Рефетека.ру / Физика

Реферат: Сверхпроводимость и низкие температуры

Содержание:


1. Вступление
2. Сверхпроводящие вещества
3. Эффект Мейснера
4. Теплоемкость сверхпроводника
5. Изотропический эффект
6. Теория сверхпроводимости
7. Конечные температуры
8. Щель в энергетическом спектре
9. Сверхпроводимость в полупроводниках
10. Эффекты Джозефсона
11. Электромагнитные свойства сверхпроводников
12. Заключение
13. Библиография

Вступление

В 1908 г. в Лейденском университете под руководством Камерлинг-
Оннеса был получен жидкий гелий. Гелий отличается очень низкой температурой кипения (4,21К), и поэтому его сжижение позволило изучать свойства веществ при температурах, ранее не доступных.

1911 г. был отмечен открытием явления сверхпроводимости. Открыл его все тот же Камерлинг-Оннес в Лейденском университете, в лаборатории низких температур. Изучение этого явления составляет одно из важнейших направлений в физике твердого тела. При проведении экспериментов оказалось, что при низкой температуре сопротивление многих металлов обращается в нуль. Для первого исследованного вещества—ртути этот барьер составил 4К.

Эффект сверхпроводимости состоит в исчезновении электрического сопротивления при конечной температуре, отличной от нуля.
Приблизительное сопротивление сверхпроводника: 10-23 ом*см. По проводнику, находящемуся в сверхпроводящем состоянии ток будет циркулировать бесконечно. Также у сверхпроводников наблюдается резкая аномалия магнитных, тепловых и других свойств.

Сверхпроводящие вещества

Самой высокой критической температурой среди чистых веществ обладает ниобий (9,22К), а наиболее низкой иридий (0,14К). Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово—полупроводник, а белое может превращаться в сверхпроводящий металл. Поэтому сверхпроводимость является свойством не отдельных атомов, а представляет собой эффект структуры самого образца.

Хорошие проводники (серебро, золото и некоторые другие) не обладают этим свойством, а многие другие вещества, которые в обычных условиях проводники очень плохие—наоборот, обладают. Для исследователей это явилось полной неожиданностью и еще больше осложнило объяснение этого явления. Основную часть сверхпроводников составляют не чистые вещества, а их сплавы и соединения. Причем сплав двух несверхпроводящих веществ может обладать сверхпроводящими свойствами.

Долгие годы «рекордсменом» был сплав ниобия и олова (18,1К).
Однако в 1967 г. был создан Nb3Al0,75Ge0,25 (20,1К). В 1973 создали пленку Nb3Ge (22,3К). Сейчас созданы соединения на основе керамики из оксидов металлов, критическая температура у которых выше температуры сжижения азота и приближается к комнатной.

Эффект Мейсснера

В 1933 Мейсснером и Оксенфедьдом было открыто одно из наиболее фундаментальных свойств сверхпроводимости—эффект Мейсснера. Оказалось, что магнитное поле не проникает в толщу сверхпроводящего образца. Если мы исследуем образец при t>Tk, то в образце напряженность при помещении в магнитное поле будет больше нуля. Не выключая внешнего поля, начнем постепенно понижать температуру. Тогда окажется, что магнитной поле будет постепенно вытолкнуто из сверхпроводника.

Как известно, металлы, за исключением ферромагнетиков в отсутствие внешнего магнитного поля обладают нулевой магнитной индукцией. Это связано с тем, что магнитные поля элементарных токов, которые всегда имеются в веществе, взаимно компенсируются вследствие полной хаотичности их расположения.

При коэффициенте (>1 (парамагнитные вещества) происходит уменьшение внешнего поля в образце. В диамагнитных веществах ((0 по экспоненте. При Т=Тк теория предсказывает скачок теплоемкости:
Щель ?(Т) с ростом температуры уменьшается. Для Тк: где р--константа связи электронов. Отсюда следует: Тк~?, то есть

,то таким образом, объясняется изотропический эффект.

Разность энергий нормальной и сверхпроводящей фаз на единицу объема составляет

(Нк—критическое поле)
При Н=Нк металл переходит в нормальное состояние.

Щель в энергетическом спектре

Энергетическая щель в сверхпроводниках непосредственно наблюдается на опыте. При этом не только подтверждается существование щели в спектре, но и измеряется ее величина. Исследовался переход электронов через тонкий непроводящий слой толщиной ~10Е, разделяющий нормальную и сверхпроводящую пленки. При наличии барьера имеется конечная вероятность прохождения электрона через барьер. В нормальном металле заполнены все уровни энергии, вплоть до максимального ?f, в сверхпроводящем же до ?f-?. Прохождение тока при этом невозможно.
Наличие энергетической щели в сверхпроводнике приводит к отсутствию соответствующих состояний, между которыми происходил бы переход. Для того чтобы переход мог произойти, необходимо поместить систему во внешнее электрическое поле. В поле вся картина уровней смещается.
Эффект становится возможным, если приложенное внешнее напряжение становится равным ?/e. На графике видно, что туннельный ток появляется при конечном напряжении U, когда eU равно энергетической щели.
Отсутствие туннельного тока при сколь угодно малом приложенном напряжении является доказательством существования энергетической щели.
Величины: ?(0)/kT

| Величина | Al | In | Sn | Pb | Теория |
|2?(0)/kTk | 3,37 | 3,45 | 3,47 | 4,26 | 3,52 |

Другой метод, позволяющий сделать выводы, связан с эффектом прохождения инфракрасного электромагнитного излучения через тонкие сверхпроводящие пленки. При частотах, удовлетворяющих условию ??=2? наблюдается пик в поглощении длинноволнового электромагнитного излучения, что позволяет определить величину щели. При меньших частотах наблюдается сверхпрозрачность образцов. Опыты такого рода были проведены, однако они являются менее надежными по сравнению с туннельными экспериментами. Некоторые результаты этих опытов представлены в таблице.

Определить величину энергетической щели можно также, изучая поглощение ультразвука в сверхпроводниках. Оно определяется по следующей формуле:
Где v—коэффициент поглощения ультразвука. Данная формула справедлива при условии w

Рефетека ру refoteka@gmail.com