Содержание
Введение
Глава 1 Верхний, нижний и основной уровень.Расчет интервала варьирования
Глава 2 Расчет уравнений
Расчет уравнения для C, Si и ? текучести
Расчет уравнения для С, Si, относительного удлинения
Расчет уравнения для С, Si, предела прочности
Глава 3 Проверка уравнений
Глава 4 Оптимизация состава сплава
Целью нашей работы является нахождение оптимального состава стали М74 для получения наилучших физических свойств сплава: предела текучести, предела прочности, абсолютного удлинения. В данной работе использован метод линейного программирования и дальнейшая оптимизация по двухфакторной модели, что позволило получить одновременно решение графическим методом и на ЭВМ.
В ходе работы был определен наилучший состав стали по заданным требованиям:
- для получения минимального предела текучести содержание углерода и кремния должно быть следующим: C=0,7%; Si=0,4%;
- для получения максимального предела прочности: C=0,8%; Si=0,25%;
- для получения максимального абсолютного удлинения: C=0,7%; Si=0,4%.
ВВЕДЕНИЕ
Математическая модель является эффективным современным средством управления производством. В современных условиях быстроизменяющейся обстановке во всех сферах металлургического производства, от исходных материалов до готовой продукции, когда необходимо быстро и с минимальной ошибкой принимать ответственные решения, необходимо знание основ математического моделирования, уметь не только пользоваться готовыми моделями, но и принимать участие в их создании.
Линейное программирование - один из самых распространенных методов решения оптимизационных задач на практике. Он является частью математического программирования вообще, направленного на решение задач о распределении дефицитных ресурсов с учетом технологических, экономических и других ограничений, накладываемых условиями функционирования реального моделируемого объекта. Для линейного программирования используют линейные математические зависимости. Рождение метода линейного программирования связано с именами фон Неймана, Хичкока, Стиглера, которые использования положения теории линейных неравенств и выпуклых множеств, сформулированные в прошлом веке, для оказания помощи руководителям в принятии оптимальных решений. Основная задача линейного программирования была сформулирована в 1947 году Георгом Данцигом из управления ВВС США, который высказал гипотезу, что к анализу взаимосвязей между различными сторонами деятельности крупного предприятия можно подходить с позиций линейного программирования, и что оптимизация программы может быть достигнута максимизацией (минимизацией) линейной целевой функции.
В металлургической технологии наибольшее распространение получила задача составления технологических смесей, а конкретно, задача оптимизации химического состава сплавов.
Для того, чтобы исследовать метод «Оптимизации химического состава сплава», я воспользовался данными из прокатного цеха НТМК, которые отражают влияние содержания углерода и кремния в стали М74 на ее физические свойства: предел текучести, предел прочности и абсолютное удлинение. Данные взяты в ЦЛК (см. приложение 2).
ГЛАВА 1
ОПРЕДЕЛЕНИЕ ВЕРХНЕГО, НИЖНЕГО И ОСНОВНОГО УРОВНЯ. РАСЧЕТ ИНТЕРВАЛА ВАРЬИРОВАНИЯ
По данным выборки назначим верхний и нижний уровень варьирования факторов и рассчитаем интервал варьирования и средний (основной, нулевой) уровень.
Для этого построим таблицу, отражающую частоту «попадания» каждого числа:
Таблица 1
Подсчет частот
Х1 К1 Х2 К2
0,71 7 0,25 2
0,72 26 0,26 5
0,73 50 0,27 0
0,74 49 0,28 6
0,75 79 0,29 11
0,76 35 0,30 21
0,77 53 0,31 38
0,78 48 0,32 88
0,79 36 0,33 66
0,8 9 0,34 44
0,81 4 0,35 28
0,82 4 0,36 42
0,37 29
0,38 7
0,39 13
Итого 400 400
Таблица 2
Нижний, верхний, основной уровень и интервал варьирования
Факторы Х1 Х2
Нижний уровень 0,71 –0,74 0,25 – 0,29
Верхний уровень 0,80 – 0,83 0,37 – 0,41
Основной уровень 0,77 0,32
Интервал варьирования 0,04 0,05
Для нахождения среднего уровня выполняем следующие расчеты:
Найдем средние значения каждого интервала и основной уровень.
основной уровень
основной уровень х2= 0
ГЛАВА 2
РАСЧЕТ УРАВНЕНИЙ
Необходимо рассчитать три уравнения:
- уравнение для C, Si и ? текучести,
- уравнение для C, Si и относительного удлинения,
- уравнение для C, Si и ? прочности.
2.1. Расчет уравнения для C, Si и ? текучести
Для того, чтобы оценить влияние факторов, часто имеющих разную размерность, производится кодирование – факторы делаем безразмерными, кроме этого кодирование обеспечивает легкость обработки данных.
, где хi - кодированная переменная.
2.1.1.Составление матрицы планирования
Таблица 3
Матрица планирования
N X1 Х2 y1 x1x2
1 1 1 667(40) 667 1
2 1 -1 589(20) 608,5 -1
628(357)
3 -1 1 647(45) 603,5 -1
589(12)
589(191)
589(310)
4 -1 -1 598(19) 586,4 1
598(134)
540(165)
598(253)
598(372)
2.1.2. Определение коэффициентов регрессии
,
где N - число опытов по матрице планирования.
b0 =(667+603,5+586,4+608,5)/4=616,35
b1 =(667+608,5-603,5-586,4)/4=21,4
b2 =(667-608,5+603,5-586,4)/4=18,9
b3 =(667-608,5-603,5+586,4)/4=10,35
2.1.3. Проверка значимости коэффициентов при факторах
Дисперсия воспроизводимости служит для оценки ошибки опыта, для этого необходимо найти опыты в центре плана, для чего составим табл.4.
Таблица 4
Опыты в центре плана.
N X1 x2 y1
3 0,77 0,32 589
96 598
118 589
138 598
215 598 594.4
237 589
257 598
334 598
356 589
376 598
,
где m – число опытов
tтабл. = 2,26; т.е. все коэффициенты значимы.
Получили уравнение
2.1.4. Проверка адекватности математической модели
Проверяем адекватность математической модели по критерию Фишера. Для получения адекватности необходимо, чтобы разброс в точке и разброс в регрессии был сопоставим. ,
где f =N-(k+1)=4-(3+1)=0
Y1=616,35+21,4+18,9+10,35=667
Y2=616,35+21,4-18,9-10,35=608,5
Y3=616,35-21,4+18,9-10,35=603,5
Y4=616,35-21,4-18,9+10,35=586,5
Критерий Фишера
Математическая модель адекватна.
2.1.5. Переход от кодированных переменных к натуральным
Критерий Фишера: ; Fрасч.
Математическая модель адекватна.
2.3.6. Переход от кодированных переменных к натуральным
ГЛАВА 3
ПРОВЕРКА УРАВНЕНИЙ
Проверим составленные уравнения, отражающие влияние содержания углерода и кремния в стали на ее физические свойства.
Таблица 9
Проверка уравнений
N опыта 295 392 149
x1= 0,75 0,73 0,79
x2= 0,39 0,29 0,33
yпр1.= 687 589 589
yрасч1.= 632,69 604,61 643,81
yпр.2= 10,7 6 6
yрасч.2= 8,76 6,335 7,305
yпр.3= 1059 1030 1001
yрасч.3= 1035,1125 1026,2375 1052,8625
ГЛАВА 4
ОПТИМИЗАЦИЯ СОСТАВА СПЛАВА
Необходимо оптимизировать химический состав сплава по C и Si. В ходе работы были выявлены зависимости механических свойств от состава сплава:
?тек. – предел текучести,
абсолютное удлинение,
?пр. – предел прочности;
?тек. =
?пр.=
4.1. Оптимальный состав сплава по пределу текучести
Найти оптимальный состав сплава по пределу текучести, т.е. найти такой состав сплава, который обеспечит минимальный предел текучести при следующих ограничениях:
ГОСТ – 84182-80
Строим график(рис.1).
?тек. min
Координаты:
?пр.:
Координаты:
Оптимальный состав сплава при ?тек. min является C=0,7%; Si=0,4%.
?тек.=
Рис. 2. Нахождение минимума предела текучести
4.2.Оптимальный состав сплава по абсолютному удлинению
Найти оптимальный состав сплава по абсолютному удлинению, т.е. найти такой состав сплава, который обеспечит максимальное абсолютное удлинение при следующих ограничениях:
, ГОСТ – 84182-80
Строим график(рис.2).
?тек.
max
Координаты:
?пр.:
Координаты:
Оптимальный состав сплава при. max является C=0,7%; Si=0,4%.
4.3. Оптимальный состав сплава по пределу прочности
Найти оптимальный состав сплава по пределу прочности, т.е. найти такой состав сплава, который обеспечит максимальное значение предела прочности при следующих ограничениях:
ГОСТ – 84182-80
Строим график (рис. 3).
?тек.
Координаты:
?пр. max
Координаты:
Оптимальный состав сплава при ?пр. max является C=0,8%; Si=0,25%.
?пр.=
Рис. 3. Нахождение максимального предела прочности.
Как видно, результаты решения задачи графическим методом полностью совпали с решением на компьютере в программе «Эврика» (см. приложение 1).
Приложение 1
В данном приложении отражено решение задачи оптимизации аналитическим методом с помощью ЭВМ.
***************************************************************
Эврика: Решатель, Верс. 1.0r
Воскр. Ноябрь 23, 1997, 6:47 pm.
Имя файла ввода: C:TEMPTMMEVRIKA3.EKA
***************************************************************