Р.А. Сергеев
Бурное развитие гетероструктур в последние десятилетия привело к тому, что удалось обнаружить или создать большое количество физических объектов и явлений, которые ранее либо не изучались, либо рассматривались чисто теоретически, в виде экзотики, вряд ли осуществимой на практике. Действительно, возможность встраивать в проводник потенциал практически любого профиля, причем с масштабом, характерным для проявления квантоворазмерных явлений, позволила создавать на практике искусственные объекты с заранее заданными свойствами. Так, например, квантовая точка представляет собой, фактически, искусственный атом с системой уровней, которая задаётся размерами, формой квантовой точки и полупроводником, на основе которого она реализована. Заметим, что все эти параметры поддаются контролю со стороны экспериментатора, тем самым, именно он определяет, какой объект будет создан.
Для того чтобы получить квантоворазмерную структуру в полупроводнике, необходимо создать ограничения на движение носителей заряда на масштабе длин, сравнимых с их де-бройлевскими длинами волн. Принципиальными здесь являются структуры, в которых движение носителей полностью ограничено только в одном (квантовые ямы), двух (квантовые нити) или во всех трех (квантовые точки) направлениях. Создание таких структур означает реализацию на практике объектов с размерностью меньшей, чем в обычном полупроводнике ([*1]). Один из многочисленных эффектов, связанных с понижением размерности, это увеличение характерной энергии связи практически любых низкоразмерных систем по сравнению с их трехмерными аналогами. Это связано с тем, что частицы, из которых состоит система, имеют меньше степеней свободы в такой структуре, чем в трехмерном полупроводнике, из-за того, что их движение ограничено в одном или нескольких направлениях. Это уменьшает их характерную энергию локализаций, которая возникает при образовании систёмы. С другой стороны, связывающий потенциал системы, при наличии ограничения, как правило, возрастает, так как, из-за концентрации волновой функции в области квантоворазмерной структуры, усиливается кулоновское взаимодействие, и возрастает роль обменного взаимодействия (сильнее перекрываются волновые функции одинаковых частиц). В результате рост энергии связи практически любых систем, даже при небольшом понижении их размерности, может быть значительным. Например, энергия связи основного состояния двумерного экситона (связанные электрон и дырка) в 4 раза выше, чем у соответствующего ему трехмерного аналога. Интерес вызывает также то, что при понижении размерности происходят не только количественные, но и качественные изменения в квантовомеханических системах.
Например, хорошо известно [1], что трехмерная потенциальная яма, в случае если ее глубина достаточно мала (по сравнению с характерной энергиеи локализации), не имеет ни одного связанного состояния, и только если глубина ямы превышает некоторое критическое значение, такое состояние появляется. В двумерном же потенциале, связанное состояние существует в любом отрицательном потенциале V(r)