Рефетека.ру / Биология и химия

Авторский материал: Структура и состав анодно-искровых покрытий на вентильных металлах

Структура и состав анодно-искровых покрытий на вентильных металлах

В.Ф.Борбат, О.А.Голованова, А.М.Сизиков, Омский государственный университет, кафедра неорганической химии

В последнее время получил распространение электрохимический метод нанесения тугоплавких защитных покрытий, основанный на использовании явления анодного искрового разряда. Анодно-искровая технология является результатом развития традиционного анодирования. При некоторых значениях напряжения возникают качественные изменения процесса, которые заключаются в резком увеличении электронной составляющей тока, протекающего через границу раздела электролит-оксид и оксид-металл, и появлении многочисленных электрических пробоев пленки. Это приводит к существенному повышению температуры в каналах пробоя и окружающих их участках, благодаря чему рост покрытий значительно ускоряется. Параллельно в каналах пробоя образуется низкотемпературная плазма, в которой протекают реакции, приводящие к включению в оксид компонентов электролита. Таким образом, следствием пробоя при высоких напряженностях поля являются, с одной стороны, ускорение процесса образования оксида, с другой - изменение физических и химических свойств получаемого покрытия [1].

Химический, фазовый состав и механические свойства анодно-искровых покрытий близки к свойствам обычной керамики. Они характеризуются твердостью, жаропрочностью, стойкостью к истиранию, высокими электроизоляционными и антикоррозионными свойствами. Весьма привлекательной представляется возможность их нанесения на изделия из легкоплавких металлов, что с помощью традиционной обжиговой технологии недостижимо. Большее распространение в промышленности получил метод нанесения оксидных покрытий в серной кислоте.

Анализ анодно-искровых покрытий показывает, что в них, наряду с оксидами металла подложки, в больших количествах содержатся атомы или группы атомов, входящих в состав электролита [1]. Внедрение ионов электролита определяется природой электролита, связано с механизмом формирования и многочисленными анодными процессами (электрохимическими, химическими, адсорбционными, процессами ионного обмена и др.), протекающими на поверхности пленки, в порах и объеме оксида. Вклад каждого из этих процессов зависит от условий формирования и концентрации электролита .

В связи с изложенным представлялось важным исследовать состав покрытий, получаемых плазменно-электролитическим оксидированием, на алюминии, титане и тантале в серной кислоте.

Для изучения фазового состава образцов по их межплоскостным расстояниям был проведен рентгенофазовый анализ. Рентгенограммы образцов были получены методом порошка и пленки на установке "Дрон-3" в монохроматизированном "медном" излучении.

Для определения элементного состава получаемых анодно-искровым методом покрытий и изучения распределения химических элементов по поверхности исследуемых образцов был проведен рентгеноспектральный анализ. Рентгенограммы образцов были получены методом пленки на установке МАР-3.

1.  Результаты и их обсуждение.

Исследование поверхности титанового электрода, полученного в условиях : I = 0,3 А,И = 120 В,t = 900 сек. (концентрация кислоты варьировалась от 10 до 50 %), показало, что, кроме оксида титана(III) (в двух модификациях: анатаз и рутил), на поверхности существует сульфат титана (III). Вероятно, при протекании плазменно-электролитической обработки титана в растворах серной кислоты происходит "заработка" сульфат-иона в оксидную пленку. Причем состав получаемого покрытия остается постоянным при изменении условий обработки (силы тока, времени обработки).

Изучение получаемых покрытий на танталовом аноде с помощью рентгенофазового метода показало, что на поверхности электрода образуется пятиокись тантала (концентрация серной кислоты изменялась от 1 до 30%).

Данные рентгенофазового анализа на алюминиевом аноде показывают, что на поверхности, обрабатываемой анодно-искровым разрядом, кроме оксида алюминия существует сульфат алюминия (концентрация кислоты - 93,8%). Эти данные также подтверждают "заработки" ионов электролита в оксидную пленку при воздействии на алюминий микроразряда.

Исходя из полученных результатов, также можно отметить, что при получении покрытий на алюминии, титане возможно внедрение сульфат-ионов в состав получаемого покрытия. Для танталового анода концентрация сульфат-ионов, вероятно, менее 1% и в этом случае образуется твердый раствор без четкой фазовой характеристики.

Как и следовало ожидать, по результатам рентгеноспектрального анализа мы определили две характеристические линии, соответствующие линиям материала электрода и серы. Для определения количества серы, внедренной в состав оксидной пленки, был снят сигнал чистой серы и отношение интенсивность данного сигнала (I0) к интенсивности сигнала серы (IS) в полученной пленке дает относительное содержание заработанной серы .

Анализ анализ экспериментальных данных показывает, что относительное содержание серы возрастает с увеличением концентрации серной кислоты, стремясь к некоторому предельному значению. Такая же зависимость наблюдается при увеличении силы тока.

Интересно отметить, что максимальное содержание серы (максимальный пик на регистрограмме) на танталовом электроде возрастает с увеличением силы тока. Очевидно, процесс накопления компонентов электролита при плазменно-электролитическом способе обработки является неравномерным и отличается от распределения примесей в пленках, полученных обычным оксидированием [2]. Можно предположить, что заработка компонентов электролита происходит в местах возникновения микроразрядов в момент их залечивания и поэтому макрораспределение серы может быть связано с размерами пор.

Сравнение результатов эксперимента показывает, что наибольшее количество серы зарабатывается на алюминиевом аноде (0,005 мг), затем относительное содержание серы уменьшается от титана - (0,0032 мг), к танталу - (0,0025 мг). Возможно, это связано с получением плазменно-электролитическим методом оксидных покрытий, толщина которых увеличивается от тантала к алюминию, а также концентрацией электролита, в котором ведется обработка.

Наряду с приведенной информацией большой интерес представляет возможность с помощью полученных диаграмм рентгеноспектрального анализа оценить размер канала (поры), в котором происходит заработка компонентов электролита. Определение размера пор осложняется тем, что ширина зонда небольшая и поэтому, сканируя по поверхности образца, мы получаем информацию по содержанию серы в разных участках пор. Вероятно, максимальные по ширине пики могут соответствовать или приближаться по своим значениям к диаметру пор. Исходя из этого предположения, мы определили максимальные размеры пор на алюминии, титане и тантале по формуле : размер поры = l·Vcк/Vл, где l - линейный размер максимального пика на рентгенограмме (мм); Vск -скорость сканирования лучом (мммин); Vл - скорость движения ленты (мммин) .

Анализ полученных результатов показывает, что размер пор на алюминиевых образцах соответствует интервалу (4,7-7)·10-2 мм и практически не зависит от условий обработки. Для титанового и танталового образцов получена зависимость максимального размера пор от условий обработки. Можно отметить, что максимальный размер пор увеличивается с возрастанием силы тока.

При сопоставлении результатов рентгеноспектрального анализа по заработке серы в оксидные пленки, полученные на алюминии, титане и тантале, с результатами весового анализа [3,4] по убыли сульфат-иона из обрабатываемого анодным микроразрядом электролита (растворов серной кислоты), можно отметить, что закономерности, установленные в ходе проведения экспериментов, совпадают. Очевидно, одной из причин уменьшения сульфат-иона в электролите после обработки анодным микроразрядом является внедрение компонентов электролита в образующуюся оксидную пленку, причем внедрение ионов электролита происходит преимущественно в поры в момент их залечивания.

2.  Выводы:

1. Доказано, что при получении оксидных покрытий плазменно-электролитическим методом происходит заработка ионов электролита в поры пленки в момент их залечивания.

2. Распределение серы по поверхности образца неравномерно в отличие от равномерного распределения, имеющего место при обычном анодировании.

3. Оценены максимальные размеры пор оксидных покрытий на алюминии, титане и тантале.

Список литературы

Баковец В.В., Поляков О.В., Долговесова И.П. Плазменно-электролитическая анодная обработка металлов // Новосибирск: Наука, 1991. С.93.

Чернеченко В.И., Снежко А.А., Потапова И.И. Получение покрытий анодно-искровым электролизом // Л.: Химия, 1991. С.101-103.

Голованова О.А., Сизиков А.М., Борбат В.Ф. Химические эффекты анодного микроразряда на вентильных металлах в серно-кислотных электролитах / Омск: ОмГУ, 1994. 9 с. Деп. в ВИНИТИ 12.08.94. N 2119-В 94.

Голованова О.А.,Сизиков А.М. Динамика превращения серно-кислотного электролита в разряде на танталовом электроде / Омск: ОмГУ, 1994. 15 с. Деп. в ВИНИТИ 12.08.94. N 2121-В 94

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/


Похожие работы:

  1. • Кинетические закономерности электрохимического окрашивания ...
  2. • Вторичные процессы и их роль при анодном оксидировании ...
  3. • Физико-химическая модель процессов в анодном ...
  4. • Физико-химическое обоснование режимов электрохимического ...
  5. • Электрохимические методы защиты металлов от коррозии
  6. • Методы защиты от коррозии металлов и сплавов
  7. • Электрохимические методы защиты металлов от коррозии
  8. • Электрохимические методы защиты металлов от коррозии
  9. • Гальванические покрытия
  10. • Коррозия металлов
  11. • Разработка интегрированного стартер-генератора на основе ...
  12. • Качественный метод исследования с применением ...
  13. • Электрохимическое внедрение и анодное растворение лития на ...
  14. • Теоретические основы электрохимической коррозии
  15. • Электропривод с вентильной машиной
  16. • Влияние хрома на электрохимическое поведение стали
  17. • Технология электроосаждения цинкового покрытия
  18. • Защита нефтепромысловых трубопроводов от коррозии
  19. • Коррозия
Рефетека ру refoteka@gmail.com