Рефетека.ру / Физика

Реферат: Эффективные характеристики случайно неоднородных сред

Введение


Решающую роль в восприятии окружающего мира играют характеристики, сохраняющиеся (в замкнутых системах). Среди них имеются такие универсальные, как масса, количество движения, момент количества движения, энергия и энтропия.
В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико- механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.
Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.
Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возникают с увеличением сложности конфигурации системы.

Уравнение теплопроводности имеет вид:
[pic] [pic] (1) выражает тот факт, что изменения теплосодержания определенной массы вещества, заключенного в единице объема, определяется различием между притоком и вытеканием энергии - дивергенцией плотности теплового потока
[pic], при условии что внутренних источников энергии нет. Тепловой поток пропорционален градиенту температуры и направлен в сторону ее падения;
[pic]- коэффициент теплопроводности.

При разработке методов иследования композиционных материалов весьма трудно и, по-видимому, не имеет смысла (в тех случаях, когда это можно практически реализовать) полностью учитывать структуру копмозита. В связи с этим возникла необходимость связать механику композитных материалов с механизмами элементов конструкций, развивающимися обычно в рамках континуальных процессах. Эта задача решается в процессе создания теории определения приведенных свойств композитных материалов различных структур
(слоистые, волокнистые и др.), при описании их поведения в рамках континуальных представлений. Таким образом совершается переход от кусочно- однородной среды к однофазной.

Рассмотрим двухфазный композитный материал, представляющий собой матрицу, в которой случайным образом распределены включения второй фазы
(армирующий элемент), имеющий приблизительно равноосную форму. Количество включений достаточно велико на участке изменения температуры. Пусть некая характеристика матрицы - [pic], а включений - [pic]. Тогда можно представить композит, как новый материал, с характеристиками промежуточными между характеристиками матрицы и включений, зависящей от объемной доли этих фаз.

[pic],

(2)
Где [pic] [pic] [pic]
Подстановка (2) в (1) дает:
[pic] (3)

Имеем операторы:
[pic]

(4а)
[pic]

(4б)
После преобразования Фурье получаем

[pic]
[pic]

Уравнение для функции Грина [pic] и [pic] где [pic]

(5)

[pic] - ур. Дайсона. (6)
[pic]

Функция Грина [pic]описывает однородный материал со средними характеристиками определяемые по правилу смесей (2), а оператор [pic] можно назвать оператором возмущения, поскольку он определяет форму и расположение неоднородностей.

Решим уравнение итерациями
[pic]

Вычислим сначала [pic]

[pic]
Здесь [pic] [pic] [pic] [pic]

[pic]

[pic]
[pic] [pic] [pic] [pic] (7)

Теперь определим
[pic]
[pic] [pic] [pic] [pic] [pic]


Теперь необходимо вычислить
[pic]
[pic]

[pic]
Таким образом
[pic]

(8)

Подставляем в (6) равенство (8)
[pic]
[pic], где [pic] и [pic]

(9)

Подставляем (5) в (9)
[pic]

[pic]
[pic]

[pic]

где [pic] и [pic]

[pic]

(10)
[pic] (11) где [pic] , [pic]

(12)


[pic]
[pic]
[pic]
[pic][pic]
[pic]


[pic] (13)

1. Ограничимся первым приближением

`[pic][pic] [pic]
[pic] [pic] [pic]

(14)

[pic]
[pic]


Рассмотрим:

[pic]
[pic]
[pic]
[pic] (15)
2. Ограничимся вторым приближением

[pic] [pic]

(16)
[pic]
[pic] [pic]

(17)

Из (12) найдем:
[pic] (18)
Подставляя (18) с учетом (16) в (10), получим:
[pic] (19)
Теперь подставляем (19) с учетом (16) в (13), получим:
[pic][pic]
[pic]
Коэффициентами при [pic], [pic] из-за малости произведения пренебрегаем
А коэффициенты без [pic]обращаются в [pic] из-за (14)
[pic] подставляя (17), найдем
[pic] (20)

Подставляя (18) в (11) с учетом (16), получим:
[pic] (21)

Теперь подставляем (21) с учетом (16) в (13), получим:
[pic]
[pic]
Коэффициентами при [pic], [pic] из-за малости произведения пренебрегаем
А коэффициенты без [pic]обращаются в [pic] из-за (15)

[pic]
[pic] (22)

3. Ограничимся третьим приближением

[pic] [pic] (23)

Подставляя (18) с учетом (23) в (10), получим:

[pic] (24)

Теперь подставляем (24) с учетом (23) в (13), получим
[pic]
[pic]
[pic]
Коэффициентами при [pic] ,[pic], [pic] из-за малости произведения пренебрегаем
А коэффициенты без [pic]обращаются в [pic] из-за (14), а с[pic]- из-за
(18)

[pic]

[pic] (25)

Подставляя (18) в (11) с учетом (23), получим:
[pic] (26)

Теперь подставляем (26) с учетом (23) в (13), получим:
[pic]
[pic]
Коэффициентами при [pic] ,[pic], [pic] из-за малости произведения пренебрегаем
А коэффициенты без [pic]обращаются в [pic] из-за (15), а с[pic]- из-за (22)

[pic]

[pic] (27)


Анализ [pic] и [pic] показывает, что [pic] и [pic] дейсвительные коэффициенты, а [pic]- мнимые.

Список литературы:


1. Т. Д. Шермергор “Теория упругости микронеоднородных сред” М., “Наука”,
1977.
2. Г.А. Шаталов “Эффективные характеристики изотропных композитов как задача многих тел”

МКМ, №1, 1985.


Похожие работы:

  1. • Эффективные характеристики случайно неоднородных сред
  2. • Эффективные характеристики случайно неоднородных сред
  3. • Влияние среды распространения на точностные характеристики ...
  4. • Теория вероятностей и математическая статистика
  5. • Измерение случайных процессов
  6. • Случайные величины
  7. • Преобразование случайных сигналов в безынерционных ...
  8. • Микропроцессорная система
  9. • Основы теории непустого эфира (вакуума)
  10. • Критерии оптимальности в эколого-математических ...
  11. • Акустика движущихся сред
  12. • Повышение нефтеотдачи методом воздействия импульсами ...
  13. • Разработка системы регулирования температуры ...
  14. • Влияние внешней среды на деятельность организации ...
  15. • Генерирование коррелированных случайных процессов ...
  16. • Статистические методы анализа качества
  17. • Интегралы. Дифференциальные уравнения
  18. • Оптимальное распределение неоднородных ресурсов
  19. • Некоторые особенности психологического восприятия и ...
Рефетека ру refoteka@gmail.com