Д.Н. Лавров, Омский государственный университет, кафедра математического моделирования
Рассмотрим набор M датчиков, произвольным образом расположенных в пространстве. Дипольная решетка получается из данного набора путем сдвига вдоль вектора h. Вектор h назовем порождающим.
Образуем систему из L дипольных решеток, с каждой из которой ассоциирован порождающий вектор , которую назовем линейной, если система порождающих векторов коллинеарна, плоской - если компланарна, и объемной - в остальных случаях.
Пусть на эту систему воздействует D плоских волновых фронтов. Каждому из них сопоставлен волновой вектор .
Поставим задачу оценивания компонент волновых векторов по измерениям, полученным от системы дипольных решеток (СДР). Используя метод поворота подпространств [], получим оценки линейных комбинаций типа или в матричном виде
где M - -матрица измерений фаз; H - -матрица порождающих векторов, ; N - -матрица волновых векторов, ;где n - размерность волнового вектора, принимаемая за единицу для линейной СДР, n=2 - для плоской и n=3 - для объемной СДР.
Характерной особенностью метода поворота подпространств является отсутствие информации о глобальной геометрии дипольной решетки, что влечет произвольную перестановку элементов строк матрицы M. Данное обстоятельство обозначим матричным мультииндексом , представляющим собой целочисленную матрицу, каждая строка которой есть перестановка целых от 1 до D. Таким образом
2. Построение оценок
2.1 Оценка наименьших квадратов
Пусть L>n. Рассмотрим матрицу ошибок:
Найдем N, являющуюся решением задачи
,
где
матрица ошибок выписанная по столбцам. Продифференцировав (3) по N (с учетом легко проверяемого свойства ), приравняв к нулю полученное выражение - для МНК-оценки матрицы волновых векторов получим:
Для нахождения подставим (4) в целевую функцию (3), после простых преобразований имеем
где - проектор на пространство, ортогональное линейной оболочке столбцов H и .
Задачу поиска оценки в дальнейшем будем называть задачей согласования измерений.
Оценки (4) и (5) легко обобщаются, если ошибки измерений нормально распределены с нулевым средним и матрицей ковариаций B-1.
Записав логарифм функции правдоподобия, исключив константы, не зависящие от оцениваемых параметров, приходим к оптимизационной задаче вида
Выражение (2) запишется в виде , где IL - -единичная матрица; и - вектора соответствующих размерностей, полученные из и N выписыванием компонент по столбцам. Вместо мультииндекса введя матрицу перестановок P, являющуюся произведением матриц элементарных перестановок (причем каждая из этих матриц является допустимой, если переставляет две компоненты с одинаковыми первыми индексами), получим:
Продифференцировав (6) и приравняв нулю полученные производные по , получим оценку совокупности волновых векторов:
Подставляя (8) в (6), получаем решение задачи согласования
с проектором
Минимум (9) ищется по всевозможным допустимым матрицам P.
Оценка максимального правдоподобия для одного волнового вектора приведена в []. Выражение (8) является обобщением оценки максимального правдоподобия волновых векторов D-источников излучения.
Будем оптимизировать СДР путем варьирования параметров порождающих векторов, полагая при этом, что длины их равны, тогда без ограничения общности их можно считать единичными. Таким образом, - для плоской решетки и - для объемной решетки.
Известно, что матрица ковариаций МНК-оценки волнового вектора есть . В качестве числового значения качества оценки можно выбрать любую матричную норму . След симметрической положительно определенной матрицы удовлетворяет всем аксиомам матричной нормы, поэтому в качестве целевой функции выберем . Целевую функцию для плоской решетки обозначим f, а для объемной - g. Имеем:
где M1, M2, M3 - главные миноры матрицы .
Далее будем использовать свойства целевых функций:
: f, g - инвариантны относительно вращений в пространстве строк H.
: f - симметрическая функция своих аргументов (перестановка и не меняет значения функции).
: g - симметрическая функция пар аргументов (перестановка и не меняет значения функции).
: f, g - периодичны по каждому аргументу.
Используя первое свойство, можно понизить число неизвестных параметров в случае плоской СДР-единицу (положив ) и для объемной СДР на три (). Второе и третье утверждения позволяют сузить область поиска минимума, а также при известном решении получать симметричные ему.
Вместо минимизации функции f удобнее искать максимумы:
Получим явные выражения для f, градиента и матрицы Гессе .
Находя частные производные по , получим
Матрица Гессе, элементы которой имеют вид:
Рассмотрим СДР с минимально возможным количеством дипольных подрешеток (для плоской СДР L=3, для объемной - L=4).
Для случая L=3 (плоская СДР) положим . Линии равного уровня f изображены на рис. 1. Используя (13), запишем систему уравнений в виде
Из всех решений системы
Рис. 1 Целевая функция f (L=3) в квадрате |
существует одно нетривиальное решение: , , , остальные получаются применением свойств , , .
Проверим, что в данной точке .
с собственными числами . Так как собственные числа отрицательны, то матрица Гессе отрицательно определена. Таким образом, представленные решения являются точками строгих глобальных максимумов. В частности, также следует, что гексогональные кольцевые решетки оптимальны в смысле минимума целевой функции (10).
Для объемной СДР (n=3) численная оптимизация методом циклического покоординатного спуска [] для L=4 (с точностью до машинного нуля) приводит к конфигурации векторов hi, образующих правильный тетраэдр, то есть решение задается равенствами: (в силу свойства ) , . Вторая конфигурация, к которой сходился алгоритм, получается из первой путем изменения направления какого-либо одного из порождающих векторов. Аналитические вычисления показывают, что градиент в данной точке равен нулю, а матрица Гессе равна:
Характеристический многочлен матрицы имеет вид
с корнями: , . Так как корни положительны, то положительно определена и матрица Гессе. Следовательно, найдено оптимальное (в смысле минимума (11)) решение. Эксперименты по численной оптимизации не приводят к другим решениям, кроме указанных. Это дает основание полагать, что найденные решения - точки глобальных минимумов g.
Полрадж А., Рой Р., Кайлатх Т. Оценивание параметров сигнала методом поворота подпространств // ТИИЭР. 1986. Т. 74. N.7. С.165-166.
Белов В.И. Теория фазовых измерительных систем / Под. ред. Г.Н.Глазова. Томск: ТГАСУР, 1994. С.144.
Васильев Ф.П. Численные методы решения экстремальных задач. М.: Гл. ред. физ.-мат. лит., 1988. С. 552.