Оглавление
1.Введение
2.Милетская школа
3. Пифагорейская школа
4. Элейская школа
5. Демокрит
6. Платоновский идеализм
7. Система философии математики Аристотеля
8. Список использованной литературы
ВВЕДЕНИЕ
Вопрос о взаимосвязи математики и философии впервые был задан довольно давно. Аристотель, Бэкон, Леонардо да Винчи - многие великие умы человечества занимались этим вопросом и достигали выдающихся результатов. Это не удивительно: ведь основу взаимодействия философии с какой-либо из наук составляет потребность использования аппарата философии для проведения исследований в данной области; математика же, несомненно, более всего, среди точных наук поддается философскому анализу (в силу своей абстрактности). Наряду с этим прогрессирующая математизация науки оказывает активное воздействие на философское мышление.
Совместный путь математики и философии начался в Древней Греции около VI века до н.э. Не стесненное рамками деспотизма, греческое общество той поры было подобно питательному раствору, на котором выросло многое, что дошло до нас в сильно измененном временем виде, однако, сохранив основную, заложенную греками идею: театр, поэзия, драматургия, математика, философия. В этой работе я попыталась проследить за процессом формирования, развития и взаимного влияния математики и философии Древней Греции, а также привести различные точки зрения на движущие силы и результаты этого процесса.
Известно, что греческая цивилизация на начальном этапе своего развития отталкивалась от цивилизации древнего Востока. Каково же было математическое наследие, полученное греками?
Из дошедших до нас математических документов можно заключить, что в Древнем Египте были сильно развиты отрасли математики, связанные с решением экономических задач. Папирус Райнда (ок. 2000 г. до н.э.) начинался с обещания научить «совершенному и основательному исследованию всех вещей, пониманию их сущностей, познанию всех тайн»1. Фактически излагается искусство вычисления с целыми числами и дробями, в которое посвящались государственные чиновники для того, чтобы уметь решать широкий круг практических задач, таких, как распределение заработной платы между известным числом рабочих, вычисление количества зерна для приготовления определенного количества хлеба, вычисление поверхностей и объемов и т.д. Дальше уравнений первой степени и простейших квадратных уравнений египтяне, по-видимому, не пошли. Все содержание известной нам египетской математики убедительно свидетельствует, что математические знания египтян предназначались для удовлетворения конкретных потребностей материального производства и не могли сколько-нибудь серьезно быть связанными с философией.
Математика Вавилона, как и египетская, была вызвана к жизни потребностями производственной деятельности, поскольку решались задачи, связанные с нуждами орошения, строительства, хозяйственного учета, отношениями собственности, исчислением времени. Сохранившиеся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов и кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Замечательные результаты были получены в области числовой алгебры. Хотя вавилоняне и не знали алгебраической символики, но решение задач проводилось по плану, задачи сводились к единому «нормальному» виду и затем решались по общим правилам, причем истолкование преобразований «уравнения» не связывалось с конкретной природой исходных данных. Встречались задачи, сводящиеся к решению уравнений третьей степени и особых видов уравнений четвертой, пятой и шестой степеней.
Если же сравнивать математические науки Египта и Вавилона по способу мышления, то нетрудно будет установить их общность по таким характеристикам, как авторитарность, некритичность, следование за традицией, крайне медленная эволюция знаний. Эти же черты обнаруживаются и в философии, мифологии, религии Востока. Как писал по этому поводу Э. Кольман, «в этом месте, где воля деспота считалась законом, не было места для мышления, доискивающегося до причин и обоснований явлений, ни тем более для свободного обсуждения»2.
Анализ древнегреческой математики и философии следует начать с милетской математической школы, заложившей основы математики как доказательной науки.
Милетская школа
Милетская школа - одна из первых древнегреческих математических школ, оказавшая существенное влияние на развитие философских представлений того времени. Она существовала в Ионии в конце V - IV вв. до н.э.; основными деятелями ее являлись Фалес (ок. 624-547 гг. до н.э.), Анаксимандр (ок. 610-546 гг. до н.э.) и Анаксимен (ок. 585-525 гг. до н.э.). Рассмотрим на примере милетской школы основные отличия греческой науки от догреческой и проанализируем их.
Если сопоставить исходные математические знания греков с достижениями египтян и вавилонян, то вряд ли можно сомневаться в том, что такие элементарные положения, как равенство углов у основания равнобедренного треугольника, открытие которого приписывают Фалесу Милетскому, не были известны древней математике. Тем не менее, греческая математика уже в исходном своем пункте имела качественное отличие от своих предшественников.
Ее своеобразие заключается прежде всего в попытке систематически использовать идею доказательства. Фалес стремится доказать то, что эмпирически было получено и без должного обоснования использовалось в египетской и вавилонской математике. Возможно, в период наиболее интенсивного развития духовной жизни Вавилона и Египта, в период формирования основ их знаний, изложение тех или иных математических положений сопровождалось обоснованием в той или иной форме. Однако, как пишет Ван дер Варден, «во времена Фалеса египетская и вавилонская математика давно уже были мертвыми знаниями. Можно было показать Фалесу, как надо вычислять, но уже неизвестен был ход рассуждений, лежащих в основе этих правил»3.
Греки вводят процесс обоснования как необходимый компонент математической действительности - доказательность, которая действительно являлась отличительной чертой их математики. Техникой доказательства ранней греческой математики как в геометрии, так и в арифметике, первоначально являлась простая попытка придания наглядности. Конкретными разновидностями такого доказательства в арифметике было доказательство при помощи камешков, в геометрии - путем наложения. Но сам факт наличия доказательства говорит о том, что математические знания воспринимаются не догматически, а в процессе размышления. Это, в свою очередь, обнаруживает критический склад ума, уверенность (может быть, не всегда осознанную), что размышлением можно установить правильность или ложность рассматриваемого положения, уверенность в силе человеческого разума.
Греки в течении одного-двух столетий сумели овладеть математическим наследием предшественников, накопленного в течении тысячелетий, что свидетельствует об интенсивности, динамизме их математического познания. Качественное отличие исследований Фалеса и его последователей от догреческой математики проявляется не столько в конкретном содержании исследованной зависимости, сколько в новом способе математического мышления. Исходный материал греки взяли у предшественников, но способ усвоения и использования этого материала был новый. Отличительными особенностями их математического познания являются рационализм, критицизм, динамизм.
Эти же черты характерны и для философских исследований милетской школы. Философская концепция и совокупность математических положений формируется посредством однородного по своим общим характеристикам мыслительного процесса, качественно отличного от мышления предшествующей эпохи. Как же сформировался этот новый способ восприятия действительности? Откуда берет свое начало стремление к научному знанию?
Ряд исследователей объявляет отмеченные выше характеристики мыслительного процесса «врожденными особенностями греческого духа»4. Однако эта ссылка ничего не объясняет, так как непонятно, почему тот же «греческий дух» по прошествии эпохи эллинизма теряет свои качества. Можно попробовать поискать причины такого миропонимания в социально-экономической сфере.
Иония, где проходила деятельность милетской школы, была достаточно развитой в экономическом отношении областью. Поэтому именно она прежде прочих вступила на путь низвержения первобытно-общинного строя и формирования рабовладельческих отношений. В VIII-VI вв. до н.э. земля все больше сосредотачивалась в руках крупной родовой знати. Развитие ремесленного производства и торговли еще в большей мере ускоряло процесс социально-имущественного расслоения. Отношения между аристократией и демосом становятся напряженными; со временем эта напряженность перерастает в открытую борьбу за власть. Калейдоскоп событий во внутренней жизни, не менее изменчивая внешняя обстановка формируют динамизм, живость общественной мысли.
Напряженность в политической и экономической сферах приводит к столкновениям в области религии, поскольку демос , еще не сомневаясь в том, что религиозные и светские установления вечны, так как даны богами, требует, чтобы они были записаны и стали общедоступными, ибо правители искажают божественную волю и толкуют ее по-своему. Однако нетрудно понять, что систематическое изложение религиозных и мифологических представлений (попытка такого изложения была дана Гесиодом) не могло не нанести серьезного удара религии. При проверке религиозных измышлений логикой первые, несомненно, показались бы конгломератом нелепостей.
«Таким образом, материалистическое мировоззрение Фалеса и его последователей не является каким-то загадочным, не от мира сего порождением «греческого духа». Оно является продуктом вполне определенных социально-экономических условий и выражает интересы исторически-конкретных социальных сил, прежде всего торгово-ремесленных слоев общества»5 - пишет О. И. Кедровский.
На основании всего вышеперечисленного еще нельзя с большой уверенностью утверждать, что именно воздействие мировоззрения явилось решающим фактором для возникновения доказательства; не исключено ведь, что это произошло в силу других причин: потребностей производства, запросов элементов естествознания, субъективных побуждений исследователей. Однако можно убедиться, что каждая из этих причин не изменила принципиально своего характера по сравнению с догреческой эпохой, непосредственно не приводящей к превращению математики в доказательную науку. Например, для удовлетворения потребностей техники было вполне достаточно практической науки древнего Востока, в справедливости положений которой можно было убедиться эмпирически. Сам процесс выявления этих положений показал, что они дают достаточную для практических нужд точность.
Можно считать одним из побудительных мотивов возникновения доказательства необходимость осмысления и обобщения результатов предшественников. Однако и этому фактору не принадлежит решающая роль, так как, например, существуют теории, воспринимаемые нами как очевидные, но получившие строгое обоснование в античной математике (например, теория делимости на 2).
Появление потребности доказательства в греческой математике получает удовлетворительное объяснение, если учесть взаимодействие мировоззрения на развитие математики. В этом отношении греки существенно отличаются от своих предшественников. В их философских и математических исследованиях проявляются вера в силу человеческого разума, критическое отношение к достижениям предшественников, динамизм мышления. У греков влияние мировоззрения превратилось из сдерживающего фактора математического познания в стимулирующий, в действенную силу прогресса математики.
В том, что обоснование приняло именно форму доказательства, а не остановилось на эмпирической проверке, решающим является появление новой, мировоззренческой функции науки. Фалес и его последователи воспринимают математические достижения предшественников прежде всего для удовлетворения технических потребностей, но наука для них - нечто большее, чем аппарат для решения производственных задач. Отдельные, наиболее абстрактные элементы математики вплетаются в натурфилософскую систему и здесь выполняют роль антипода мифологическим и религиозным верованиям. Эмпирическая подтверждаемость для элементов философской системы была недостаточной в силу общности их характера и скудности подтверждающих их фактов. Математические знания же к тому времени достигли такого уровня развития, что между отдельными положениями можно было установить логические связи. Такая форма обоснований оказалась объективно приемлемой для математических положений.
ПИФАГОРЕЙСКАЯ ШКОЛА
На основании данного выше исследования милетской школы можно лишь убедиться в активном влиянии мировоззрения на процесс математического познания только при радикальном изменении социально-экономических условий жизни общества. Однако остаются открытыми вопросы о том, влияет ли изменение философской основы жизни общества на развитие математики, зависит ли математическое познание от изменения идеологической направленности мировоззрения, имеет ли место обратное воздействие математических знаний на философские идеи. Можно попытаться ответить на поставленные вопросы, обратившись к деятельности пифагорейской школы.
Пифагореизм как направление духовной жизни существовал на протяжении всей истории Древней Греции, начиная с VI века до н. э. и прошел в своем развитии ряд этапов. Вопрос о их временной длительности сложен и до сих пор не решен однозначно. Основоположником школы был Пифагор Самосский (ок. 580-500 до н.э.). Ни одна строка, написанная Пифагором, не сохранилась; вообще неизвестно, прибегал ли он к письменной передаче своих мыслей. Что было сделано самим Пифагором, а что его учениками, установить очень трудно. Свидетельства о нем древнегреческих авторов противоречивы; в какой-то мере различные оценки его деятельности отражают многообразие его учения.
В пифагореизме выделяют две составляющие: практическую («пифагорейский образ жизни») и теоретическую (определенная совокупность учений). В религиозном учении пифагорейцев наиболее важной считалась обрядовая сторона, затем имелось в виду создать определенное душевное состояние и лишь потом по значимости шли верования, в трактовке которых допускались разные варианты. По сравнению с другими религиозными течениями, у пифагорейцев были специфические представления о природе и судьбе души. Душа - существо божественное, она заключена в тело в наказание за прегрешения. высшая цель жизни - освободить душу из телесной темницы, не допустить в другое тело, которое якобы совершается после смерти. Путем для достижения этой цели является выполнение определенного морального кодекса, «пифагорейского образа жизни».6 В многочисленной системе предписаний, регламентировавших почти каждый шаг жизни, видное место отводилось занятиям музыкой и научным исследованиям.
Теоретическая сторона пифагореизма тесно связана с практической. В теоретических изысканиях пифагорейцы видели лучшее средство освобождения души из круга рождений, а их результаты стремились использовать для рационального обоснования предполагаемой доктрины. Вероятно, в деятельности Пифагора и его ближайших учеников научные положения были перемешаны с мистикой, религиозными и мифологическими представлениями. Вся эта «мудрость» излагалась в качестве изречений оракула, которым придавался скрытый смысл божественного откровения.
Основными объектами научного познания у пифагорейцев были математические объекты, в первую очередь числа натурального ряда (вспомним знаменитое «Число есть сущность всех вещей»7). Видное место отводилось изучению связей между четными и нечетными числами. В области геометрических знаний внимание акцентируется на наиболее абстрактных зависимостях. Пифагорейцами была построена значительная часть планиметрии прямоугольных фигур; высшим достижением в этом направлении было доказательство теоремы Пифагора, частные случаи которой за 1200 лет до этого приводятся в клинописных текстах вавилонян. Греки доказывают ее общим образом. Некоторые источники приписывают пифагорейцам даже такие выдающиеся результаты, как построение пяти правильных многогранников.
Числа у пифагорейцев выступают основополагающими универсальными объектами, к которым предполагалось свести не только математические построения, но и все многообразие действительности. Физические, этические, социальные и религиозные понятия получили математическую окраску. Науке о числах и других математических объектах отводится основополагающее место в системе мировоззрения, то есть фактически математика объявляется философией. Как писал Аристотель, «...у чисел они усматривали, казалось бы, много сходных черт с тем, что существует и происходит, - больше, чем у огня, земли и воды... У них, по-видимому, число принимается за начало и в качестве материи для вещей, и в качестве выражения для их состояний и свойств... Например, такое-то свойство чисел есть справедливость, а такое-то - душа и ум, другое - удача, и можно сказать - в каждом из остальных случаев точно также»8.
Если сравнивать математические исследования ранней пифагорейской и милетской школ, то можно выявить ряд существенных различий. Так, математические объекты рассматривались пифагорейцами как первосущность мира, то есть радикально изменилось само понимание природы математических объектов. Кроме того, математика превращена пифагорейцами в составляющую религии, в средство очищения души, достижения бессмертия. И наконец, пифагорейцы ограничивают область математических объектов наиболее абстрактными типами элементов и сознательно игнорируют приложения математики для решения производственных задач. Но чем же обусловлены такие глобальные расхождения в понимании природы математических объектов у школ, существовавших практически в одно и то же время и черпавших свою мудрость, по-видимому, из одного и того же источника - культуры Востока? Впрочем, Пифагор, скорее всего, пользовался достижениями милетской школы, так как у него, как и у Фалеса, обнаруживаются основные признаки умственной деятельности, отличающиеся от догреческой эпохи; однако математическая деятельность этих школ носила существенно различный характер.
Аристотель был одним из первых, кто попытался объяснить причины появления пифагорейской концепции математики. Он видел их в пределах самой математики: «Так называемые пифагорейцы, занявшись математическими науками, впервые двинули их вперед и, воспитавшись на них, стали считать их началами всех вещей»9. Подобна точка зрения не лишена основания хотя бы в силу применимости математических положений для выражения отношений между различными явлениями. На этом основании можно, неправомерно расширив данный момент математического познания, прийти к утверждению о выразимости всего сущего с помощью математических зависимостей, а если считать числовые отношения универсальными, то «число есть сущность всех вещей»10. Кроме того, ко времени деятельности пифагорейцев математика прошла длинный путь исторического развития; процесс формирования ее основных положений терялся во мраке веков. Таким образом, появлялось искушение пренебречь им и объявить математические объекты чем-то первичным по отношению к существующему миру. Именно так и поступили пифагорейцы.
В советской философской науке проблема появления пифагорейской концепции математики рассматривалась, естественно, с позиций марксистско-ленинской философии. Так, О.И. Кедровский пишет: «...Выработанная им (Пифагором) концепция объективно оказалась идеологией вполне определенных социальных слоев общества. Это были ...представители аристократии, теснимые демосом... Для них характерно стремление уйти от тягот земной жизни, обращение к религии и мистике»11. Эта точка зрения, как и первая, не лишена смысла; истина же, вероятно, находится где-то посередине. Однако, на мой взгляд, крах пифагорейского учения следует связывать, в первую очередь, не с вырождением аристократии как класса, а с попыткой пифагорейцев извратить саму природу процесса математического познания, лишив математику таких важных источников прогресса, как приложения к производству, открытое обсуждение результатов исследований, коллективное творчество, удержать прогресс математики в рамках рафинированного учения для посвященных. Кстати, сами пифагорейцы подорвали свой основополагающий принцип «число есть сущность всех вещей», открыв, что отношение диагонали и стороны квадрата не выражается посредством целых чисел.
Таким образом, уже в исходном пункте своего развития теоретическая математика была подвержена влиянию борьбы двух типов мировоззрения - материалистического и религиозно-идеалистического. Мы же убедились, что наряду с влиянием мировоззрения на развитие математического познания, имеет место и обратное воздействие.
ЭЛЕЙСКАЯ ШКОЛА
Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина V в. до н.э.).
Философия Парменида заключается в следующем: всевозможные системы миропонимания базируются на одной из трех посылок: 1) есть только бытие, небытия нет; 2) существует не только бытие, но и небытие; 3) бытие и небытие тождественны. Истинный Парменид признает только первую посылку. Согласно ему, бытие едино, неделимо, неизменяемо, вневременно, закончено в себе, только оно истинно сущее; множественность, изменчивость, прерывность, текучесть - все это удел мнимого.
С защитой учения Парменида от возражений выступил его ученик Зенон. Древние приписывали ему сорок доказательств для защиты учения о единстве сущего (против множественности вещей) и пять доказательств его неподвижности (против движения). Из них до нас дошло всего девять. Наибольшей известностью во все времена пользовались зеноновы доказательства против движения; например, «движения не существует на том основании, что перемещающееся тело должно прежде дойти до половины, чем до конца, а чтобы дойти до половины, нужно пройти половину этой половины и т.д.»12.
Аргументы Зенона приводят к парадоксальным, с точки зрения «здравого смысла», выводам, но их нельзя было просто отбросить как несостоятельные, поскольку и по форме, и по содержанию удовлетворяли математическим стандартам той поры. Разложив апории Зенона на составные части и двигаясь от заключений к посылкам, можно реконструировать исходные положения, которые он взял за основу своей концепции. Важно отметить, что в концепции элеатов, как и в дозеноновской науке, фундаментальные философские представления существенно опирались на математические принципы. Видное место среди них занимали следующие аксиомы:
1. Сумма бесконечно большого числа любых, хотя бы и бесконечно малых, но протяженных величин должна быть бесконечно большой;
2. Сумма любого, хотя бы и бесконечно большого числа непротяженных величин всегда равна нулю и никогда не может стать некоторой заранее заданной протяженной величиной.
Именно в силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему математических знаний. Целый ряд важнейших математических построений, считавшихся до этого несомненно истинными, в свете зеноновских построений выглядели как противоречивые. Рассуждения Зенона привели к необходимости переосмыслить такие важные методологические вопросы, как природа бесконечности, соотношение между непрерывным и прерывным и т.п. Они обратили внимание математиков на непрочность фундамента их научной деятельности и таким образом оказали стимулирующее воздействие на прогресс этой науки.
Следует обратить внимание и на обратную связь - на роль математики в формировании элейской философии. Так, установлено, что апории Зенона связаны с нахождением суммы бесконечной геометрической прогрессии. На этом основании советский историк математики Э. Кольман сделал предположение, что «именно на математический почве суммирования таких прогрессий и выросли логико-философские апории Зенона»13. Однако такое предположение, по-видимому, лишено достаточных оснований, так как оно слишком жестко связывает учение Зенона с математикой при том, что имеющие исторические данные не дают основания утверждать, что Зенон вообще был математиком.
Огромное значение для последующего развития математики имело повышение уровня абстракции математического познания, что произошло в большей степени благодаря деятельности элеатов. Конкретной формой проявления этого процесса было возникновение косвенного доказательства («от противного»), характерной чертой которого является доказательство не самого утверждения, а абсурдности обратного ему. Таким образом, был сделан шаг к становлению математики как дедуктивной науки, созданы некоторые предпосылки для ее аксиоматического построения.
Итак, философские рассуждения элеатов, с одной стороны, явились мощным толчком для принципиально новой постановки важнейших методологических вопросов математики, а с другой - послужили источником возникновения качественно новой формы обоснования математических знаний.
ДЕМОКРИТ
Аргументы Зенона вскрыли внутренние противоречия, которые имели место в сложившихся математических теориях. Тем самым факт существования математики был поставлен под сомнение. Какими же путями разрешались противоречия, выявленные Зеноном ?
Простейшим выходом из создавшегося положения бал отказ от абстракций в пользу того, что можно непосредственно проверить с помощью ощущений. Такую позицию занял софист Протагор. Он считал, что «мы не можем представить себе ничего прямого или круглого в том смысле, как представляет эти термины геометрия; в самом деле, круг касается прямой не в одной точке»14. Таким образом, из математики следует убрать как ирреальные: представления о бесконечном числе вещей, так как никто не может считать до бесконечности; бесконечную делимость, поскольку она неосуществима практически и т.д. Таким путем математику можно сделать неуязвимой для рассуждений Зенона, но при этом практически упраздняется теоретическая математика. Значительно сложнее было построить систему фундаментальных положений математики, в которой бы выявленные Зеноном противоречия не имели бы места. Эту задачу решил Демокрит, разработав концепцию математического атомизма.
Демокрит был, по мнению Маркса, «первым энциклопедическим умом среди греков»15. Диоген Лаерций (III в. н.э.) называет 70 его сочинений, в которых были освещены вопросы философии, логики, математики, космологии, физики, биологии, общественной жизни, психологии, этики, педагогики, филологии, искусства, техники и другие. Аристотель писал о нем: «Вообще, кроме поверхностных изысканий, никто ничего не установил, исключая Демокрита. Что же касается его, то получается такое впечатление, что он предусмотрел все, да и в методе вычислений он выгодно отличается от других»16.
Вводной частью научной системы Демокрита была «каноника», в которой формулировались и обосновывались принципы атомистической философии. Затем следовала физика, как наука о различных проявлениях бытия, и этика. Каноника входила в физику в качестве исходного раздела, этика же строилась как порождение физики. В философии Демокрита прежде всего устанавливается различие между «подлинно сущим» и тем, что существует только в «общем мнении». Подлинно сущими считались лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть такая же реальность, как атомы (бытие). «Великая пустота» безгранична и заключает в себе все существующее, в ней нет ни верха, ни низа, ни края, ни центра, она делает прерывной материю и возможным ее движение. Бытие образуют бесчисленные мельчайшие качественно однородные первотельца, различающиеся между собой по внешним формам, размеру, положению и порядку, они далее неделимы вследствие абсолютной твердости и отсутствия в них пустоты и «по величине неделимы». Атомам самим по себе свойственно непрестанное движение, разнообразие которого определяется бесконечным разнообразием форм атомов. Движение атомов вечно и в конечном итоге является причиной всех изменений в мире.
Задача научного познания, согласно Демокриту, состоит в том, чтобы наблюдаемые явления свести к области «истинного сущего» и дать им объяснение исходя из общих принципов атомистики. Это может быть достигнуто посредством совместной деятельности ощущений и разума. Гносеологическую позицию Демокрита Маркс сформулировал следующим образом: «Демокрит не только не удалялся от мира, а, наоборот, был эмпирическим естествоиспытателем»17. Содержание исходных философских принципов и гносеологические установки определили основные черты научного метода Демокрита:
а) в познании исходить от единичного;
б) любые предмет и явление разложимы до простейших элементов (анализ) и объяснимы исходя из них (синтез);
в) различать существование «по истине» и «согласно мнению»;
г) явления действительности - это отдельные фрагменты упорядоченного космоса, который возник и функционирует в результате действий чисто механической причинности.
Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства имеют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономерности, но выступает с критикой априорных математических построений пифагорейцев, считая, что число должно выступать не законодателем природы, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвосхищает идеи математического естествознания. Исходные начала материального бытия выступают у Демокрита в значительной степени как математические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соответствие с исходными философскими положениями, с логикой, гносеологией, методологией научного исследования. Созданная таким образом концепция математики, называемая концепцией математического атомизма, оказалась существенно отличной от предыдущих.
У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процедурой математического атомизма является разложение геометрических тел на тончайшие листики (плоскости), плоскостей - на тончайшие нитки (линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии определяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в теле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им бесконечной делимости. Таким образом он решает проблему правомерности теоретических построений математики, не сводя их к чувственно воспринимаемым образам, как это делал Протагор. Так, на рассуждения Протагора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительности же этот участок настолько мал, что не поддается чувственному анализу, а относится к области истинного познания.
Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает выдающихся результатов (например, теория математической перспективы и проекции). Кроме того, он сыграл, по свидетельству Архимеда, немаловажную роль в доказательстве Евдоксом теорем об объеме конуса и пирамиды. Нельзя с уверенностью сказать, пользовался ли он при решении этой задачи методами анализа бесконечно малых. А.О. Маковельский пишет: «Демокрит вступил на путь, по которому дальше пошли Архимед и Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Демокрит не сделал последнего решительного шага. Он не допускает безграничного увеличения числа слагаемых, образующих в своей сумме данный объем. Он принимает лишь чрезвычайно большое, не поддающееся исчислению вследствие своей огромности число этих слагаемых»18.
Выдающимся достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.
ПЛАТОНОВСКИЙ ИДЕАЛИЗМ
Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сомнениями и неуверенностью, подчас с безрезультатными попытками разрешения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т.п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.
Платон неоднократно высказывал свое отношение к математике и она всегда оценивалась им очень высоко: без математических знаний «человек с любыми природными свойствами не станет блаженным»19, в своем идеальном государстве он предполагал «утвердить законом и убедить тех, которые намереваются занять в городе высокие должности, чтобы они упражнялись в науке счисления»20. Систематическое широкое использование математического материала имеет место у Платона, начиная с диалога «Менон», где Платон подводит к основному выводу с помощью геометрического доказательства. Именно вывод этого диалога о том, что познание есть припоминание, стал основополагающим принципом платоновской гносеологии.
Значительно в большей мере, чем в гносеологии, влияние математики обнаруживается в онтологии Платона. Проблема строения материальной действительности у Платона получила такую трактовку: мир вещей, воспринимаемый посредством чувств, не есть мир истинно существующего; вещи непрерывно возникают и погибают. Истинным бытием обладает мир идей, которые бестелесны, нечувственны и выступают по отношению к вещам как их причины и образы, по которым эти вещи создаются. Далее, помимо чувственных предметов и идей он устанавливает математические истины, которые от чувственных предметов отличаются тем, что вечны и неподвижны, а от идей - тем, что некоторые математические истины сходна друг с другом, идея же всякий раз только одна. У Платона в качестве материи началами являются большое и малое, а в качестве сущности - единое, ибо идеи (они же числа) получаются из большого и малого через приобщение их к единству. Чувственно воспринимаемый мир, согласно Платону, создан Богом. Процесс построения космоса описан в диалоге «Тимей». Ознакомившись с этим описанием, нужно признать, что Создатель был хорошо знаком с математикой и на многих этапах творения существенно использовал математические положения, а порой и выполнял точные вычисления.
Посредством математических отношений Платон пытался охарактеризовать и некоторые явления общественной жизни, примером чего может служить трактовка социального отношения «равенство» в диалоге «Горгий» и в «Законах». Можно заключить, что Платон существенно опирался на математику при разработке основных разделов своей философии: в концепции «познание - припоминание», учении о сущности материального бытия, об устройстве космоса, в трактовке социальных явлений и т.д. Математика сыграла значительную роль в конструктивном оформлении его философской системы. Так в чем же заключалась его концепция математики?
Согласно Платону, математические науки (арифметика, геометрия, астрономия и гармония) дарованы человеку богами, которые «произвели число, дали идею времени и возбудили потребность исследования вселенной»21. Изначальное назначение математики в том, чтобы «очищался и оживлялся тот орган души человека, расстроенный и ослепленный иными делами»22, который «важнее, чем тысяча глаз, потому что им одним созерцается истина»23. «Только никто не пользуется ею (математикой) правильно, как наукою, влекущей непременно к сущему»24. «Неправильность» математики Платон видел прежде всего в ее применимости для решения конкретных практических задач. Нельзя сказать, чтобы он вообще отрицал практическую применимость математики. Так, часть геометрии нужна для «расположения лагерей», «при всех построениях как во время самих сражений, так и во время походов»25. Но, по мнению Платона, «для таких вещей ...достаточна малая часть геометрических и арифметических выкладок, часть же их большая, простирающаяся далее, должна ...способствовать легчайшему усвоению идеи блага»26. Платон отрицательно отзывался о тех попытках использования механических методов для решения математических задач, которые имели место в науке того времени. Его неудовлетворенность вызывало также принятое современниками понимание природы математических объектов. Рассматривая идеи своей науки как отражение реальных связей действительности, математики в своих исследованиях наряду с абстрактными логическими рассуждениями широко использовали чувственные образы, геометрические построения. Платон всячески старается убедить, что объекты математики существуют обособленно от реального мира, поэтому при их исследовании неправомерно прибегать к чувственной оценке.
Таким образом, в исторически сложившейся системе математических знаний, Платон выделяет только умозрительную, дедуктивно построенную компоненту и закрепляет за ней право называться математикой. История математики мистифицируется, теоретические разделы резко противопоставляются вычислительному аппарату, до предела сужается область приложения. В таком искаженном виде некоторые реальные стороны математического познания и послужили одним из оснований для построения системы объективного идеализма Платона. Ведь сама по себе математика к идеализму вообще не ведет, и в целях построения идеалистических систем ее приходится существенно деформировать.
Вопрос о влиянии, оказанном Платоном на развитие математики, довольно труден. Длительное время господствовало убеждение, что вклад Платона в математику был значителен. Однако более глубокий анализ привел к изменению этой оценки. Так, О. Нейгебауэр пишет: «Его собственный прямой вклад в математические знания, очевидно, был равен нулю... Исключительно элементарный характер примеров математических рассуждений, приводимых Платоном и Аристотелем, не подтверждает гипотезы о том, что Евдокс или Теэтет чему-либо научились у Платона... Его совет астрономам заменить наблюдения спекуляцией мог бы разрушить один из наиболее значительных вкладов греков в точные науки»27. Такая аргументация вполне убедительна; можно также согласиться и с тем, что идеалистическая философия Платона в целом сыграла отрицательную роль в развитии математики. Однако не следует забывать о сложном характере этого воздействия.
Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук «суть предположения», может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, «пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания»28, предположения находят основания посредством диалектики. Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге «Пир» выдвигается понятие предела; идея выступает здесь как предел становления вещи.
Критика, которой подвергались методология и мировоззренческая система Платона со стороны математиков, при всей своей важности не затрагивала сами основы идеалистической концепции. Для замены разработанной Платоном методологии математики более продуктивной системой нужно было подвергнуть критическому разбору его учение об идеях, основные разделы его философии и как следствие этого - его воззрение на математику. Эта миссия выпала на долю ученика Платона - Аристотеля.
СИСТЕМА ФИЛОСОФИИ МАТЕМАТИКИ АРИСТОТЕЛЯ
К. Маркс назвал Аристотеля (384-322 гг. до н.э.) «величайшим философом древности»29. Основные вопросы философии, логики, психологии, естествознания, техники, политики, этики и эстетики, поставленные в науке Древней Греции, получили у Аристотеля полное и всестороннее освещение. В математике он, по-видимому, не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков.
Ко времени Аристотеля теоретическая математика прошла значительный путь и достигла высокого уровня развития. Продолжая традицию философского анализа математического познания, Аристотель поставил вопрос о необходимости упорядочивания самого знания о способах усвоения науки, о целенаправленной разработке искусства ведения познавательной деятельности, включающего два основных раздела: «образованность» и «научное знание дела». Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем математики. Но по отдельным высказываниям, по использованию математического материала в качестве иллюстраций общих методологических положений можно составить представление о том, каков был его идеал построения системы математических знаний.
Исходным этапом познавательной деятельности, согласно Аристотелю, является обучение, которое «основано на (некотором) уже ранее имеющемся знании... Как математические науки, так и каждое из прочих искусств приобретается (именно) таким способом»30. Для отделения знания от незнания Аристотель предлагает проанализировать «все те мнения, которые по-своему высказывали в этой области некоторые мыслители»31 и обдумать возникшие при этом затруднения. Анализ следует проводить с целью выяснения четырех вопросов: «что (вещь) есть, почему (она) есть, есть ли (она) и что (она) есть»32.
Основным принципом, определяющим всю структуру «научного знания дела»33, является принцип сведения всего к началам и воспроизведения всего из начал. Универсальным процессом производства знаний из начал, согласно Аристотелю, выступает доказательство. «Доказательством же я называю силлогизм, - пишет он, - который дает знания». Изложению теории доказательного знания полностью посвящен "Органон" Аристотеля. Основные положения этой теории можно сгруппировать в разделы, каждый из которых раскрывает одну из трех основных сторон математики как доказывающей науки: «то, относительно чего доказывается, то, что доказывается и то, на основании чего доказывается»34. Таким образом, Аристотель дифференцированно подходил к объекту, предмету и средствам доказательства.
Существование математических объектов признавалось задолго до Аристотеля, однако пифагорейцы, например, предполагали, что они находятся в чувственных вещах, платоники же, наоборот, считали их существующими отдельно. Согласно Аристотелю:
1. В чувственных вещах математические объекты не существуют, так как «находиться в том же самом месте два тела не в состоянии»35.
2. «Невозможно и то, чтобы такие реальности существовали обособленно»36.
Аристотель считал предметом математики «количественную определенность и непрерывность». В его трактовке «количеством называется то, что может быть разделено на составные части, каждая из которых ...является чем-то одним, данным налицо. То или другое количество есть множество, если его можно счесть, это величина, если его можно измерить»37. Множеством при этом называется то, «что в возможности (потенциально) делится на части не непрерывные, величиною то, что делится на части непрерывные»38. Прежде чем дать определение непрерывности, Аристотель рассматривает понятие бесконечного, так как «оно относится к категории количества» и проявляется прежде всего в непрерывном. «Что бесконечное существует, уверенность в этом возникает у исследователей из пяти оснований: из времени (ибо оно бесконечно); из разделения величин..; далее, только таким образом не иссякнут возникновение и уничтожение, если будет бесконечное, откуда берется возникающее. Далее, из того, что конечное всегда граничит с чем-нибудь, так как необходимо, чтобы одно всегда граничило с другим. Но больше всего -...на том основании, что мышление не останавливается: и число кажется бесконечным, и математические величины»39. Существует ли бесконечное как отдельная сущность или оно является акциденцией величины или множества? Аристотель принимает второй вариант, так как «если бесконечное не есть ни величина, ни множество, а само является сущностью..., то оно будет неделимо, так как делимое будет или величиной, или множеством. Если же оно не делимо, оно не бесконечно в смысле непроходимого до конца»40. Невозможность математического бесконечного как неделимого следует из того, что математический объект - отвлечение от физического тела, а «актуально неделимое бесконечное тело не существует»41. Число «как что-то отдельное и в то же время бесконечное»42 не существует, ведь «...если возможно пересчитать счислимое, то будет возможность пройти до конца и бесконечное»43. Таким образом, бесконечность здесь в потенции существует, актуально же - нет.
Опираясь на изложенное выше понимание бесконечного, Аристотель определяет непрерывность и прерывность. Так, «непрерывное есть само по себе нечто смежное. Смежное есть то, что, следуя за другим, касается его»44. Число как типично прерывное (дискретное) образование формируется соединением дискретных, далее неделимых элементов - единиц. Геометрическим аналогом единицы является точка; при этом соединение точек не может образовать линию, так как «точкам, из которых было бы составлено непрерывное, необходимо или быть непрерывными, или касаться друг друга»45. Но непрерывными они не будут: «ведь края точек не образуют чего-нибудь единого, так как у неделимого нет ни края, ни другой части»46. Точки не могут и касаться друг друга, поскольку касаются «все предметы или как целое целого, или своими частями, или как целое части. Но так как неделимое не имеет частей, им необходимо касаться целиком, но касающееся целиком не образует непрерывного»47.
Невозможность составления непрерывного из неделимых и необходимость его деления на всегда делимые части, установленные для величины, Аристотель распространяет на движение, пространство и время, обосновывая (например, в «Физике») правомерность этого шага. С другой стороны, он приходит к выводу, что признание неделимых величин противоречит основным свойствам движения. Выделение непрерывного и прерывного как разных родов бытия послужило основой для размежевания в логико-гносеологической области, для резкого отмежевания арифметики от геометрии.
«Началами... в каждом роде я называю то, относительно чего не может быть доказано, что оно есть. Следовательно, то, что обозначает первичное и из него вытекающее, принимается. Существование начал необходимо принять, другое - следует доказать. Например, что такое единица или что такое прямое или что такое треугольник (следует принять); что единица и величина существует, также следует принять, другое - доказать»48. В вопросе о появлении у людей способности познания начал Аристотель не соглашается с точкой зрения Платона о врожденности таких способностей, но и не допускает возможности приобретения их; здесь он предлагает следующее решение: «необходимо обладать некоторой возможностью, однако не такой, которая превосходила бы эти способности в отношении точности»49. Но такая возможность, очевидно, присуща всем живым существам; в самом деле, они обладают прирожденной способностью разбираться, которая называется чувственным восприятием. Формирование начал идет «от предшествующего и более известного для нас»50, то есть от того, что ближе к чувственному восприятию к «предшествующему и более известному безусловно»51 (таким является общее). Аристотель дает развернутую классификацию начал, исходя из разных признаков.
Во-первых, он выделяет «начала, из которых (что-либо) доказывается, и такие, о которых (доказывается)»52. Первые «суть общие (всем начала)», вторые - «свойственные (лишь данной науке), например, число, величина»53. В системе начал общие занимают ведущее место, но их недостаточно, так как «среди общих начал не может быть таких, из которых можно было бы доказать все»54. Этим и объясняется, что среди начал должны быть «одни свойственны каждой науке в отдельности, другие - общие всем»55. Во-вторых, начала делятся на две группы в зависимости от того, что они раскрывают: существование объекта или наличие у него некоторых свойств. В-третьих, комплекс начал доказывающей науки делится на аксиомы, предположения, постулаты, исходные определения.
Выбор начал у Аристотеля выступает определяющим моментом построения доказывающей науки; именно начала характеризуют науку как данную, выделяют ее из ряда других наук. «То, что доказывается», можно трактовать очень широко. С одной стороны, это элементарный доказывающий силлогизм и его заключения. Из этих элементарных процессов строится здание доказывающей науки в виде отдельно взятой теории. Из них же создается и наука как система теорий. Однако не всякий набор доказательств образует теорию. Для этого он должен удовлетворять определенным требованиям, охватывающим как содержание доказываемых предложений, так и связи между ними. В пределах же научной теории необходимо имеет место ряд вспомогательных определений, которые не являются первичными, но служат для раскрытия предмета теории.
Хотя вопросы методологии математического познания и не были изложены Аристотелем в какой-то отдельной работе, но по содержанию в совокупности они образуют полную систему. В основе философии математики Аристотеля лежит понимание математических знаний как отражения объективного мира. Эта установка сыграла важную роль в борьбе Аристотеля с платоновским идеализмом; ведь «если в явлениях чувственного мира не находится вовсе математическое, то каким образом возможно, что к ним прилагаются его свойства?» - писал он. Разумеется, материализм Аристотеля был непоследовательным, в целом его воззрения в большей степени соответствовали потребностям математического познания, сем взгляды Платона. В свою очередь математика была для Аристотеля одним из источников формирования ряда разделов его философской системы.
Список использованной литературы:
1. Афанасьев В.Г. Основы философских знаний, М., Мысль, 1987.
2. Беляев Е.А., Перминов В.Я. Философские и методологические проблемы математики. - М.: МГУ, 1981.
3. Большая советская энциклопедия. - М., т.7, 1972.
4. Бурбаки Н. Очерки по истории математики. - М., 1963.
5. Введение в философию, 2т. - М., 1989.
6. Глейзер Г.И. История математики в школе 7-8 классы. - М.: Просвещение, 1982.
7. Диалектика и частные науки / под ред. Н.М. Дмитренко и др. - Ленинград - Брянск, 1972.
8. Жуков Н.И. Философские основания математики. - Минск: Университетское, 1990.
9. Кедров Б.М. Предмет и взаимосвязь естественных наук. - М., Наука, 1967.
10. Кедровский О.И. Взаимосвязь философии и математики в процессе исторического развития. От Фалеса до эпохи Возрождения. - Киев, 1973.
11. Кедровский О.И. Взаимосвязь философии и математики в процессе исторического развития. От эпохи Возрождения до XX века. - Киев, Вища школа, 1974.
12. Краткий очерк истории философии/ под ред. М.Т. Иовчука и др. - М.: Мысль, 1971.
13. Малинников С.Г. Автореферат диссертации на соискание ученой степени кандидата философских наук. - С.-Пб., 1995.
14. Молодший В.Н. Очерки по философским вопросам математики. - М., Просвещение, 1969.
15. Маркс К. И Энгельс Ф. Соч., 2 тома, 1967.
16. Слуцкий М.С. Взаимосвязь философии и естествознания. - М., Высшая школа, 1973.
17. Философская энциклопедия. - М., Советская энциклопедия, 1960.
18. Философские проблемы оснований физико-математического знания, АН УССР, Институт философии. - Киев: Наук. Думка, 1989.