Рефетека.ру / Эк.-мат. моделирование

Реферат: Модель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелями

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ПАРАМЕТРОВ ФИНАНСОВЫХ РЫНКОВ И ОПТИМАЛЬНОГО

УПРАВЛЕНИЯ ИНВЕСТИЦИОННЫМ ПОРТФЕЛЕМ.

Выполнил:

Проверил:

г.Пермь 2000.

Построение математической модели прогнозирования поведения является трудной задачей в связи с сильным влиянием политических и других проблем
(выборы, природные катаклизмы, спекуляции крупных участников рынка…).

В основе модели лежит анализ некоторых критериев с последующим выводом о поведении доходности и ценовых показателей. В набор критериев входят различные макро- и микроэкономические показатели, информация с торговых площадок, экспертные оценки специалистов. Процедура прогнозирования состоит из этапов:

1. Подготовка и предварительная фильтрация данных;

2. Аппроксимация искомой зависимости линейной функцией;

3. Моделирование погрешности с помощью линейной сети.

Но для повышения точности модели практикуется нелинейный анализ с использованием многослойной однородной нейронной сети. Этапы проведения нелинейного анализа в системе совпадают со стандартными шагами при работе с нейросетями.

1-й этап. Подготовка выходных данных.

Выходными данными являются zi = yi-pi, где yi - реальное значение прогнозируемой величины на некоторую дату, pi - рассчитанное на эту дату с помощью линейного анализа.

2-й этап. Нормирование входных сигналов.

[pic] (1) где xij - j-я координата некоторого критерия Xi, M[Xi] - выборочная оценка среднего квадратичного отклонения.

3-й этап. Выбор функции активации и архитектуры нейронной сети.

Используются функции активации стандартного вида (сигмоидная, ступенчатая), а также следующего вида:

[pic] (2)

[pic] (3)

[pic] (4)

[pic] (5)

Архитектура нейронной сети представлена на рисунке:

вектор входных сигналов вектор

выходн.
Вектор сигналов входных сигналов

Введены следующие обозначения: (j - линейные сумматоры; fj - нелинейные функции; используемые для аппроксимации; ( - итоговый сумматор.

4-й этап. Выбор алгоритма обучения нейронной сети, основанного на одном из следующих методов: обратного распространения ошибки, градиентного спуска, метода сопряженных градиентов, методе Ньютона, квазиньютоновском.
Методы оцениваются по времени, затрачиваемому на обучение и по величине погрешности.

5-й этап. Итоговые вычисления границ прогнозируемого значения:

P=Pлин+Рнелин(Енелин где Р — итоговое прогнозируемое значение, Рлин и Рнелин значение линейного и нелинейного анализов. Енелин — погрешность полученная на этапе нелинейного анализа.

Результаты задачи прогнозирования используются в построенной на ее основе задаче оптимального управления инвестиционным портфелем. В основе разработанной задачи управления идея минимизации трансакционных издержек по переводу портфеля в класс оптимальных.

Используемый поход основан на предположениях, что эффективность инвестирования в некий набор активов является реализацией многомерной случайной величины, математическое ожидание которой характеризует доходность (m={mi}i=1..n, где mi=M[Ri], i=1..n), матрица ковариаций — риск
(V=(Vij), i,j=1..n, где Vij=M[(Ri-mi)(Rj-mj)],i,j=1..n). Описанные параметры (m,V) представляют собой оценку рынка и являются либо прогнозируемой величиной, либо задаются экспертно. Каждому вектору Х, описывающему относительное распределение средств в портфеле, можно поставить в соответствие пару оценок: mx=(m,x), Vx=(Vx,x). Величина mx представляет собой средневзвешенную доходность портфеля, распределение средств в котором описывается вектором Х величина Vх (вариация портфеля
[3,5]) является количественной характеристикой риска портфеля х. Введем в рассмотрение оператор Q, действующий из пространства Rn в пространство R2
(критериальная плоскость [3]), который ставит в соответствие вектору х пару чисел (mx, Vx):

Q: Rn-R2 ( (x(Rn, x(((m,x),(Vx,x)). (7)

В задаче управления допустимыми считаются только стандартные портфели, т.е. так называемые портфели без коротких позиций. Правда это накладывает на вектор х два ограничения: нормирующее условие (е,х)=1, где е
– единичный вектор размерности n, и условие неотрицательности доли в портфеле, х>=0. Точки удовлетворяющие этим условиям образуют dв пространствеRn так называемый стандартный (n-1)-мерный симплекс. Обозначим его (.

(={x(Rn((e,x)=1, x(0}

Образом симплекса в критериальной плоскости будет являться замкнутое ограниченное множество оценок допустимых портфелей. Нижняя граница этого множества представляет собой выпуклую вниз кривую, которая характеризует
Парето – эффективный с точки зрения критериев выбор инвестора (эффективная граница [3], [5]). Прообразом эффективной границы в пространстве Rn будет эффективное множество портфелей [5]. Обозначим его как (. Данное множество является выпуклым: линейная комбинация эффективных портфелей также представляет собой эффективный портфель [3].

Пусть в некоторый момент времени у нас имеется портфель, распределение средств в котором описывается вектором х. Тогда задачу управления можно сформулировать в следующем виде: найти такой элемент y, принадлежащий (, что ((y,x). Иными словами, для заданной точки х требуется найти ближайший элемент y, принадлежащий множеству (. В пространстве Rn справедлива теорема, доказывающая существование и единственность элемента наилучшего приближения х элементами множества ([6]. Метрика (понятие расстояния) может быть введена следующим образом:

((x,y)=((i=1,nsup(yi-xi,0)+((i=1..nsup(xi-yi,0), (9)

где (>0 — относительная величина издержек при покупке, (>0 — относительная величина издержек при продаже актива.

Литература

1. Сборник статей к 30-ти летию кафедры ЭК. ПГУ.

2. Ивлиев СВ Модель прогнозирования рынка ценных бумаг. 6-я

Всероссийская студенческая конференция «Актуальные проблемы экономики России»: Сб.тез.докл. Воронеж, 2000.

3. Ивлиев СВ Модель оптимального управления портфелем ценных бумаг.

Там же.
-----------------------
(1

(m

f1

f1

(

Похожие работы:

  1. • Управление инвестиционным портфелем
  2. • Двухкритериальные модели управления портфельными инвестициями ...
  3. • Оценка эффективности управления инвестиционным ...
  4. • Формирование портфеля ценных бумаг в зависимости ...
  5. • Формирование и управление инвестиционным портфелем
  6. • Формирование инвестиционного портфеля
  7. • Оценка эфективности управления инвестиционным ...
  8. • Анализ инвестиционного портфеля
  9. • Оценка инвестиционного портфеля по критерию риска
  10. • Виды моделей выбора оптимального портфеля ценных ...
  11. • Инвестиционный портфель предприятия
  12. • Инвестиционный менеджмент предприятия
  13. • Формирование инвестиционного портфеля
  14. • Управление портфелем недвижимости
  15. • Формирование финансовой стратегии предприятия малого ...
  16. • Економіко-математичні моделі управління інвестиційним ...
  17. • Коллокационная модель прогнозирования ...
  18. • Оперативное управление портфелем финансовых инвестиций
  19. • Формирование портфеля реальных инвестиций с учетом ...
Рефетека ру refoteka@gmail.com