А. А. Богатов, Мордовский государственный педагогический институт, Саранск
Считается, что энергия, обеспечивающая сокращения мышц, образуется в процессе расщепления АТФ и существует три основных пути ее ресинтеза, названные источниками энергообеспечения: аэробный (окислительный), анаэробно-гликолитический и фосфагенный [1, 2, 18, 19, 22, 23].
Известно, что преобладание анаэробной или аэробной энергетики у человека определяется составом мышечных волокон и выявляется уже в детском возрасте [8]. Считается, что подобная специфика метаболических реакций генетически детерминирована [13,16]. В зависимости от индивидуальной организации энергетики скелетных мышц выделяют различные типы (варианты, профили) энергообеспечения. Так, Л.А. Марчик и Л.Л. Каталымов [11], изучая особенности энергетики мальчиков 7-8 лет, выявили в этом возрасте 6 типов энергообеспечения. В.Ф. Воробьев [3] определил у мальчиков 10 - 11 лет 4 варианта энергообеспечения мышечной работы. При изучении особенностей энергетической структуры у нетренированных студентов-мужчин 17-18 [12] и 18-22 лет [16] было показано наличие трех энергопрофилей.
Подобное снижение вариативности индивидуальной организации энергетики скелетных мышц может быть связано с онтогенетическими дифференцировками скелетных мышц, основные волны которых приходятся на 1 и 3 года, 5 - 6, 10 - 11 и 14 -16 лет [9].
В настоящее время все больше исследователей, работающих в области физического воспитания, приходят к мнению, что проблема индивидуализации тренировочных режимов не может быть исчерпана учетом только пола и возраста [5]. Одним из возможных условий оптимизации тренировочного процесса может явиться его программирование, базирующееся на основе учета типологических особенностей энергообеспе чения скелетных мышц.
Показано, что у мальчиков, не занимающихся спортом, тип энергообеспечения определяет работоспособность в различных зонах мощности [12]. Можно предположить, что тип энергетики будет обуславливать рабочие возможности спортсменов в специфических условиях тренировки и соревновательной деятельности.
Имеются данные, указывающие, что структура энергетики независимо от методики занятий развивается по специфическому для нее пути [13]. В этом случае определение типа индивидуальной организации энергообеспечения скелетных мышц на учебно-тренировочном этапе занятий в ДЮСШ могло бы позволить прогнозировать результат, которого может добиться спортсмен.
В свете вышесказанного целью нашего исследования было изучение типологических особенностей энергетики скелетных мышц лыжников-гонщиков и их взаимосвязи с работоспособностью в процессе годичного тренировочного цикла.
Методика исследований. В исследовании приняли участие 35 юношей в возрасте 17 - 18 лет, имеющих II - III разряды по лыжным гонкам и занимающиеся в одной учебно-тренировочной группе. Средний рост испытуемых - 174,33±3,74 см, вес - 66,6±7,02 кг. Наблюдения проводились во время переходного (май), подготовительного (октябрь) и соревновательного (февраль) периодов годичного тренировочного цикла.
Для характеристики энергетических систем использовали такие понятия , как мощность и емкость энергетического источника. Мощность определяется активностью тканевых ферментов энергетического метаболизма, а также пропускными возможностями систем транспорта кислорода. Емкость зависит от запаса доступных субстратов и от состояния резервных возможностей вегетативных систем организма [3, 18].
С помощью эргометрического метода тестирования, основанного на оценке коэффициентов уравнения Мюллера [4, 6, 7, 24], испытуемые на велоэргометре Ритм ВЭ-05 выполняли две нагрузки "до отказа" в зоне большой (3 Вт/кг) и субмаксимальной (6 Вт/кг) мощности - W1 и W2, соответственно [15]. За "отказ" от работы принимали прекращение педалирования либо резкое снижение его интенсивнос ти. Время удержания нагрузок (t1 и t2) использовали для расчета коэффициентов "a" и "b":
a = lg (t2 / t1) / lg (W1 / W2);
b = ln (t1 x W1a) = ln (t2 x W2a).
Величина коэффициента "а" характеризует положение ветвей кривой "мощность-время" относительно осей координат и выражает соотношение возможностей аэробного и анаэробно-лакта цидного источников. Коэффициент "b" характери зует аэробную емкость [3, 6].
Исходя из схемы участия основных источников энергии (фосфагенного, лактацидного и аэробного) в энергообеспечении мышечной деятельности в зависимости от ее длительности [2, 23, 25], подставляя значения коэффициентов в уравнение Мюллера t = eb / Wa, рассчитывали мощность нагрузки, которую испытуемый может поддерживать в течение 1, 10, 40, 240 и 900 с (показатели Wmax, W10, W40, W240, W900).
Показатели Wmax и W10 характеризуют мощность фосфагенного компонента энергообеспечения, W40 - гликолитического, W240 - рабочие возможности в зоне смешанной анаэробно-аэробной энергопродукции, а W900 - мощность аэробной энергосистемы [6, 11].
Для определения типа энергообеспечения скелетных мышц рассчитывали среднеарифметические значения мощностных показателей для всей выборки. Отличие величины индивидуального значения показателя на±0,67s от среднего (M) позволило оценить степень развития источников энергообеспечения. Если индивидуальная величина не выходила за пределы M±0,67s, развитие энергоисточника принимали за среднее. Если индивидуальное значение меньше или больше M±0,67s, то говорили, соответственно, о низком или высоком уровне развития источника энергии.
Работоспособность спортсменов оценивали по времени удержания велоэргометрических нагрузок умеренной (1,5 Вт/кг), большой, субмаксимальной мощностей и результатам, показанным на соревнованиях по лыжным гонкам на 10 и 5 км.
Полученные данные математически обработаны на ЭВМ с помощью стандартной программы.
Для определения достоверности различий рассчитывали доверительный коэффициент (t) Стъюдента. На основании величины t и числа наблюдений по таблице [9] определяли процент возможной ошибки, выражаемый в виде значения вероятности различия - p.
Результаты исследования и их обсуждение. На первом этапе исследования (переходный период) был проведен анализ индивидуальных значений эргометрических показателей, характери зующих возможности энергосистем. Выявлено три варианта индивидуальной организации энергообеспечения мышечной деятельности. Полученные данные представлены в табл. 1.
В 11,4 % случаев юноши обладали высокой степенью развития фосфагенного (показатели Wmax, W10), высокой, средней или низкой степенью развития гликолитического (W40) и низкой степенью развития аэробного (минимальные значения b, W240, W900) компонентов энергообеспечения мышечной деятельности. Этих испытуемых выделили в фосфагенный тип энергетики (см. табл. 1). Согласно [13], высокое значение Wmax при данном варианте энергообеспечения отражает не столько уровень мощности фосфагенной системы, сколько тот факт, что ее характеристики являются наиболее консервативными, генетически предопреде ленными и стабильными признаками.
В 77,1% случаев развитие источников энергии было пропорциональным, т.е. каждый из компонентов имел в основном среднюю степень развития энергетических систем. Такой тип энергетики был назван смешанным (пропорциональным).
У 11,4 % испытуемых наблюдали высокую степень развития аэробного, среднюю - анаэробно -гликолитического и низкую - фосфагенного источников энергии (см. табл. 1). Этот тип энергообес печения скелетных мышц назвали аэробным.
Как видно, типы энергетики достоверно отличаются по большинству представленных в табл. 1 показателей.
Как было указано выше, преобладание анаэробной или аэробной энергетики в обеспечении мышечной деятельности человека определяется составом мышечных волокон, генетически детерминируемо [8, 13, 20] и может проявляться уже в детском возрасте [3, 11, 17]. Известно также, что нейромоторные свойства мышц находятся под более жестким контролем генетического аппарата в сравнении с метаболическими характеристиками мышцы, которые способны адаптивно изменяться под воздействием тренировки [13,16]. Однако к настоящему времени невозможно достаточно точно ответить на вопрос: изменяется ли тип энергообес печения скелетных мышц под влиянием тренировки параллельно с адаптивными сдвигами метаболических параметров, поскольку имеются данные [13], указывающие, что структура энергетики независимо от направленности занятий развивается по специфичному для нее пути. В таком случае правомерно предположение [11], что либо тип энергетики скелетных мышц генетически детермини рован, а целенаправленная тренировка расширяет его потенциальные возможности, не изменяя типологии метаболизма, либо генетически обусловлена программа развития энергетических систем.
Таблица 1. Показатели, характеризующие мощность и емкость энергетических источников у лыжников-гонщиков с разными типами энергообеспечения в различные периоды годичного тренировочного цикла (М±т)
Показатели |
По всей выборке |
Тип энергообеспечения |
||
аэробный |
смешанный |
фосфатный |
||
Переходный период |
||||
n, % |
35(100) |
4(11,4) |
27(77,1) |
4(11,4) |
a |
4,05±0,07 |
4,53±0,09^^^ |
4,12±0,05*** |
3,16±0,17*** |
b |
11,08±0,13 |
11,96±0,21^^^ |
11,18±0,1*** |
9,54±0,23*** |
Wmax, Вт/кг |
15,66±0,43 |
14,06±0,32^^ |
15,11±0,27* |
20,95±1,68** |
W10, Вт/кг |
8,79±0,12 |
8,45±0,18^ |
8,67±0,11 |
9,99±0,46** |
W40 Вт/кг |
6,21±0,06 |
6,22±0,14 |
6,18±0,07 |
6,4±0,17 |
W240, Вт/кг |
3,97±0,05 |
4,19±0,11^^ |
3,99±0,05 |
3,61±0,06*** |
W900, Вт/кг |
2,86±0,05 |
3,13±0,09^^^ |
2,9±0,04* |
2,37±0,08*** |
Подготовительный период |
||||
п, чел. (в %) |
35(100) |
8 (22.9) |
23 (65.7) |
4(11,4) |
a |
4,32±0,12 |
5,14±0,12^^^ |
4,25±0,11*** |
3,13±0,2*** |
b |
11,62±0,23 |
13,12±0,24^^^ |
11,5±0,2*** |
9,25±0,31*** |
Wmax, Вт/кг |
15,3±0,47 |
12,87±0,2^^ |
15,35±0,42*** |
19,88±1,76* |
W10, Вт/кг |
8,74±0,12 |
8,22±0,07^ |
8,81±0,14*** |
9,34±0,38 |
W40 Вт/кг |
6,25±0,06 |
6,26±0,05^^ |
6,3±0,09 |
5,94±0.08** |
W240, Вт/кг |
4,1±0,07 |
4,41±0,06^^^ |
4,12±0,06** |
3,33±0,08*** |
W900, Вт/кг |
3,01±0,07 |
3,41±0,06^^^ |
3,01±0,06*** |
2,18±0,11*** |
Соревновательный период |
||||
п, чел. (в %) |
35(100) |
8 (22.9) |
21 (60) |
6(17.1) |
а |
4,3±0,18 |
5,51±0,12^^^ |
4,31±0,15*** |
2,65±0,12*** |
b |
11,43±0,32 |
13.5±0,18^^^ |
11,49±0,28*** |
8,49±0,18*** |
Wmax, Вт/кг |
15,94±0,94 |
11,67±0,3^^^ |
14,77±0,44*** |
25,72±2,76*** |
W10, Вт/кг |
8,64±0,19 |
7,66±0,13^^^ |
8,49±0,12*** |
10,49±0,56** |
W40 Вт/кг |
6,07±0,05 |
5.95±0.08 |
6,1±0,06 |
6,15±0,16 |
W240, Вт/кг |
3,91±0,08 |
4.29±0,04^^^ |
4±0.08*** |
3,1±0,06*** |
W900, Вт/кг |
2,86±0,1 |
3,37±0,04^^^ |
2,94±0,08*** |
1,88±0,08*** |
Примечание.
Различие достоверно в сравнении с предыдущим: * - р < 0,05; ** - р < 0,02-0,01; ***- р < 0,002-0,001.
Различие достоверно в сравнении с фосфатным: ^ - р < 0,05; ^^ - р < 0,02-0,01; ^^^- р < 0.002-0.001.
К подготовительному периоду под влиянием целенаправленной тренировки 11,4 % от общего числа испытуемых изменили смешанный тип энергетики на аэробный. Количество юношей с фосфатным типом энергетики осталось прежним. Все испытуемые, изменившие структуру энергетики, имели в своей группе исходно более высокие значения: W240, W900 и b.
В соревновательном периоде 5,7 % от общего количества юношей, имевших в пределах своей группы более высокие значения Wmax и W10, изменили смешанный тип энергетики на фосфатный. Количество испытуемых с аэробным типом энергетики от подготовительного к соревновательному периоду не изменилось.
В течение всего годичного цикла наблюдений не было ни одного случая перехода фосфатного типа в аэробный, и наоборот. Таким образом, в процессе годичного тренировочного цикла под воздействием регулярной тренировочной нагрузки лишь в 17,1 % случаев тип энергообеспечения изменился, а в 82,9 % случаев остался прежним. По-видимому, тип энергообеспечения мышечной деятельности является достаточно стабильной структурой, а происходящие под влиянием физической нагрузки адаптивные изменения метаболических параметров мышц неспособны радикально поменять типологию метаболизма.
В переходном периоде тренировки лучшей работоспособностью в зоне умеренной мощности обладают спортсмены аэробного и смешанного типов энергетики. Время удержания нагрузки составило соответственно 3594,25±144,17 и 3669,52±97,44 с. Достоверно меньше (p< 0,01) в сравнении с испытуемыми смешанного типа удерживают нагрузку умеренной мощности представители фосфатного типа - 3156,25±139,7 с.
Таблица 2. Уравнения регрессии для оценки работоспособности (времени - Т работы заданной мощности или времени пробегания дистанции), коэффициента корреляции и достоверности в соревновательном периоде
Время, Т |
Уравнение регрессии |
r |
p |
Умеренной мощности |
932,1827a - 65,26936 |
0,771 |
5,86*10-8 |
52б,92035b - 2080,24359 |
0,772 |
5,53*10-8 |
|
1904,97483W240- 3504,82584 |
0,713 |
1,5б*10-6 |
|
1663,68167W900-807,71123 |
0,742 |
3,37*10-7 |
|
Большой мощности |
544,1219a- 1312,31409 |
0,929 |
9,2б*10-16 |
314,17547b-2564,02928 |
0,95 |
3,4Г10-18 |
|
1165,21267W240- 3528,3045 |
0,899 |
2,19*10-13 |
|
1002,38448 W900- 1835,04001 |
0,922 |
3,73*10-15 |
|
Лыжной гонки на 10 км |
3158,87105-1б3,б0578a |
-0,616 |
0,00008 |
3523,6573-93,45329b |
-0,623 |
0,00006 |
|
3768,52019-335,86766 W240 |
-0,572 |
0,00033 |
|
3276,21315-287,45209 W900 |
-0,584 |
0,00023 |
|
Лыжной гонки на 5 км |
1933,651-130,03975a |
-0,659 |
0,00002 |
2210,21082-73,10939b |
-0,656 |
0,00002 |
|
2365,20171-253,40147W240 |
-0,581 |
0,00026 |
|
2009,46384-222,36682W900 |
-0,607 |
0,00011 |
Лучшими рабочими возможностями в зоне большой мощности обладают юноши аэробного типа. Они выдерживают нагрузку в течение 1110,5±132,73 с. Достоверно худшее время (p < 0,05) показывают представители смешанного и фосфатного типов энергообеспечения, соответственно 807,33±40,77 и 434,75±31,62 с.
В подготовительном периоде работоспособность в зоне умеренной интенсивности максималь на у испытуемых аэробного типа энергетики -4702,75±227,44 с. Достоверно худшей работоспо собностью (p < 0,05) при выполнении работы умеренной мощности обладают юноши смешанного - 3858,74±232,58 с и фосфатного - 2694,25±106,26 с типов. Разница между смешанным и фосфатным типами энергетики достоверна - p < 0,001.
В том же периоде подготовки велоэргометри ческую нагрузку большой мощности дольше удерживают спортсмены аэробного типа - 1826±195,81 с. Достоверно (p < 0,001) меньшее время работают испытуемые смешанного и фосфатного типов, соответственно 1019,96±94,19 и 341,75±32,56 с.
Как и в предыдущих периодах тренировки годичного тренировочного цикла, в соревновательном лучшей работоспособностью в зонах умеренной и большой мощности обладают юноши аэробного типа энергетики. Нагрузку умеренной интенсивности они удерживают 5335,75±238,87 с. Юноши смешанного и фосфатного типов удерживают ту же нагрузку, соответственно 3884,81±221,59 и 2299,67±182,75 с. Разница между типами статистически достоверна - p < 0,001.
В этом же периоде работу большой мощности дольше выполняют испытуемые аэробного типа - 1743,25±109,7 с. Достоверно (p < 0,001) хуже справляются с нагрузкой большой мощности юноши смешанного и фосфатного типов - 973,81±109,03 и 266±15,08 с, соответственно.
Общеизвестен факт, что максимально точное представление о работоспособности дает специфическая соревновательная нагрузка. Дистанцию лыжных гонок на 10 км быстрее всех пробегали испытуемые аэробного типа энергетики - 2111,87±43,95 с. На пробегание той же дистанции лыжники смешанного и фосфатного типов затрачива ли достоверно большее время (p < 0,001), соответственно 2522,71±52,87 и 2676±62,92 с.
Дистанцию 5 км спортсмены аэробного типа проходили в среднем за 1129,38±26,58 с. Лыжники смешанного и фосфатного типов - за 1406,46±38,9 и 1588±44,17 с, соответственно. Разница между типами статистически достоверна - p