МИНИСТЕРСТВО ТРАНСПОРТА УКРАИНЫ
Днепропетровский государственный технический универcитет железнодорожного транспорта
курсовая работа
«Исследование помехоустойчивого канала передачи данных методом имитационного моделирования на ЭВМ»
выполнил: студент 437 группы
Астраханцев Дима
проверил:
Безруков В.В.
Днепропетровск 2000
1. Исследование и выбор модели источника сообщений.
Для исследования информационных систем связи и управления обычно используют
т.н. двоичные источники сообщений. Рачет ведется для независимых между
собой сообщений. Хотя практически всегда имеет место такая зависимость,
избыточность источника стараются устранить, повысив тем самым эффективность
и надежность канала передачи данных (например, сжав или закодировав
исходные сообщения). Алфавит двоичного источника состоит из двух сообщений
(0 и 1) и поэтому его проще всего моделировать. В качестве источника
независимых двоичных сообщений можно использовать т.н. квазислучайные
последовательность (КСП), т.е. имеющие некоторый период повторений.
Реализуемая практически каждой ЭВМ функция random дает КСП с очень большим
периодом повторений, однако ее характеристики несколько уступают КСП
сгенерированной с помощью т.н. регистра КСП.
Возмем, для сравнения, 9-ти элементный регистр (рисунок 1), длина периода
КСП которого
рисунок 1
составляет 29=512 сообщения и стандартную функцию языка высокого уровня
random(генератор случайных чисел - ГСЧ) как источники двоичных сообщений.
Параметры источников занесем в таблицу 1 и сравним :
Таблица 1
|Параметр источника |Регистровый |Способ ГСЧ |
| |способ | |
|Вероятностные характеристики КСП без учета | | |
|зависимости между символами : | | |
|вероятность единицы |0.50000 |0.50586 |
|вероятность нуля |0.50000 |0.49414 |
|энтропия источника H, бит/символ |1.00000 |0.99990 |
|Вероятностные характеристики с учетом | | |
|зависимости между символами : | | |
|условные вероятности единицы : p(1/1) |0.50000 |0.49421 |
|p(1/0) |0.50000 |0.51779 |
|условные вероятности нуля : p(0/1) |0.50000 |0.50579 |
|p(0/0) |0.50000 |0.48221 |
|финальная вероятность единицы: |0.50000 |0.50586 |
|финальная вероятность нуля: |0.50000 |0.49414 |
|условная энтропия "1" H1, бит/символ |1.00000 |0.99990 |
|условная энтропия "0" H0, бит/символ |1.00000 |0.99909 |
|энтропия источника H, бит/символ |1.00000 |0.99950 |
|Характеристики корреляционной функции : | | |
|значение КФ от нуля равно |0.25000 |0.24997 |
|эквивалентный интервал корреляции |2.00000 |4.00000 |
|среди боковых лепестков наибольший с номером |61 |2 |
|его величина составляет % от главного |4.21286 |15.28238 |
Как видно из таблицы, для моделирования случайного двоичного источника регистровый метод получения КСП предпочтительней т.к. выходная величина имеет характеристики случайной: p(0)=p(1)=0.5 ; p(1/0)=p(0/0)=0.5; p(1/1)=p(0/1)=0.5;
[pic], [pic]
H = p(0)H0+p(1)H1 = 1 бит/символ.
О лучших случайных характеристиках можно также судить по графикам
АКФ(рисунок 2) : квазислучайная последовательность полученная регистровым
способом обладает лучшими корреляционными свойствами (малый размер боковых
лепестков, большая удаленность максимального из боковых от нулевого).
[pic] рисунок 2
Итак, в роли источника сообщений выбран регистр КСП, показаный на рисунке
1. Длина периода КСП - 512. Квазислучайная последовательность , в
сокращенном виде : 00011110111000010....... 101111000001111111110.
2. Исследование линии на имитационной модели.
Характеристики канала очень важно знать для построения качественных систем
передачи информации. В данном случае в роли канала выступает линия -
симметричная пара кабеля типа ТПП, диаметром 0.4 мм и длиной 5 км.
Естественно идеальным решением было бы измерение параметров уже
существующей линии, но поскольку это довольно трудоемкая и длительная
задача можно провести исследование на имитационной модели. В качестве такой
модели можно выбрать аналитические выражения описывающие линию передачи
(непрерывная модель линии), а можно использовать ее цифровой эквивалент
(т.н. дискретная модель линии).
Передаточная функция аналоговой линии, представленной в виде колебательного
звена:
[pic] , где
[pic] - постоянная времени линии
[pic] - коэффициент затухания линии.
Если представить аналоговую линию в виде цифрового фильтра (рисунок 2), то
используя Z-преобразование можно записать:
[pic] откуда выражение для выходного сигнала: yn = a0xn + a1xn-1 + a2xn-1 + b1yn-1 + b2yn-2 , где xn , yn - сигнал на входе и на выходе соответственно, ai , bi - параметры, описывающие цифровую модель линии.
[pic] рисунок 3
С помощью такой модели можно исследовать различные характеристики системы,
варьируя входными сигналами. Например при подачи на вход единичного
ступенчатого импульса, на выходе имеем сигнал, соответствующий переходной
характеристике линии.
С помощью программы «liniam» исследуем переходную и импульсную
характеристики линии, амплитудно-частотную характеристику линии A(w) и
частотную характеристику затухания a(w). Задавая удельные значения L = 0.6
мГн/км, С=45 нФ/км, Rл = 280 Ом/км (для кабеля типа ТПП диаметром 0.4 мм)
,при сопротивлении нагрузки 600 Ом и принимая длину линии 5 км построим
графики импульсной и переходной характеристики, АЧХ и ЧХ затухания (рисунок
3,4,5,6), приведя в таблице 2 численные значения этих характеристик.
Таблица 2
|N |0 |1 |2 |3 |4 |5 |6 |
|t, с |0 |2.04e-6 |4.08e-6 |8.16e-6 |1.42e-5 |2.04e-5 |3.88e-5 |
|ИХ g(t) |0.584 |1.000 |0.693 |0.331 |0.112 |0.037 |0.001 |
|ПХ h(t) |0.152 |0.413 |0.593 |0.805 |0.935 |0.978 |0.999 |
| | | | | | | | |
|f, Гц |0,0000 |24868 |49736 |74604 |99472 |198944 |248680 |
|АЧХ A(f) |1 |0,52968 |0,29273 |0,19037 |0,13361 |0,03469 |0,0001 |
|ЧХ a(f) |0,0000 |5,51977 |10,6708 |14,4081 |17,4834 |29,19741 |49,7160 |
[pic] рисунок 4
[pic] рисунок 5
[pic] рисунок 6
[pic] рисунок 7
Из графика переходного процесса в линии (рис. 4) определяется время
переходного процесса tп =0,000040 сек. (с 5-ти процентным допуском).
Продолжительность переходного процесса в линии определяет номинальную
скорость передачи информации В по этому каналу:
В = 1/tп = 1/0,000040 = 25000,00 бод.
3. Исследование спектра сигнала.
Существует множество «кодовых» видов сигналов (квазитроичный, биимпульсный,
двухполярный). Выбор линейного сигнала позволяет найти сигнал, который
согласовывался с параметрами линии по ширине спектра, амплитуде. Также это
определяет метод согласования передатчика с линией, который в зависимости
от этого может быть оптроном, трансформатором, реле. Реже передатчик и
линия связаны гальванически.
Выбирая двухполярный сигнал (вид сигнала показан на рис. 8):
[pic] рисунок 8
с помощью программы SPECTRSX определим основные параметры сигнала и построим его спектр (приняв скорость передачи равной 25000 Бод).
[pic] рисунок 9
Параметры СПМ сигнала:
Эквивалентная ширина СПМ равна 11740 Гц
Нижняя граничная частота эфф-ой полосы: F1=0 Гц
Верхняя граничная частота эфф-ой полосы: F2=17188 Гц
Ширина эффективной полосы СПМ равна: 17188
Средняя частота эффективной полосы: 8594
Из приведенных данных следует, что параметры сигнала согласуются с
частотным диапазоном линии.
Значения спектральной плотности мощности приведены в таблице 3.
Таблица 3
|f, Гц |0,0000 |15625 |31250 |46875 |62500 |125000 |187500 |
| S, Вт |0,07 |0,0136 |0,0021 |0,0002 |0,00157 |0,0002 |0,0001 |
4. Исследование искажений сигнала в линии.
Для устойчивого приема сигнала необходимо, чтобы интерференционные
искажения сигнала в линии не превышали допустимого значения на данной
скорости передачи. С помощью программы «Skrivlen» определим величину
интерференционных искажений. Для этого приведем на рисунке 10
интерференционную диаграмму сигнала (расчет ведем для длины линии 5 км,
диаметра кабеля 0,4 мм, отношение сигнал/шум - 10 Дб и скорости передачи
сигнала 17188 Бод - такая эффективная полоса СПМ сигнала):
[pic]
рисунок 10
Величину краевых значений интерференционных искажений при такой скорости не представляется возможным определить по данному графику (слишком большие интерференционные искажения). Поэтому необходимо понизить скорость передачи и построить интерференционную диаграмму заново. Диаграмма для скорости передачи В=4800 Бод приведена на рисунке 11.
[pic] рисунок 11
Величина интервальных искажений:
[pic]=12/119=0.1001, что соответствует заданному значению для
интерференционных искажений (10%).
5. Исследование помехоустойчивого приема.
Существует множество оптимальных и практических методов приема сигналов.
Все они основаны на выборе истинного значения сигнала по пришедшему,
определяя минимальное к нему расстояние. Выберем наиболее лучший метод,
проведя исследование приема с помощью программы «Metodprm». Сравним,
например два метода:
- интегральный
- метод стробирования релейного сигнала,
построив графики отношения вероятности ошибочного приема от заданного
отношения сигнал/помеха (показаны на рисунке 12). Значения вероятностей
приведены в таблице 4.
Таблица 4
|Отношение | | | | | | | |
|сигнал/помеха|1 |2 |3 |5 |8 |10 |15 |
|Ринтегральный|0,01593 |0,003361|0,000987|0,000145|0,000012|0,000005|0,000000|
|метод | | |6 |1 |4 |6 |2 |
|Рметод |0,1478 |0,07323 |0,04032 |0,01431 |0,003548|0,001389|0,000151|
|стробирования| | | | | | | |
[pic] рисунок 12
Выбирая метод приема следует обратить внимание на то, что оба метода приема
удовлетворяют заданному требованию (рош = 0.01 при отношении сигнал/помеха
h = 10%), но как видно из рисунка, метод интегрального приема
предпочтительней, т.к. дает минимальную вероятность ошибочного приема
сообщения. Схема устройства, выполняющего роль приемника при интегральном
приеме показана на рисунке 13.
[pic] рисунок 13
Реле выполняет роль порогового элемента, а устройство синхронизации, выделяя длительность импульса из поступающих сигналов, управляет интегратором (обнуление в конце каждого такта), импульсным элементом (замер выходного значения интегратора в конце каждого такта) и экстраполятором.На выход поступают двухполярные сигналы, практически соответствующие выходным передатчика (при заданном соотношении сигнал/помеха и учете что помеха - гауссовский шум).
6. Исследование и выбор циклического кода.
Зная допустимые параметры k (колическтво информационных элементов k