорости..................................................................... 7

Закон взаимосвязи массы и энергии.................................................................... 11

Значение теории относительности...................................................................... 13

Список использованной литературы:.................................................................. 15

Биография Альберта Эйнштейна (1879-1955)

Выдающийся физик, создатель теории относительности, один из созда­телей квантовой теории и статистической физики.

Родился в Германии, в городе Ульме. С 14 лет вместе с семьей жил в Швейцарии, где в 1900 г. окончил Цюрихский политехникум. В 1902-1909 гг. служил экспертом патентного бюро в Берне. В эти годы Эйнштейн создал спе­циальную теорию относительности, выполнил исследования по статистиче­ской физике, броуновскому движению, теории излучения и др. Работы Эйн­штейна получили известность, и в 1909 г. он был избран профессором Цюрих­ского университета, а затем — Немецкого университета в Праге. В 1914 г. Эйнштейн был приглашен преподавать в Берлинский университет. В период своей жизни в Берлине он завершил создание общей теории относительности, развил квантовую теорию излучения. За открытие законов фотоэффекта и ра­боты в области теоретической физики Эйнштейн получил в 1921 г. Нобелев­скую премию. В 1933 г. после прихода к власти в Германии фашистов Эйн­штейн эмигрировал в США, в Принстон, где он до конца жизни работал в Ин­ституте высших исследований.

В 1905 г. была опубликована специальная теория относительности — механика и электродинамика тел, движущихся со скоростями, близкими к ско­рости света.

Тогда же Эйнштейн открыл закон взаимосвязи массы и энергии (Е=mc2), который лежит в основе всей ядерной энергетики.

Ученый внес большой вклад в развитие квантовой теории. В его теории фотоэффекта свет рассматривается как поток квантов (фотонов). Существова­ние фотонов было подтверждено в 1923 г. в экспериментах американского физика А. Комптона. Эйнштейн установил основной закон фотохимии (закон Эйнштейна), по которому каждый поглощенный квант света вызывает одну элементарную фотохимическую реакцию. В 1916 г. он теоретически предсказал явление индуцированного (вынужденного) излучения атомов, лежащее в основе квантовой электроники.

Вершиной научного творчества Эйнштейна стала общая теория относительности, завершенная им к 1916 г. Идеи Эйнштейна изменили господствовавшие в физике со времен Ньютона механистические взгляды на пространство, время и тяготение и привели к новой материалистической картине мира.

Ученый работал и над созданием единой теории поля, объединяющей гравитационные и электромагнитные взаимодействия. Научные труды Эйнштейна сыграли большую роль в развитии современной физики - квантовой электродинамики, атомной и ядерной физики, физики элементарных частиц, космологии, астрофизики.

А. Эйнштейн был членом многих академий мира и научных обществ. В 1926 г. его избрали почетным членом Академии наук СССР.

Рождение теории относительности.

В 1907-1916 гг. создана общая теория относительности, которая объединяет современное учение о пространстве и времени с теорией тяготения. По масштабу переворота, совершенного Эйнштейном в физике, его часто сравнивают с Ньютоном.

В большинстве задач динамики, имеющих приложение к техническим проблемам, основную систему координат можно связывать с Землей, считая ее неподвижной. Однако для астрономических задач и задач космических полетов принятие такой инерциальной системы отсчета будет уже неверным, так как Земля вращается вокруг своей оси и движется вокруг Солнца. Для наблюдений за движением планет и космических кораблей в качестве основной системы можно принять систему, связанную с неподвижными звездами. С усовершенствованием методов теоретических и экспериментальных исследований система координат, связанная с неподвижными звездами, также оказалась недостаточной для согласования опытных фактов с результатами вычислений. Это было выяснено Эйнштейном. Созданная им специальная теория относительности показала, что законы Ньютона не вполне точны и при больших скоростях движения, сравнимых со скоростью света, являются только первым приближением для описания наблюдаемых движений. При скоростях же, значительно меньших скорости света, все расчеты, вытекающие из законов Ньютона, в предположении, что основная система координат связана с неподвижными звездами, достаточно просты и удовлетворяют самым строгим требованиям точности.

Специальная теория относительности

В своей работе «К электродинамике движущихся тел», опубликованной в 1905г., Эйнштейн сформулировал более точную теорию механики быстродвижущихся тел - специальную теорию относительности.

В классической механике считалось, что если мы знаем декартовы координаты x, y и время t события в некоторой неподвижной (приближенно) системе координат, то можем легко вычислить координатыПринцип относительности Эйнштейна, Принцип относительности Эйнштейна и время Принцип относительности Эйнштейна в инерциальной системе (Принцип относительности Эйнштейна,Принцип относительности Эйнштейна), движущейся относительно неподвижной системы поступательно, прямолинейно и равномерно. В самом деле, если начало системы (Принцип относительности Эйнштейна, Принцип относительности Эйнштейна) в момент t = 0 имело координаты Принцип относительности Эйнштейна=0 , Принцип относительности Эйнштейна = 0 и система (Принцип относительности Эйнштейна, Принцип относительности Эйнштейна) движется вдоль оси ОХ со скоростьюПринцип относительности Эйнштейна, то в момент t координаты точки Принцип относительности Эйнштейна, Принцип относительности Эйнштейна будут относительно системы (x, y) следующими:

х = Принцип относительности Эйнштейна+ Принцип относительности Эйнштейнаt,

y =Принцип относительности Эйнштейна

При этом число интуитивно предполагалось: время t  в системе(x, y) течет так же, как и в системе  (Принцип относительности Эйнштейна, Принцип относительности Эйнштейна), т.е. t = Принцип относительности Эйнштейна; таким образом, допускалось, что течение времени не зависит от состояния движения тела. Длина масштабной линейки абсолютна, и если в покоящейся системе (x, y) некоторый отрезок имеет длину Принцип относительности Эйнштейна, то будет иметь ту же длину и в движущейся системе(Принцип относительности Эйнштейна, Принцип относительности Эйнштейна), иначе говоря Принцип относительности Эйнштейна=Принцип относительности Эйнштейна. В классической механике течение времени и пространственные интервалы считались независимыми друг от друга и не зависели от состояния движения системы (тела) отсчета.

В конце  XIX в. накопилось достаточно большое число фактов (главным образом экспериментальных), относящихся к движению частиц со скоростями, сравнимыми со скоростью света, которые не могли быть объяснены исходя из законов классической механики.

Оказалось, что при скоростях порядка скорости света пространственные соотношения (длины отрезков) и течение времени зависят от скорости движения системы(Принцип относительности Эйнштейна, Принцип относительности Эйнштейна).

В основе теории относительности лежит факт, полученный опытным путем: независимость скорости света от скорости источника. Одно из главных положений теории относительности заключено в том, что в природе не существует скорости, большей скорости света в вакууме. Это самая большая, или предельная, скорость.

Другое важнейшее следствие теории относительности - связь между массой и энергией. Эйнштейн установил, исходя из основных положений теории относительности, что энергия содержится в скрытой форме в любом веществе, причем в массе m заключена энергия E, равная произведению массы на квадрат скорости света. Эта формула помогает понять многие процессы.

 Исходными для построения теории относительности являются два закона природы, получившие подтверждение в самых различных явлениях движения. Эти законы были сформулированы Эйнштейном в следующем виде:

1. «Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, находящихся относительно друг друга в равномерном поступательном движении, эти изменения состояния относятся».

2. «Каждый луч света движется в «покоящейся» системе координат с определенной скоростью, независимо от того, испускается этот луч света покоящимся или движущимся телом».

Первый закон распространяет закон эквивалентности инерциальных систем(закон относительности классической механики Галилея - Ньютон) на широкий класс физических явлений. Второй закон устанавливает постоянство скорости света независимо от скорости движения источника света.

Второй закон кажется наиболее парадоксальным. В самом деле, при изучении движения тел со скоростями, малыми по сравнению со скоростью света, мы убеждаемся и теоретически, и экспериментально, что скорость тела относительно неподвижной системы координат зависит от движения «платформы», с которой бросание тела производится. Так мяч, брошенный в направлении движения поезда, будет иметь по отношению к Земле большую скорость, нежели мяч, брошенный с неподвижного поезда. Для случая прямолинейного движения результирующая скорость будет равна алгебраической сумме слагаемых скоростей. При движении платформы и тела в одну сторону  результирующая скорость будет равна арифметической сумме скоростей и будет подсчитываться по формуле:

Принцип относительности Эйнштейна рез. = Принцип относительности Эйнштейна,

где v рез. Есть результирующая скорость тела по отношению к Земле, Принцип относительности Эйнштейна - скорость платформы, Принцип относительности Эйнштейна - скорость тела по отношению к платформе.

Закон сложения скоростей в теории Эйнштейна записывается иначе:

Из  этого уравнения следует, что результирующая скорость всегда меньше скорости света. Даже в предельном случае, когда

Принцип относительности Эйнштейна = с, Принцип относительности Эйнштейна= с,

Существенные изменения претерпевают и другие понятия механики. Масса тела в задачах специальной теории относительности зависит от скорости движения тела:

В этой формуле Принцип относительности Эйнштейна - масса тела при v = 0 (масса «покоя»), m - масса тела, движущегося со скоростью v, и масса тела неограниченно возрастает, если его скорость приближается к скорости света.

Время в теории относительности не является универсальным; для движущегося наблюдателя время течет медленнее, чем для неподвижного. Связь времен, показываемых покоящимися и движущимися часами, определяется формулой:

где Принцип относительности Эйнштейна - время, отсчитываемое неподвижными часами, а t - время, показываемое часами, движущимися со скоростью v относительно неподвижной системы. Для обычных задач механики величина        очень мала по сравнению с единицей, и механика Ньютона дает весьма точные результаты.

При скоростях, близких к скорости света, уточнения, даваемые теорией относительности, приобретают принципиальный характер и в настоящее время, например, конструирование ускорителей, определение времени жизни элементарных частиц и экспериментальное определение массы быстродвижущихся тел не могут быть произведены без учета результатов, вытекающих из специальной теории относительности.

 В начале  нашего века Эйнштейн начал разрабатывать очень сложную физическую теорию, которая получила название общей теории относительности. По расчетам Эйнштейна выходило, что притяжение света можно обнаружить только в очень сильных полях тяготения, например на малых расстояниях от поверхности Солнца.

И вот в начале 1919г. Были снаряжены две экспедиции. Одна из них расположилась неподалеку от бразильского города Сорбаль, а другая - на острове Принчипе у берегов западной Африки. В этих местах в мае 1919г. Должно было наступить полное солнечное затмение. Кроме обычных исследований было решено проверить выводы эйнштейновской теории. Нужно было определить положение звезд, видимых в телескоп на одном и том же участке неба, в двух случаях - когда звездные лучи идут вдалеке от Солнца  и в момент, когда они падают на Землю, проходя вблизи солнечного диска. Это последнее наблюдение можно сделать только во время полного солнечного затмения, иначе звезды не будут видны на фоне яркого света, рассеиваемого атмосферой.

29 мая 1919г. Ученые убедились - луч света отклоняется притяжением Солнца. Именно так, как предсказывала общая теория относительности. Узнав об этом Эйнштейн написал: «Судьба оказала мне милость, позволив дожить до этих дней...»

Относительность одновременности событий

В механике Ньютона одновременность двух событий абсолютна и не зависит от системы отсчёта. Это значит, что если два события происходят в системе K в моменты времени t и t1, а в системе K’ соответственно в моменты времени t’ и t’1 , то поскольку t=t’, промежуток времени между двумя событиями одинаков в обеих системах отсчёта

Принцип относительности Эйнштейна

В отличие от классической механики, в специальной теории относительности одновременность двух событий, происходящих в разных точках пространства, относительна: события, одновременные в одной инерциальной системе отсчёта, не одновременны в других инерциальных системах[1], движущихся относительно первой. На рисунке (см. ниже) расположена схема эксперимента, который это иллюстрирует. Система отсчета K связана с Землёй, система K’ — с вагоном, движущимся относительно Земли прямолинейно и равномерно со скоростью v. На Земле и в вагоне отмечены точки А, М, В и соответственно А’, M’ и В’, причем АМ=МВ и А’M’=M’B’. В момент, когда указанные точки совпадают, в точках А и В происходят события — ударяют две молнии. В системе К сигналы от обоих вспышек придут в точку М одновременно, так как АМ=МВ, и скорость света одинакова во всех направлениях. В системе К’, связанной с вагоном, сигнал из точки В’ придет в точку M’ раньше, чем из точки А’, ибо скорость света одинакова во всех направлениях, но М’ движется навстречу сигналу пущенному из точки B’ и удаляется от сигнала, пущенного из точки А’. Значит, события в точках А’ и B’ не одновременны: события в точке B’ произошло раньше, чем в точке A’. Если бы вагон двигался в обратном направлении, то получился бы обратный результат.

Похожие работы:

  1. • Принцип относительности и специальная теория ...
  2. • Принцип относительности Эйнштейна
  3. • Принцип относительности Эйнштейна
  4. • Принцип относительности Эйнштейна
  5. • Специальная и общая теория относительности Эйнштейна
  6. • Частная теория относительности Эйнштейна
  7. • Современные концепции относительности
  8. • Теория относительности
  9. • Новое объяснение релятивистских явлений
  10. • Галилей: основание современной науки
  11. • Новое объяснение релятивистских явлений
  12. • Работа Эйнштейна над внешним фотоэффектом
  13. • Лекции по физике
  14. • Фундаментальные законы материи и концепция относительности ...
  15. • Теория относительности. Эволюция и структурная организация ...
  16. • Электродинамика
  17. • Парадоксы специальной и общей теорий относительности
  18. • Научная революция в физике начала ХХ века: возникновение ...
  19. • Механика микрочастиц
Рефетека ру refoteka@gmail.com