Рефетека.ру / Информатика и програм-ие

Реферат: Системное автоматизированное проектирование

Радиотехники,

Электроники и Автоматики

Московский Государственный Институт(Технический Университет)

С.А.Шишов

Лекции по дисциплине:

“Системное автоматизированное проектирование”

1996

ЛЕКЦИЯ (1

Тема: "Системы автоматизированного проектирования и процесс

разработки радиоэлектронной аппаратуры"

ЦЕЛЬ ЗАНЯТИЯ:

1. Ознакомить с основными понятиями системного автоматизированного проектирования. Определить место систем автоматизированного проектирования в процессе проектирования.

2. Изучить структуру системы автоматизированного обеспечения.

Время: 2 часа

Литература: Бутаков Е.А. и др. Обработка изображений на ЭВМ. М.: Радио и связь, 1987, стр. 119-124.

ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРОВАНИИ

Предварительно остановимся на рассмотрении ряда понятий.

СИСТЕМА - целостное образование, состоящее из взаимосвязанных
(взаимодействующих) компонент, (элементов, частей) и обладающее свойствами, не сводимыми к свойствам этих компонент и не выводимыми из них.

В приведенном определении зафиксировано основное свойство системы - ее целостность, единство, достигаемое через посредство определенных взаимосвязей (взаимодействий) элементов системы и проявляющееся в возникновении новых свойств, которыми элементы системы не обладают. Данное определение включает наиболее характерные особенности концепции системы.

Вместе с тем необходимо представлять, что реальные системы существуют в пространстве и во времени и следовательно, взаимодействуют с окружающей их средой и характеризуются теми или иными переменными во времени величинами.

Важным шагом на пути от вербального к формальному определению системы является определение понятия модели системы.

МОДЕЛЬ - (некоторой исходной системы) система, в которой отражаются по определенным законам те или иные стороны исходной системы.

Среди различных способов моделирования важнейшее место занимает моделирование с помощью средств математики - математическое моделирование.

Формальное определение системы по существу сводится к определению соответствующей математической модели.

В основу построения математических моделей систем может быть положено следующее определение системы:

СИСТЕМА - определяется заданием некоторой совокупности базисных множеств (элементов, компонент системы), связанных между собой рядом отношений, удовлетворяющих тем или иным правилам (аксиомам) сочетания как элементов множеств , так и самих отношений.

Последнее определение содержит необходимую основу для формализации. В простейших случаях это определение описывает систему как одно или несколько взаимосвязанных отношений, заданных на одном или нескольких множествах. В то же время данное определение допускает возможность нескольких вариантов таких представлений для одной и той же системы, а также использование их композиции. Последнее имеет место в случае необходимости многоаспектного моделирования системы.

ПРОЕКТИРОВАНИЕ - комплекс работ по исследованию, расчетам и конструированию нового изделия или нового процесса.

В основе проектирования - первичное описание - техническое задание.

Проектирование называют АВТОМАТИЗИРОВАННЫМ, если осуществляется преобразование первичного описания при взаимодействии человека с ЭВМ, и автоматическим, если все преобразования выполняются без вмешательства человека только с использованием ЭВМ.

СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ - организационно-техническая система, представляющая собой подразделения проектной организации и комплекс средств автоматизированного проектирования.

Автоматизация приводит к существенному изменению методов проектирования.

Вместе с тем, сохраняются многие положения и принципы традиционного проектирования, такие как:
- необходимость блочно-иерархического подхода,
- деление процесса проектирования на этапы,
- деление на уровни представления об объектах.

ВЗАИМОДЕЙСТВИЕ РАЗРАБОТЧИКОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

С СИСТЕМОЙ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

Проектирование изделий радиоэлектронной аппаратуры представляет собой многоэтапный процесс (итеративный). В ходе проектирования последовательно уточняется и детализируется описание будущего изделия. Этот процесс предполагает наличие многих уровней описания. На рис.1 изображен процесс проектирования в виде совокупности основных этапов и переходов между ними, показаны основные виды документации , получаемые при выполнении этапов.

Например, эскизный проект является результатом эскизного проектирования.
С другой стороны, эскизный проект служит исходным документом для технического проектирования.
Переходы от одних этапов проектирования к другим в направлении сверху вниз естественны и соответствуют нормальному ходу. Переходы в противоположных направлениях возникают, когда на последующих стадиях проектирования выявляется невозможность практической реализации решений, принятых на предшествующих этапах. Это заставляет проектировщиков пересматривать ранее принятые решения. Иногда ошибки проявляются на этапах изготовления серийной продукции или даже в ходе эксплуатации.

Этапы Документация

Рис.1. Этапы проектирования и выпускаемая документация

Последовательность прохождения этапов разработки изделия, цели и задачи, стоящие перед проектировщиками на отдельных этапах, состав проектной документации и требования к ней регламентированы соответствующими ГОСТами.

Кратко охарактеризуем основные этапы проектирования.

ПОДГОТОВИТЕЛЬНЫЙ ЭТАП.

Основная задача - изучение назначения изделия, условий эксплуатации и производств, на которых предполагается его изготовление. Цель этапа - разработка технического задания (ТЗ), в котором содержится информация о назначении , основных технических характеристиках, условиях эксплуатации, транспортировки и хранения.

ЭСКИЗНОЕ ПРОЕКТИРОВАНИЕ.

Основная задача - определение возможности разработки изделия в соответствии требованиям ТЗ. При этом определяют техническую основу изделия (физические элементы и детали), ориентировочную оценку состава и количества оборудования, разрабатывают структуру, определяют технические характеристики изделия и устройств, входящих в его состав.

При этом может выявиться невозможность построения изделия, отвечающего требованиям ТЗ. В этом случае требуется корректировка ТЗ с последующим его утверждением заказчиком, либо дальнейшая разработка прекращается.

ТЕХНИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

Задачи :

- подробная разработка принципа работы изделия и всех его составных блоков;

- уточнение технических характеристик;

- разработка конструкции блоков, узлов и всего изделия;

- получение конструкторских характеристик;

- согласование взаимодействия всех составных частей изделия;

- разработка технологии их изготовления;

- определение технологии сборки и наладки, методики и программных испытаний.

В результате должно быть подготовлено производство опытного образца.

РАБОЧЕЕ ПРОЕКТИРОВАНИЕ

Основная задача - разработка технологической оснастки и оборудования для серийного выпуска изделия.

Внедрение систем автоматизированного проектирования (САПР) не изменяет сути процесса проектирования. Тем не менее, характер деятельности разработчика с внедрением САПР существенно меняется, так как разработка изделия в автоматизированном варианте предполагает согласованное взаимодействие оператора и ЭВМ. Это обеспечивает существенное повышение производительности труда и повышение качества проекта.

В процессе автоматизированного проектирования на оператора возлагаются творческие функции. Как правило, это связано с выбором варианта решения, определения структуры, метода расчета и др. Эти функции трудно формализовать. Здесь опыт и талант конструктора, инженера определяют конечный результат.

ЭВМ поручают рутинную работу. Перечислим ее основные виды:

- хранение и накопление в машинном архиве сведений, необходимых разработчику;

- поиск и выдача информационных справок по запросам пользователя
(типовые решения, характеристики узлов, рекомендации по применению, сведения об уровне запасов комплектующих материалов и др.);

- обеспечение редактирования текстовой конструкторской документации, создаваемой инженером;

- автоматическое вычерчивание графической документации (чертежи деталей, схемы электрические и др.);

- решение некоторых частных, хорошо алгоритмизированных задач, которые характерны для автоматизированного проектирования определенного класса изделий. Примененительно к разработке радиоэлектронной аппаратуры хорошо алгоритмизированными задачами являются следующие:

- моделирование поведения того или иного узла по описанию его принципиальной электрической схемы при заданном входном воздействии,

- трассировка соединений на этапе конструирования платы печатного монтажа,

- расчет тепловых режимов узлов аппаратуры,

- построение последовательности обхода точек сверления платы и др.

..ПРОЦЕСС ПРОЕКТИРОВАНИЯ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ

уровней),

- выделения аспектов описания объекта проектирования.

Уровни абстрагирования И РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

Рассмотрим несколько подвопросов.

1. Уровни абстрагирования и аспекты описаний проектируемых объектов.

Большинство видов электронной техники и радиоэлектронной аппаратуры, а также большие и сверхбольшие интегральные схемы относятся к сложным системам.

Дадим определение сложной системы.
СЛОЖНАЯ СИСТЕМА - система, обладающая, по крайней мере, одним из перечисленных признаков: а) допускает разбиение на подсистемы, изучение каждой из которых, с учетом влияния других подсистем в рамках поставленной задачи, имеет содержательный характер; б) функционирует в условиях существенной неопределенности и воздействие среды на нее обусловливает случайный характер изменения ее параметров или структуры; в) осуществляет целенаправленный выбор своего поведения.

Процесс их проектирования характеризуется высокой размерностью решаемых задач, наличием большого числа возможных вариантов, необходимостью учета разнообразных факторов.

В основе проектирования сложных систем блочно-иерархический подход.
Сущность блочно-иерархического состоит в уменьшении сложности решаемой проектной задачи. Это осуществляется за счет:

- выделения ряда уровней абстрагирования (иерархических различаются степенью детализации представлений об объекте.

Этапы нисходящего проектирования:

Компоненты объекта, рассматриваемые как элементы на некотором уровне с номером k, описываются как подсистемы на соседнем уровне с номером k+1.

Относительно аспектов описания объекта.

Аспекты могут быть:

- функциональные,

- конструкторские,

- технологические. а) Функциональные аспекты можно разделить на:

- системный,

- функционально- логический,

- схемотехнический,

- компонентный.

На системном уровне в качестве систем выделяют комплексы. Примерами комплексов могут быть ЭВМ, радиолокационная станция. В качестве элементов выделяют блоки (устройства) аппаратуры процессор, модем, передатчик.

На функционально-логическом уровне эти блоки рассматривают как системы, состоящие из элементов. Элементами являются функциональные узлы - счетчики, дешифраторы, отдельные триггеры, вентили, усилители, модуляторы и др.

На схемотехническом уровне функциональные узлы описываются как системы, состоящие из элементов радиоэлектронных схем - транзисторов, конденсаторов, резисторов и др.

На компонентном уровне рассматриваются процессы, которые имеют место в схемных компонентах. б) Конструкторскому аспекту присуща своя иерархия компонент. Она включает различные уровни описания рам, стоек, панелей, типовых элементов замены, дискретных компонент и микросхем, топологических фрагментов функциональных ячеек и отдельных компонент в кристаллах интегральных микросхем.

2. Операции, процедуры и этапы проектирования.

Процесс проектирования делится на этапы.

ЭТАП ПРОЕКТИРОВАНИЯ - условно выделенная часть процесса проектирования, состоящая из одной или нескольких проектных процедур. Обычно этап включает процедуры, которые связаны с получением описания в рамках одного аспекта и одного или нескольких уровней абстрагирования. Иногда в процессе проектирования выделяют ту или иную последовательность процедур под названием "маршрут проектирования".

Этапы, в свою очередь, делятся на процедуры и операции.

ПРОЦЕДУРА - формализованная совокупность действий, выполнение которых заканчивается проектным решением.

ПРОЕКТНОЕ РЕШЕНИЕ - промежуточное или окончательное описание объекта проектирования, необходимое и достаточное для рассмотрения и определения дальнейшего направления или окончательного проектирования.

При проектировании возможны различные последовательности выполнения процедур и этапов.

Различают два способа проектирования (два типа маршрутов):

- восходящее проектирование,

- нисходящее проектирование.

Восходящее проектирование (снизу-вверх) имеет место, если проектируются типовые объекты, предназначенные для использования в качестве элементов во многих объектах на более высоких уровнях иерархии (например, серийные микросхемы, стандартные ячейки матричных больших интегральных схем).

Нисходящее проектирование охватывает те уровни, на которых проектируются объекты, ориентированные на использование в качестве элементов в одной конкретной системе.

Проектированию свойственен итерационный характер. При этом приближение к окончательному варианту осуществляется путем многократного выполнения одной и той же последовательности процедур с корректировкой исходных данных.
Итерации могут охватывать различные части проектирования, включающие как несколько операций, так и несколько этапов.

ПРИМЕР 1.

- системотехническое проектирование (анализ тактико-технических требований на проектируемый комплекс, определение основных принципов функционирования, разработка структурных схем);

- схемотехническое проектирование ( разработка функциональных и принципиальных схем);

- конструкторское проектирование ( выбор формы, компоновка и размещение конструктивов, трассировка межсоединений, изготовление конструкторской документации);

- технологическое проектирование ( разработка маршрутной и операционной технологии, определение технологической базы).

ПРИМЕР 2.

Этапы восходящего проектирования БИС:

- приборно-технологическое проектирование (выбор базовой технологии, выбор топологии компонентов, расчет диффузионного профиля);

- схемотехническое проектирование ( синтез принципиальной электрической схемы, оптимизация параметров элементов, статистический анализ применительно к типовым ячейкам БИС);

- функционально-логическое проектирование (синтез комбинационных схем, реализация памяти, синтез контролирующих и диагностических тестов);

- конструкторско-топологическое проектирование (размещение элементов, трассировка меж- соединений, проверка соответствия топологической и электрической схем , расслоение, вычерчивание послойной технологии).

3. Классификация параметров проектируемых объектов.

В описаниях проектируемых объектов фигурируют переменные и их параметры.
Среди переменных выделяют:

- фазовые переменные - характеризуют физическое или информационное состояние объекта.

Параметры разделяют на ряд групп. К их числу можно отнести следующие:

- внешние параметры - характеризуют свойства внешней по отношению к исследуемому объекту Сравнение нескольких полиномиальных и экспоненциальных функций

Таблица 1 позволяет сравнить скорости роста нескольких типичных среды;

Полиномиальные алгоритмы и труднорешаемые задачи

Разные алгоритмы имеют разную временную сложность и выяснение того, какие алгоритмы достаточно эффективны и какие совершенно не эффективны будет всегда зависеть от конкретной ситуации. Для решения этой задачи предлагается следующий подход - вводятся понятия: полиномиальный алгоритм; экспоненциальный алгоритм.
Полиномиальный алгоритм (полиномиальной временной сложности) - это алгоритм, временная сложность которого определяется выражением (((((((, где
(((( - полиномиальная функция, ( - входная длина.
Алгоритм, временная сложность которого не поддается такой оценке называется экспоненциальным.

Таблица 1.

|Функция |Размерность, ( |
|временной| |
|сложности|10 |20 |30 |40 |50 |60 |
|( |10-5 с |2*10-5 с |3*10-5 с |4*10-5 с |5*10-5 с |6*10-5 с |
|(2 |10-4 с |4*10-4 с |9*10-4 с |16*10-4 с|25*10-4 с|36*10-4 с|
|(3 |10-3 с |8*10-3 с |27*10-3 с|64*10-3 с|125*10-3 |216*10-3 |
| | | | | |с |с |
|(5 |0,1 с |3,2 с |24,3 с |1,7 мин |5,2 мин |13,0 мин |
|2( |0,001 с |1 с |17,9 мин |12,7 дней|35,7 лет |366 |
| | | | | | |столетий |
|3( |0,059 с |58 мин |6,5 лет |3855 |2*108 |1,3* 1013|
| | | | |столетий |столетий |столетий |

Быстродействие ЭВМ 1000000 операций в секунду.

Таблица 2.
|Быстродействие ЭВМ |
|106 |108 |109 |
|(1 |100*(1 |1000*(1 |
|(2 |10*(2 |31,6*(2 |
|(3 |4,64*(3 |10*(3 |
|(4 |2,5*(4 |3,9*(4 |
|(5 |(5+6,64 |(5+9,97 |
|(6 |(6+4,19 |(6+6,29 |

|полиномиальных и |
|экспоненциальных |
|функций. |
|Различие между |
|типичных |
|полиномиальными и|
|экспоненциальными|
|алгоритмами |
|проявляется более|
|убедительно, если|
|проанализировать |
|влияние |
|увеличения |
|быстродействия |
|ЭВМ на время |
|работы алгоритма.|
|Таблица 2 |
|показывает, |
|насколько |
|увеличится размер|
|задач, решаемой |
|за 1 час, если |
|быстродействие |
|возрастет в 100 и|
|1000 раз. Видно, |
|что для функции |
|2( увеличение |
|скорости |
|вычислений в 1000|
|раз приводит лишь|
|к тому, что |
|размер задачи, |
|решаемой на ней |
|за 1 час |
|возрастет на 10. |
|Функция временной|
|сложности |
|(2 |
|(2 |
|(2 |
|(2 |
|2( |
|3( |

((-задачи

Выделено 2 класса трудно решаемости:
1. Для отыскания решения требуется экспоненциальное время.
2. Искомое решение настолько велико, что не может быть представлено в виде выражение, длина которого ограничена некоторым полиномом. Эти задачи в курсе рассматриваться не будут.

Первые результаты о трудно решаемых задачах были получены
Тьюрингом. Он доказал, что некоторые задачи “неразрешимы” в том смысле, что вообще не существует алгоритма их решения. Некоторые задачи по теории автоматов, теории формальных языков и математической логики являются трудно решаемыми.

((-полная задача - это задача, к которой сводится за полиномиальной время любая задача из класса ((-задач. Фундаментальные исследования и теорию ((-задач разработал С.Кук в 1971 году. Им определено понятие сводимости за полиномиальное время. Если одна задача сводится за полиномиальное время к другой, то любой полиномиальный алгоритм - решение другой задачи может быть превращен в полиномиальный алгоритм первой задачи.

Выделен класс задач распознавания свойств, которые могут быть решены за полиномиальное время на недетерминированном вычислительном устройстве. Доказано, что любая задача из класса ((-задач может быть сведена к задаче выполнимой за полиномиальное время.

Существуют 6 основных классов ((-полных задач:

1. Задачи выполнимости.

2. Трехмерное сочетание.

3. Вершинное покрытие.

4. Поиск клики.

5. Гамильтонов цикл.

6. Разбиение.

- внутренние параметры - характеризуют свойства элементов ;

- выходные параметры - характеризуют свойства систем;

- ограничения выходных параметров.

ПРИМЕР 3.

Применительно к операционному усилителю: а) переменные

- фазовые переменные - напряжение и токи всех ветвей (рассматриваются как функции времени или частоты); б) параметры

- внешние параметры - напряжения источников питания, параметры входных сигналов и нагрузки, температура окружающей среды;

- внутренние параметры - номиналы резисторов, барьерные емкости и тепловые токи переходов в транзисторах, емкости конденсаторов;

- выходные параметры - коэффициент усиления на средних частотах, полоса пропускания, потребляемая мощность, динамический диапазон;

- ограничения - верхние границы допустимых значений коэффициентов усиления, полосы пропускания, динамического диапазона.

Применительно к вычислительной системе: а) переменные

- фазовые переменные - состояния отдельных устройств; б) параметры

- внешние параметры - параметры входных источников заявок;

- внутренние параметры - емкости запоминающих устройств, быстродействие процессоров, число каналов;

- выходные параметры - производительность системы, коэффициент загрузки оборудования, вероятность решения поступающих задач, средние длины очередей заявок на обслуживание;

- ограничения - нижние границы допустимых диапазонов значений производительности, коэффициентов загрузки оборудования, вероятности обслуживания заявок.

При блочно-иерархическом подходе внутренние параметры k -го уровня являются выходными параметры (k+1) -го уровня. При многоаспектном рассмотрении систем, включающих физически разнородные подсистемы, роль внешних переменных для данной подсистемы играют фазовые переменные других подсистем. Они влияют на рассматриваемую подсистему.

Внутренние параметры являются случайными величинами из-за разброса параметров комплектующих изделий, материалов и нестабильности условий изговления. Выходные параметры также имеют случайный характер следствие случайных значений внутренних параметров.

4. Классификация проектных процедур.

Классификация проектных процедур приведена в табл.1.

ТАБЛИЦА 1. ПРОЕКТНЫЕ ПРОЦЕДУРЫ

|АНАЛИЗ |СИНТЕЗ |
| | |
|Одновариантный |Параметрический |
|Многовариантный |Структурный |
| | |
|Статики |Расчет внутренних |
|Чувствительности |параметров |
| | |
|Динамики |Оптимизация параметров |
|Статистический | |
| |Оптимизация допусков |
|В частной области | |
|Расчет зависимостей |Оптимизация технических |
|выходных параметров |требований |
|Стационарных режимов от | |
|внутренних и внешних | |
|параметров | |
|Устойчивости | |

В процедурах анализа оцениваются варианты построения объектов, а в процедурах синтеза - разрабатываются.

Одновариантный анализ заключается в определении вектора выходных параметров Y при заданных:

- структуре системы,

- значениях векторов параметров элементов X,

- значениях внешних параметров Q.

Структура системы задана, если заданы перечень типов элементов и способ их связи друг с другом в составе системы. По известной структуре и значениям X и Q могут быть созданы физическая или математическая модели и по результатам исследования модели оценены значения gпараметров вектора Y.

Приемлемость полученных значений выходных параметров из вектора Y определяется путем сопоставления их со значениями параметров из вектора T, указанных в техническом задании (ТЗ).
Требуемое по ТЗ соотношение между значениями параметров yi и ti , i=1,n называют условием работоспособности по параметру yi.

Условия работоспособности могут быть представлены в следующем виде: yi = t i, (2)

tнi yл ) .

На рис.12 приведена иллюстрация левого перекоса изображения.

Рис.12. Определение расстояния от точки на эскизе слоя топологии до горизонтальной линии координатной сетки

Определение номера горизонтальной линии координатной сетки, к которой должна быть привязана точка а с координатами хa и ya осуществляется по правилу близости этой точки к линии координатной сетки.

При небольшом перекосе изображения в качестве расстояния от точки а до линии координатной сетки можно взять длину вертикального отрезка аb, где b
- точка пересечения вертикального отрезка с линией координатной сетки.
Точка а привязывается к той линии координатной сетки, расcтояние до которой минимально.

Суть привязки состоит в замене ya на значение ординаты, соответствующей этой линии координатной сетки.

Подобным образом осуществляется привязка произвольной точки по оси абсцисс.

3) Выделение контактных площадок

Выделение площадок круглой формы основано на обнаружении коротких отрезков, входящих в состав креста. Крест соответствует изображению площадки. Обнаружение креста инициирует процесс изучения области его расположения. При этом отыскиваются изображения точек, которые несут информацию о типе контактной площадки.

4) Выделение произвольных конфигураций типа контуров

Нахождение произвольных конфигураций типа контуров является основой для решения задач корректировки положения узловой точки и выделения контактных площадок. При поиске осуществляется обход контура. Обнаружение контура осуществляется тогда, когда возвращаются к исходному отрезку.

Для идентификации обнаруженного контура необходимо знать, является он внутренним или внешним.

Если при просмотре внутреннего контура встречается штрих, характерный для границы области металлизации, то это является основанием для его идентификации.

Изучение внутренних контуров также служит основой для отыскания границ библиотечных групп.

При удалении элементарных отрезков, входящих в состав контактных площадок круглой формы, границ областей металлизации и границ библиотечных групп на изображении остаются только печатные проводники.

Обработка этой части информации сводится к обнаружению указателей типа проводников в разрывах трасс печатных проводников и увязки их области действия с отрезками.

5) Генерация завершающего файла

Представляет собой процесс формирования записей, которые несут информацию о найденных обьектах, с последующим их включением в файл.

ЛЕКЦИЯ (6

Тема: “Основные проектные процедуры в САПР”

ВВЕДЕНИЕ

Достаточно очевидным является вывод относительно экспертного сопрождения подсистемы моделирования объекта проектирования.

Рассмотрим множество операций, которые совершает коллектив проектантов над этой подсистемой.

На основе этого анализа представляется разумным установить, насколько поддается формализации инженерная деятельность в среде системы автоматизированного проектирования и существует ли возможность опираться на какие-то фундаментальные положения типа формула изобретения. Попутно целесообразно обобщить практический опыт в различных предметных областях и на разных иерархических уровнях проектирования и сформулировать требования к экспертному сопровождению процедур.

ОСНОВНАЯ ЧАСТЬ

, если структура синтезируемого объекта оговорена либо ТЗ, либо единственными условиями физической реализуемости (единственный физический принцип, обеспечивающий выполнение ТЗ) .
В результате решения задачи синтеза может возникнуть счетное

Нестрогая классификационная схема проектных процедур представлена на рис.1. На схеме показаны основные проектные процедуры, их выбор продиктован следующими соображениями.

Для большинства объектов низшим уровнем проектирования можно считать компонентный.

Понятно, что объект проектирования на этом уровне имеет структурное и параметрическое описания. Композиция отдельных компонент на схемотехническом уровне имеет также двойное описание. То же можно наблюдать на различных уровнях системы автоматизированного проектирования. Любая проектная процедура может быть классифицирована на структурную и параметрическую.

Техническое задание на объект проектирования - это всегда некорректно поставленная задача. Поэтому при технологии нисходящего проектирования, даже если возможно выполнение процедуры синтеза, проектных решений всегда может быть больше одного по структуре и значениям конструктивных параметров.

Уточнение ТЗ порождает необходимость выполнения процедуры анализа.
Заметим, что при восходящем проектировании процедура анализа той или иной гипотехнической структуры объекта проектирования становится едва ли не единственно возможной.

Если система автоматизированного проектирования построена по принципу генерации проектных решений, то процедура оптимизации является одной из основных. Даже в случае нисходящего проектирования в САПР, допускающего выполнение синтеза по ТЗ без генерации вариантов, уточнение значений конструктивных параметров осуществляется процедурами оптимизации.

Рис.1. Основные проектные процедуры в САПР

В процессе выполнения проектных процедур приходится всегда приводить в соответствие способ описания ТЗ, проектного решения (которое часто является ТЗ для более низкого уровня структуры проектирования) способу модельного представления объекта проектирования.

Преобразованию может быть подвергнуто либо ТЗ, либо собственно модельное представление.

Таким образом, процедура преобразования описаний как структуры так и параметров, является неотъемлемой частью любой САПР.

Многие проектные решения принимаются в среде САПР в формализованном виде, зачастую на метаязыке системы. Поэтому для преобразования описания проектного решения (а иногда и ТЗ) используют процедуру идентификации проектного решения (ТЗ).

Множество рассмотренных проектных процедур не является замкнутым по номенклатуре и детализации описания. Однако можно утверждать, что для рассматриваемых здесь предметных областей оно достаточно полно детализирует процесс проектирования.

Последнее утверждение основывается на том, что в указанных предметных областях существует в той или иной мере адекватное модельное представление объекта проектирования в виде некоторого оператора:

La : X ( Y ; a ( A, здесь X и Y описывают множество входных и выходных сигналов .

Данное соотношение устанавливает связь между фазовыми переменными над множеством {A} конструктивных параметров a.

Теоретико-множественный анализ этого оператора и его отображения для модельного представления объекта проектирования показал, что существует счетное множество его преобразований, а также операций над ним: декомпозиция и композиция (преобразование) синтез и анализ. Операции над множеством {A} связаны с поиском единственного ai , которое определяет La .

Возможно также либо определение Y при определенных La {} ,{A} и X, либо
La{} при заданных Y и X .

Поскольку Y и X зачастую инвариантны к классу объектов проектирования в данной САПР, неизбежно преобразование описаний (представлений) Y , X , {A}.
Формализм представления La {} требует решения задачи идентификации.

АНАЛИЗ ПРОЦЕДУР

1. Процедура анализа

Процедура анализа понимается как процесс представления выходных характеристик объекта проектирования при известных входных воздействиях или начальных условиях по какому-либо описанию объекта проектирования
(модельному представлению). Одновариантный анализ проводится с целью установления соответствия входных характеристик требованиям ТЗ.
Многовариантный анализ направлен на установление в явном, наглядном виде связи между входными данными, характеристиками и конструктивными параметрами.

2. Процедура синтеза

Решение задачи синтеза обеспечивает получение описания объекта проектирования по ТЗ на объект в виде структуры и совокупности значений конструктивных параметров. Параметрический синтез проводится конечное множество проектных решений. Если решение одно, синтезируемый объект будем называть "оптимальным по ТЗ". Оптимизация конструктивных параметров приводит к полному описанию объекта проектирования.

Оптимизация допусков проводится с целью установления совокупности значений каждого конструктивного параметра по заданному теоретически обоснованному критерию. Оптимизация технических требований обеспечивает назначение оптимальных (в смысле теоретически обоснованного критерия) требований к выходным характеристикам объекта проектирования.

3. Процедуры преобразования

Процедуры преобразования осуществляются над множеством лингвистических и математических переменных.

Их последовательность образует запись либо ТЗ, либо проектного решения, с целью: а) обеспечить представление ТЗ на метаязыке конкретной САПР, б) представить в форме, понятной проектанту, то или иное проектное решение, сформулированное на метаязыке системы, в) обеспечить совместимость проектных процедур

Вторая группа преобразования выделена в отдельную процедуру идентификации. Если преобразование осуществляется над неформальным описанием, то оно представимо на языке логики предикатов первого порядка.

Например, если для множества лексем, образующих определенную совокупность требований технического задания Ln, и множества критериев проектных решений Kp ввести предикат Q (Ln , Kp ), обозначающий факт однозначного соответствия L и K любой лексемы li из множества {L} одной и только одной формальной записи критерия Ki p ({K} , то соответствующая формула имеет вид:

(( lin ( Ln ) (( Kip ( Kp) ( Q(Ln, Kp).

Если преобразование не выполнимо за одну процедуру, но существуют две совместимые процедуры и результат преобразования не зависит от порядка их применения, то

(( lin ( Ln, ( Kip ( Kp) ( Q(Ln, Kp) Q (Ln-m , Kp).

Если в качестве терминов, входящих в формулу, используются математические переменные, то операция преобразования записывается математической формулой, которая реализуется алгоритмически.

Процедура преобразования, применяемая к тому или иному проектному решению, записанному в виде топологии объекта проектирования, может осуществляться либо объединением (композицией), либо декомпозицией. В свою очередь, композиция проектных решений имеет несколько модифицированных представлений и их множество счетно.

То же можно сказать относительно декомпозиции проектного решения. Здесь отметим, что процедура композиции характерна для восходящего проектирования, а декомпозиция - для нисходящего.

4. Процедура идентификации

Процедура идентификации осуществляется либо над множеством данных (из базы данных) когда ставится задача преобразования проектного решения, либо над множеством проектных решений, когда ставится задача занесения его в базу данных.

Указанные задачи, решаемые в соответствии с классифицируемыми процедурами, как отмечалось, сделаны относительно объектов. Они имеют описание в виде цепочек формульных зависимостей (модельных представлений, реализуемых алгоритмически) либо цепочек термов, лексем, лингвистических переменных). Поэтому можно предположить, что множество перечисленных процедур факторизуется по классификационному признаку, связанному со способом описания и реализации в среде САПР.

КЛАССИФИКАЦИЯ ПРОЦЕДУР

Каждая из перечисленных процедур может быть отнесена к одному из трех типов процедур:

- формальная,

- формализуемая,

- эвристическая.

Дадим несколько определений.

а) Формальная процедура - совокупность действий, которая порождает проективное (или счетное множество проектных решений) без участия проектанта. В этом случае проектант только формулирует задачу: назначает входные данные и указывает критерий проектного решения. б) Формализуемая процедура - процедура, которая может лишь частично формально описываться в виде какого-либо алгоритма, иногда даже реализующего численный метод, но исходные данные для нее требуют преобразования, а условия ее протекания, критерии проектных решений требуют уточнения не при переходе от одного объекта проектирования к другому, но и процессе ее выполнения.

Проектант может влиять на условия протекания формализуемой и эвристической процедур, руководствуясь только лишь опытом, интуицией, здравым смыслом, причем как своим собственным, так и по выбору, и накопленным в данной САПР. в) Эвристическая процедура - процедура, которая не поддается никакому формальному описанию, не может быть описана никаким алгоритмом и при определенных условиях не обеспечивает принятия проектного решения.

Приведем примеры процедур.

а) Формальные процедуры:

- анализ чувствительности модели проектирования, применяемой в теории автоматического регулирования,

- синтез оптимального фильтра (решение задачи Винера-Хопфа), когда критерий сформулирован в ТЗ,

- поиск безусловного экстремума целевой функции, сформулированной для задачи непосредственно в ТЗ.

Перечисленные процедуры позволяют оперировать со строгими математическими моделями, являются реализацией конкретно поставленной задачи и инвариантны к критерию проектного решения.

б) Формализуемые процедуры:

- одновариантный анализ объекта проектирования на математической модели при отсутствии полной информации о характере входных воздействий или при нечетко определенной области адекватности,

- синтез структуры объекта проектирования, не имеющего аналогов и прототипов, осуществляемый за счет использования сочетания различных физических принципов и компонент разной физической природы. "Суммарный" эффект не является простой суммой отдельных эффектов, возникающих от использования того или иного физического принципа,

- условная оптимизация значений конструктивных параметров с использованием многомерной целевой функции (многокритериальная некорректно поставленная задача).

Отличительной чертой перечисленных формализуемых процедур является их
"экстраполяционный" характер. Во всех указанных совокупностях действий
"предсказывается" поведение объекта проектирования на основе гипотетической информации при ограничениях, которые основаны на фундаментальных физических принципах (закон сохранения энергии, не отрицательность времени и т.д.)

Формализуемые процедуры занимают "промежуточное" положение между формальными и эвристическими. С одной стороны, они используют математические модели, с другой стороны, характер их использования является экстраполяционным.

Например, параметрическая оптимизация, осуществляется с изменением метода оптимизации. Изменение метода происходит в результате анализа как целевой функции, так и влияния ограничений на характер процесса оптимизации.

Видно , что проектная операция может быть только формальной (по определению). Поэтому можно говорить, что формальная проектная процедура всегда состоит из конечного числа проектных операций.

Эвристическая процедура не содержит проектных операций, а формализуемая состоит из несовместимых операций. Их нельзя применять в любой последовательности и в любом сочетании, или их сечение нельзя заранее определить (предсказать).

ЛЕКЦИЯ (7

Тема: “Знания в вычислительных системах (САПР).

Формы представления и способы кодирования.”

ВВЕДЕНИЕ

Одним из первых обобщений, связанных с искусственным интеллектом в САПР, стала работа "Интеллектуальные системы автоматизированного проектирования больших и сверхбольших интегральных схем” В.А.Мищенко, Л.М. Городецкий и др. Радио и связь, 1988."

В ней излагаются концепции системы проектирования, "имитирующей деятельность конструктора в части накопления информации об алгоритмах проектируемых схем, модификации исходных алгоритмов для получения необходимых требований технического задания, перебора имеющихся конструктивов для реализации конкретной схемы, решения задач оптимизации при синтезе, проверки корректности требований ТЗ в рамках знаний, заложенных в систему.

Понятно, что сформировать требования к "интеллектуальным САПР" независимо от предметной области довольно трудно.

В первую очередь эти вопросы привлекли внимание разработчиков интегральных схем. В этой предметной области в значительно большей степени возможно формализованное представление объекта проектирования, различных проектных процедур. Это справедливо, пока речь идет о проектировании алгоритмов, архитектуры и функционально-логической структуры интегральных схем. Как только степень детализации в описании объекта проектирования достигает уровня, на котором требуется оперировать физическими величинами, и если речь идет о моделировании условий протекания физических процессов, то адекватное формализованное описание объекта и процесса проектирования становится все более затруднительным.

Поэтому представляется разумным сопоставить возможности строгого и формализованного подходов к проектированию. Он заключается в "жесткой
"организации программного обеспечения САПР, и чисто эвристического подхода, используемого в экспертных системах, которые функционируют либо на основе нечеткой логики, либо на стохастических методах обучения.

В радиоэлектронном приборостроении используются сочетания разнообразных физических эффектов. В этой области как и в оптическом приборостроении и автоматики распространены системы автоматизированного проектирования с традиционной организацией программного обеспечения. Это связано, прежде всего, со значительными трудностями создания однородного математического описания систем, сочетающих резко отличающиеся по физической природе компоненты.

В данной лекции мы обращаем внимание на те проблемы, которые целесообразно решать за счет использования "жестких" и "мягких" компонент программного обеспечения САПР.

Обращено внимание на поиск точек соприкосновения формализованных и эвристических подходов на основе анализа основных принципов организации и функционирования таких систем применительно к задачам исследования.

Слабые места в формализованном подходе и пути их усиления за счет использования экспертных оценок, определяющих как характер так и последовательность их применения в сочетании с модельным представлением различных объектов проектирования, также будут рассмотрены.

Предполагается провести анализ способов модельного представления объектов проектирования, которые дают довольно строгую формализацию описания различных предметных областей. При этом сделан акцент на проблему адекватного описания.

ОБЩИЕ СВЕДЕНИЯ

Наиболее распространенным определением экспертной системы является утверждение о том, что это вычислительная система, оперирующая знаниями специалистов в определенной предметной области и способная принимать решения на уровне этих специалистов.

В этом определении остается неясным, что следует понимать под термином" знания" и что означает способность принимать решения вычислительной системой. Эта неясность возникает, если достаточно строго отнестись к термину "вычислительная система".

Если понимать ее как особым способом организованную совокупность программно-аппаратных средств, то способность ЭВМ принимать решения представляется спорной.

Экспертная система, как всякая вычислительная система, ни в какой момент времени ее создания и функционирования неотделима от пользователя и разработчика.

Первый существенный признак, позволяющий рассматривать экспертную систему как самостоятельный класс вычислительных систем, заключается в том, что она не должна морально устаревать.

Большинство работ, посвященных экспертным системам, свидетельствует о том, что основу их архитектуры составляет запас знаний о конкретной предметной области. При этом знания понимаются как совокупность правил, определяющих характер обработки данных, в результате применения которых может формироваться новая совокупность правил.

В приведенных определениях используются понятия данные и знания. а) ДАННЫЕ в вычислительных системах - закодированные образы объектов реального мира, имеющих количественную меру. Наличие количественной меры говорит о возможности сопоставления объектов.

В соответствии с принятым определением в дальнейшем термин "данные" и производные от него ("база данных", "управление базой данных" и др.) будет использоваться для обозначения любых констант (включая логические, строковые), переменных и функций, а также множеств, их объединяющих. б) Опираясь на определение данных, можно сформулировать определение термина " знания ".

Необходимо отметь, что речь идет о знаниях в вычислительных системах, а не о знаниях вообще.

Если измеримость объектов реального мира вытекает из возможности их сопоставления, т.е. установления отношений между ними, то среди этих отношений всегда можно выделить подмножество, которое объединяет закономерности. Такая возможность позволяет в дальнейшем оперировать термином "знания" в смысле образов отношений между измеримыми объектами реального мира.

Если соотнести теперь определения данных и знаний, то становится ясным, что данные являются частным случаем знаний. В самом деле, измеримость объекта, т.е. существования данных об объекте предполагает его сопоставимость с каким-либо другим. Он условно принят за эталон. Это сопоставление позволяет установить отношения между объектами (например, равно, больше, одинаково по смыслу и т.п.).

Отношение, в свою очередь, может быть закодировано и представлено в вычислительной системе. Если результат этого сопоставления кодируется константами, переменными либо функциями, то речь идет о представлении данных.

Если же в вычислительной системе представляют (кодируют) способ и результат сопоставления и сущностью этой информации является отношение между данными, которое также может кодироваться константами, переменными и функциями, то такого рода данные в дальнейшем следует называть ЗНАНИЯМИ.

Наиболее распространенными формами представления знаний являются логические, семантические и продукционные модели. Проведем анализ этих форм в сопоставлении с неформальным описанием знаний, составляющих основу инженерной деятельности. При этом будем различать формализуемые и эвристические способы построения моделей.

В инженерной деятельности используют формализованное описание объектов проектирования и проектных процедур. С появлением САПР - это используется во множестве формализованных проектных процедур и моделей объектов проектирования.

Объекты проектирования в сочетании со строгими методами оптимизации образуют жесткую структуру, изменения которой осуществляются разработчиками или специальными лицами, администрирующими информационную компоненту и сопровождающими систему автоматизированного проектирования. Они не являются специалистами в данной предметной области.

ЛОГИЧЕСКИЕ МЕТОДЫ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ

Предварительно остановимся на изложении некоторых понятий формальной теории.
Формальная теория задана, если определены четыре множества B, F, A, R : S =
{B, F, A, R}, где

B - счетное множество базовых символов (алфавит) теории S ;

F - подмножество выражений теории S (формулы теории );

A - выделенное множество формул, образующее аксиомы теории S
(множество априорно истинных формул);

R - конечное множество отношений между формулами ( правила вывода).

Формальная теория S называется РАЗРЕШИМОЙ, если найдется единая процедура, которая позволяет узнать для любой данной формулы, существует ли ее вывод в S.

Формальная теория S называется НЕПРОТИВОРЕЧИВОЙ, если не существует такой формулы ai ( A, чтобы ai и (ai были выводимы в S.

Теория исчисления предикатов определяется следующими множествами:

АЛФАВИТ: знаки пунктуации (,) . ; пропозициональные связки (, ( ,( , ( знаки кванторов ( , ( символы переменных хk , k=1,2,...,n символы функциональных букв fkn символы предикатных букв Pk

ВЫРАЖЕНИЯ: множества выражений строятся над множеством символов алфавита с помощью термов и элементарных формул.

ТЕРМЫ: символы переменной или константы, например X1,X2, ...,Xn или fk
(X1,X2, ...,Xn)

ЭЛЕМЕНТАРНЫЕ ФОРМУЛЫ: совокупность предикатных букв, термов и знаков пунктуации, например,

Pk (X1,...,Xn)

ПРАВИЛЬНО ПОСТРОЕННЫЕ ФОРМУЛЫ: совокупность элементарных формул и пропозициональных связок, например:

Pk (X1 ,...,Xn) = P1 (X1,...,Xn).

С помощью выражения ((X)D (A) обозначается область действия квантора всеобщности. Это означает: для любого X из D существует правильно построенная формула A.

С помощью выражения ((X)D (A) устанавливается существование такого X из
D, для которого справедлива правильно построенная формула.

Области значений правильно построенных формул кодируются таблицами истинности. Они устанавливают значения 0 либо 1 ("ложь" либо "истина") формулам:

(A , A ( B, A ( B

НЕЧЕТКОЕ ОТНОШЕНИЕ определяется оператором R и операцией "(": R ( A = B, где A - входное нечеткое множество, B - выходное нечеткое множество.

Не будем раскрывать данную запись на уровне системы алгебраических уравнений.

Если истинность обозначена для всех наборов интерпретаций, ее называют общезначимой, в противном случае она невыполнима.

Говорят, что формула A логически следует из формул B1,B2,...,Bi тогда и только тогда, когда интерпретация формулы B1,B2,...,Bi совпадает с интерпретацией A. (B1,B2,...,Bi ( A)

В этом случае B1,...,Bi - посылки, а A - заключение логического следования.

В сжатой форме это отношение обозначается как B1,B2,...,Bi => A

На практике имеет большое значение теорема дедукции, согласно которой A является логическим следствием B1,...,Bi тогда и только тогда когда формула
B1,B2,...,Bi общезначима.

Известно использование исчисления предикатов для доказательства теорем.
Методы доказательства теорем основываются на том, что если формула исчисления предикатов общезначима, то возможна проверка ее общезначимости на основе исчисления предикатов.

Элементы исчисления предикатов используются для кодирования аксиоматики того или иного математического аппарата. Это позволяет использовать его в технологических приложениях для записи спецификаций программ и как следствие для аналитического преобразования формул, модельного представления объектов проектирования и описания проектных процедур, а также для проверки на корректность и полноту программных реализаций систем аналитических вычислений.

НЕЧЕТКИЕ МНОЖЕСТВА И НЕЧЕТКАЯ ЛОГИКА

Многие продукционные модели представления знаний опираются на аппарат нечетких множеств и нечеткой логики Л.Заде с лингвистическими, а не числовыми значениями истинности.

Рассмотрим некоторые основные понятия.

Установлено, что нечеткость возникает тогда, когда элемент w(W обладает некоторым свойством А, имеющим субъективную окраску (по мнению различных экспертов).

Функция принадлежности (A( ) рассматривается как функция вещественного аргумента. Она определена на интервале [0,1].

Можно считать, что (A: u -> [0,1] ставит в соответствие каждому u число
(A(u) из интервала [0,1], характеристическую степень принадлежности u подмножеству A. Нечеткое множество А будет обозначаться как объединение

А = ((A(ui) / ui, либо А = {(1 / u1 + ...+ (n / u n}

В случае, когда множество непрерывно A = ((A(u) / u.

Определим понятие множества уровня (.

МНОЖЕСТВО УРОВНЯ ( это четкое множество A( элементов универсального множества U, степень принадлежности которых множеству А больше или равна (:

A( = {u / (A(u) > (}, где ( - в общем случае может быть нечеткой константой.

ОБЪЕДИНЕНИЕ множеств по (

((A = (( (A(

Операция ДОПОЛНЕНИЕ

(A = (u(1- (A(u))/u

Операция ОБЪЕДИНЕНИЕ

A ( B = (u((A(u) ( (B(u)) /u

Операция ПЕРЕСЕЧЕНИЕ

A ( B = (u((A(u) ( (B(u)) /u

Аппарат, построенный на моделях нечетких операндов, широко используется в процедурных способах представления знаний. С его помощью осуществляется, в основном, эвристическое представление. Конкретные формы, в которых оно реализуется, зависят и от вычислительной среды, СУБД, от концептуальной модели базы знаний и от общей концепции проекта той или иной системы.

СЕМАНТИЧЕСКИЕ СЕТИ

Семантические сети строятся с помощью ориентированных графов. Вершины сети соответствуют объектам, а дуги семантическим отношениям.

Среди объектов выделяют понятия, свойства и события.

Семантические отношения можно условно разделить на лингвистические, логические, теоретико-множественные и квантифицированные. Применительно к задачам организации вычислительной среды САПР лингвистические отношения относятся к средствам доступа. К логическим отношениям относятся отношения типа: дизъюнкция, конъюнкция и отрицание.

Теоретико-множественные отношения рассматриваются как проявление категорий части и целого, затрагивают иерархическую структуру той или иной
САПР в целом. Пример такой сети приведен на рис.1.

Семантические сети условно классифицируют на интенсиональные и экстенсиональные.

ИНТЕНСИОНАЛЬНАЯ сеть устанавливает те отношения между объектами, которые отличаются объективностью и повторяемостью.

ЭКСТЕНСИОНАЛЬНАЯ сеть кодирует отношения между конкретными фактами, объектами и событиями, т.е. между данными.

Наибольшее распространение семантические сети получили в концептуальных моделях баз данных и поэтому имеют распространение в САПР.

При использовании в САПР семантические сети применяются в семантическом анализе при организации диалога на предметном языке. Этот анализ проводится после морфологического и синтаксического разбора. Далее используется либо прямое преобразование синтаксических отношений в семантические с применением встроенных правил (фильтров), либо преобразование осуществляется на основе соответствий, указанных в моделях управления.

Рис.1. Пример сети, используемой для представления отношений между моделями и макромоделями объекта проектирования в САПР.

Однако, если предметная область САПР основана на описании естественных объектов, то размерность семантической сети становится необозримой. В этом случае предпочтительнее использование представления в виде фреймов.

ФРЕЙМЫ

Приведем определение фрейма.

ФРЕЙМ - поименованная семантическая сеть, являющаяся элементом множества, построенного на операции связи с помощью одного или нескольких узлов.

Подобное определение не противоречит с трактовкой фрейма как структуры данных, формализовано отображающей объектно-субъективные отношения декларативным либо процедурным образом и содержащей постоянную часть или переменную. О последней говорят как о совокупности слотов ( переменная часть фрейма ).

Такая структура образуется множеством троек вида:

{ F, (S1, GS1, PS1), ..., ( Si, GSi, PSi), ..., (Sl, GSl, PSl) }, где F - имя фрейма , Si - имя слота, GSi - значение слота, PSi - процедура, связанная со слотом.

При работе с фреймами допустим любой уровень вложений, поскольку значением слота некоторого фрейма может быть любое имя фрейма.

Сеть фреймов реализует модель объекта проектирования на основе фрейма
"преобразование" и отражает свойство объекта проектирования в целом и его отдельных компонент (узлов, звеньев, макромоделей - совокупности звеньев).
Порядок инициализации процедур для преобразования данных определяется слотами параметров моделей.

На рис. 2 приведена сеть фреймов, реализующая модель объекта проектирования.

Рис. 2. Сеть фреймов, реализующая модель объекта проектирования в соответствии с иерархией, отображенной на рис.1.

Для инженерной деятельности характерны специфичные формы представления знания. Это связано со следующими обстоятельствами:
1) c необходимостью описания последовательности принятия проектных решений в форме, удобной для представления в ЭВМ.
2) c отождествлением ТЗ на объект проектирования с той или иной последовательностью действий проектанта.
3) с оценкой корректности ТЗ и адекватности моделей объекта проектирования.

Первое требование возникает, если САПР строится целиком на основе базы знаний и не позволяет оперировать строгим математическими моделями объектов проектирования. Такой путь предполагает использование экспертных систем для накапливания знаний инженеров высокой квалификации и последующего их
"тиражирования" в вычислительных системах.

Второе требование также характерно для использования свойств экспертных систем в полном объеме, а также для САПР, называемых "интеллектуальными".

Третье требование возникает при необходимости построить САПР, адаптирующиеся к пользователю и развиваемые проектантами.

Наиболее интересным приложением для интеллектуальных САПР является построение обучаемых мониторов, называемых интеллектуальными планировщиками. Подобные мониторы реализованы с использованием аппарата сетей Петри (которые мы здесь не рассматриваем).

МЕТОДЫ КОДИРОВАНИЯ

Рассмотренные способы представления знаний могут иметь самую различную программную реализацию в вычислительных системах. Во многом эти способы зависят от характера отношений между данными, которые моделируются знаниями.

В инженерной практике исторически сложилось два способа документирования проектных решений - текстовый и графический.

Наибольший интерес представляет графический способ документирования.

Технологические и пользовательские аспекты обработки графической информации в системах проектирования и конструирования изучены достаточно глубоко.

Двухуровневый характер кодирования таких изображений, как чертежи, графики позволяет сводить их описание к лексическим примитивам (линия, круг, точка и т.п.). Следовательно, представление знаний с помощью таких
"кодов" так или иначе сводится к способам, уже рассмотренным ранее.

Особое место занимает графическая информация, кодируемая полутоновыми многоуровневыми изображениями реальных и искусственных объектов. Наиболее мощным арсеналом программно-аппаратных средств обработки, хранения и представления таких изображений располагает цифровая голография.

Использование этих средств позволяет не только решать задачи препарирования изображений и распознавания образов, но и строить обучаемые вычислительные системы.

ЛЕКЦИЯ (8

Тема: “Экспертная система для автоматизированного проектирования”

ВВЕДЕНИЕ

Экспертная система для решения задач автоматизированного проектирования является, в свою очередь, вычислительной системой.

Она должна удовлетворять следующим требованиям:
1. Принимаемые с помощью системы решения должны соответствовать уровню эксперта-профессионала.
2. Cпособы принятия решений (метарассуждения) в любой момент времени должны воспроизводится в форме, понятной как эксперту, так и пользователю.
3. Система должна адаптироваться к пользователю за счет возможности менять как формулировки запросов и задач, так и последовательность их возникновения.
4. Cистема должна обладать возможностью использовать, приобретать и хранить общие и частные схемы рассуждения, построенные на не полностью достоверных данных и символьных преобразованиях.
5. В процессе жизненного цикла система должна обладать свойством ревизии данных и схем рассуждений.

ЗАДАЧИ, РЕШАЕМЫЕ ЭКСПЕРТНОЙ СИСТЕМОЙ

Перечислим задачи, которые способна решать экспертная система:
1. Задачи не могут иметь числовой интерпретации.
2. Цели, достигаемые при их решении, не могут быть представлены в виде целевой функции.
3. Комбинаторные методы перебора невозможны.

СТРУКТУРНАЯ СХЕМА ОБОБЩЕННОЙ ЭКСПЕРТНОЙ СИСТЕМЫ

Перечислим основные компоненты такой системы. К их числу относятся следующие:
1. Лингвистический процессор
2. Подсистема логического вывода.
3. База знаний.
4. Подсистема ревизии знаний.
5. Рабочая память.

На рис.1 показана структурная схема обобщенной экспертной системы.

Рис.1. Структура обобщенной экспертной системы.

Лингвистический процессор осуществляет связь остальных компонент с пользователем или экспертом на алгоритмическом языке.

Подсистема логического вывода обеспечивает построение той или схемы рассуждения.

База знаний предназначена для хранения и обработки знаний, представленных логическими, продукционными либо семантическими моделями.

Подсистема ревизии знаний позволяет пользователю либо эксперту вмешиваться в процесс подготовки принятия решения за счет объяснения
(отображения) промежуточных действий в системе.

Рабочая память обеспечивает хранение промежуточных данных и их обмен между компонентами системы.

В некоторых работах по искусственному интеллекту можно встретить несколько другое представление обобщенной экспертной системы, причем, принципиальным отличием может явиться наличие в структуре подсистемы приобретения и интерпретации знаний. Однако в таких системах, как EURISKO, роль такой подсистемы выполняет подсистема логического вывода совместно с подсистемой ревизии знаний, а в системе MYSIN ее невозможно выделить как отдельное программное средство. В системах, построенных по технологии
"prototyping" - ИНТЕРЭКСПЕРТ (GURU), ЭКСПЕРТИЗА, т.е. на основе оболочек, также трудно выделить такой программный модуль, который обеспечивал бы приобретение знаний.

Рассмотрим подробнее структурные компоненты экспертной системы.

КОМПОНЕНТЫ ЭКСПЕРНОЙ СИСТЕМЫ

ЛИНГВИСТИЧЕСКИЙ ПРОЦЕССОР

Лингвистический процессор обеспечивает взаимодействие пользователя либо эксперта с программно-аппаратной частью экспертной системы путем преобразования (трансляции, конвертирования, интерпретации) предложений на проблемно-ориентированном (чаще на естественном) языке в предложения на внутреннем языке (метаязыке) и наоборот.

На рис.1 не показано, что в этих преобразованиях участвует база знаний, поскольку во многих экспертных системах лингвистические процессоры реализуются отдельным модулем, имеющим программно-аппаратный вид.

Достаточно общее название этой структурной единицы позволяет рассматривать под этим названием самые различные программные и программно- аппаратные реализации. Они независимы от способа кодирования сообщения: речевой ввод, ввод с алфавитно-цифровой клавиатуры, с сенсорного устройства и т.д.

В любом случае считается, что входными данными лингвистического процессора являются цепочки символов, представленных во внутреннем коде системы, а выходными - либо цепочки, синтезированные на языке деловой прозы для человека, либо цепочки на метаязыке системы.

Преобразование лексических единиц на естественном языке возможно в процедурной, декларативной или смешанной форме. Для декларативной формы характерно существование некоторого словаря и морфологический анализ сводится к сопоставлению соответствующих лексем.

Процедурный способ морфологического анализа основывается на определении последовательности операций, которые необходимо осуществить для определения значений морфологических параметров. При этом под морфологией понимается система правил порождения слов.

База знаний, над которой строится лингвистический процессор, содержит словарь, множество фильтрующих процедур и семантическую сеть. С помощью словаря осуществляется представление знаний о словах (лексемах).

Фильтрующие процедуры реализуют правила анализа и синтеза лексем, а семантические сети кодируют смысловые структуры предметной области.

Структура основной части лингвистического процессора и взаимодействие его элементов условно представлены на рис.2.

Рис.2. Структура лингвистического процессора

В процессе анализа сообщения пользователя выделяются корни слов, идентифицируется совокупность корней по словарю, хранящемуся в рабочей памяти, проводится морфологический разбор и после семантического разбора порождается сообщение на метаязыке системы.

При синтезе сообщения чаще всего используется множество формальных шаблонов, которые выбираются в соответствии с семантикой сообщения и заполняются в соответствии с его морфологией и синтаксисом.

Лингвистический процессор систем ИНТЕРЭКСПЕРТ, ЭКСПЕРТИЗА позволяет осуществлять связь на естественном языке и рассчитан на распознавание до
500 слов и команд. Процесс формирования интерфейса реализуется с помощью меню. Оно предлагается пользователю всякий раз, когда введенное предложение на естественном языке содержит слова, не содержаржащиеся в словаре процессора.

Меню предлагает пользователю варианты типа:
- "временное изменение",
- "постоянное изменение",
- "более длинная фраза",
- "игнорировать слово" ,
- "снять запрос".

В первом режиме составляется временное определение, которое хранится до следующего запроса. При этом нераспознанное слово автоматически приводится в семантическое соответствие с синонимом из словаря в течение текущего запроса. экспертной системе позволяет со временем снимать разграничения в функциях эксперта и пользователя.

Возможности наиболее распространенных в настоящее время экспертных систем в области ревизии знаний пока ограничены. В основном, пользователю объясняют причины запросов и раскрывают Во втором режиме проводится постоянное доопределение словаря соответствующим синонимом.

В третьем режиме синонимы вводятся уже не для отдельных слов, а для словосочетаний.

Четвертый режим позволяет пользователю понизить избыточность в сообщении, если какое-то слово в фразе, кодирующей запрос, нераспознано процессором, а пятый позволяет прекратить бесплодные попытки разъяснить принципиально неопознанную фразу запроса.

Лингвистический процессор ИНТЕРЭКСПОРТ расширен на область графического представления данных в виде таблиц и графиков.

ПОДСИСТЕМА ЛОГИЧЕСКОГО ВЫВОДА

Подсистема логического вывода, предназначенная для генерации рекомендаций по решению прикладной задачи на основе информации, находящейся в базе знаний, строится на основе теории машины Поста.

На структурной схеме, показанной на рис.3, определены связи между компонентами этой подсистемы в соответствии с принципами функционирования машины Поста. Согласно наименованию, подсистема порождает правило на основе импликации вида:

Ri : Ii ( Ri’, где Ri - правило продукции, извлекаемое из базы знаний, Ii - условие применения правила Ri,

R’ - порождаемое правило, которое может быть помещено либо не помещено в базу знаний.

Рис.3. Структура и принцип функционирования интерпретатора

В процессе решения той или иной задачи в подсистеме производится интерпретация (означивание) того или иного правила и выполнение действий, определяемых этим правилом. Выбор (идентификация) того или иного правила основан на сопоставлении условий Ii и в общем случае приводит к нескольким правилам одновременно. При этом возможно порождение порождается конфликтного набора.

Разрешение конфликтного набора осуществляется специальной процедурой, называемой селектором. В селекторе заложена определенная стратегия.

Для оперативного хранения промежуточных данных по условиям Ii, во многих системах предусматривается РАБОЧАЯ ПАМЯТЬ.

Например, в системе ИНТЕРЭКСПЕРТ, а точнее, в ее инструментальной среде, логический вывод осуществляется либо с помощью процедур, разработанных на уровне языка структурного программирования, либо с использованием эвристик, реализованных в среде.

Различают прямую и обратную аргументацию.

В первом случае каждое правило, занесенное с помощью средств, обрабатывается в последовательности от посылки к заключению. Если предложение, реализующее посылку, истинно, то правило инициируется и происходит переход к заключению. В противном случае возобновляется проверка истинности до момента, когда все правила не будут исчерпаны.

Во втором случае в машине логического вывода распознается то правило, в заключении которого содержится наиболее близкое к проблеме решение.

Если посылка правила не определена, производится перебор неизвестных переменных в посылке правила применительно к новым условиям. Операции повторяются циклически до нахождения решения либо до определения неразрешимости задачи.

Посылки к правилам формируются с помощью нечетких множеств, причем допускается использование нечетких чисел и лингвистических переменных. В инструментальной среде ИНТЕРЭКСПЕРТ вводятся в рассмотрение "факторы уверенности". Для них определена шкала в диапазоне от 0 до 100 .
Допускается формулировка посылок четкими переменными, полями базы данных, статистическими переменными, переменными с индексами.

Доступ к машине логического вывода осуществляется двумя основными путями: путем предложения правила и путем запроса на консультацию.

Первый путь реализуется предложением, имеющим форму: правило: "имя правила"

ЕСЛИ : < предложение>

ТОГДА: < заключение >

Предложение реализуется выражением, которое связывает операнды и операции логических отношений. Заключение строится из любого числа операндов, в состав которых входят переменные и коды операций.

Правило инициируется только после того, как будут установлены значения всех переменных, входящих в состав операндов и операций.

Таким образом, структура набора правил образуется предложениями: описания типов используемых переменных, правил, консультаций, объяснений правил (которые, вообще говоря, не обязательны), завершения набора и завершения текста набора правил.

С помощью специального редактора набора правил осуществляется построение, изменение состава и структуры и компиляция набора правил. После компиляции образуется исполнимая экспертная система, порожденная в оболочке системы. Программирование машины логического вывода, таким образом, формально мало чем отличается от обычного программирования.
Отличие возникает при оперировании с нечеткими переменными и нечеткими условиями.

Основные типы переменных, определенные в среде: символьные, числовые, логические и неизвестные. Основные виды: ячейки, поля, рабочие переменные, фиксированные переменные среды.

Отдельный вид составляют нечеткие переменные, определяемые в рассматриваемой среде как и переменные набора. Последние имеют нечеткие подмножества значений любого сочетания перечисленных типов. Каждое значение нечеткой константы определяется соответствующим значением функции принадлежности, определяемым в среде как "фактор уверенности".

Например, переменная набора

Y = {1/0.5; 2/0.5; 3/0.5} в инструментальной среде записывается таким образом:

Y = {1 cf50, 2cf50, 3cf50}.

C использованием факторов уверенности осуществляется и формирование набора правил. Учет этих факторов выполняется путем введения факторов уверенности: посылки, заключения и переменной заключения.

Основные операторы, принятые в инструментальной среде операторы отношений:
- = - проверка на равенство ,
- - проверка на неравенство,
- >= - проверка на превышение или равенство,
- < - проверка на превышение,
- - проверка на превышение,
- IN - проверка на соответствие одного элемента другому.

Операции в машине логического вывода могут описываться в выражениях, использующих действия над функциями принадлежности. Это могут быть:
- операция "И" и группируемые вокруг нее

min (a, b), ab, (ab+ min(a,b)/2), ab(2-max(a,b))
- либо операция "ИЛИ" и группируемые вокруг нее

max(a,b), (a+b-ab), (max(a,b (a+b-ab))/2).

Таким образом, в инструментальной среде можно реализовывать арифметику нечетких чисел и алгебру нечетких высказываний.

Аналогичным образом осуществляется функционирование машины логического вывода и в системе ЭКСПЕРТИЗА.

ПОДСИСТЕМА РЕВИЗИИ ЗНАНИЙ

Подсистема ревизии знаний является частью любой экспертной системы, так как она обеспечивает адаптацию пользователя к вычислительной системе.
Поскольку всякая САПР так или иначе связана с вычислительной системой, то свойство эксперной системы по отображению промежуточных и окончательных решений позволяет эксперту менять состав продукционных правил, а пользователю состав и содержание запросов. Это свойство помогает разрешить многие проблемы, стоящие перед разработчиками САПР и проектантами.

Благодаря такой подсистеме в развитых экспертных системах (например, в
EURISKO) появляется возможность влиять на базу знаний и на стратегию управления продукционной системы, реализуемой в машине логического вывода.

В инженерной деятельности проектные решения выбираются на основе глубинных причинно-следственных связей. Они далеко не всегда имеют формальное или какое-либо формализованное представление. Поэтому понимание проектантом хода рассуждений в процессе консультации в содержимое базы знаний.

Несколько слов относительно состава и назначения базы знаний.

БАЗА ЗНАНИЙ

В экспертных системах знания могут представляться в декларативной, процедурной, управляющей формах и в виде метазнаний.

Декларативные знания представляются как факты, формируемые пользователями, процедурные - как правила, представляемые экспертами.
Управляющие знания - набор стратегий, определяющих функционирование подсистемы логического вывода. Метазнания представляются пользователю и эксперту в процессе функционирования экспертной системы. С их помощью раскрывается ее состояние, структура и схема рассуждения. Метазнания - основной источник развития экспертной системы.

ПЕРСПЕКТИВЫ РАЗВИТИЯ САПР

На основе проведенного анализа структуры эксперной системы, можно утверждать, что такая вычислительная среда имеет прямое применение для инженерной деятельности как средство автоматизации проектных работ, если проектирование ведется от прототипа, по восходящей технологии или на высших иерархических уровнях той или иной системы проектирования.

Однако, если объект проектирования можно формально описать, возникает потребность, с одной стороны, использовать приемы, характерные для инженерной деятельности, а с другой - привлечь знания математиков для использования формальных методов принятия решения.

Кроме того, дальнейшее развитие САПР, по мнению многих разработчиков, должно идти по пути создания вычислительных систем, которые "лояльны" к пользователю, легко тиражируются и обладают свойством развития.

В ближайшее время при построении САПР необходимо обеспечить решение следующих задач:
- обучение пользователя, которое сводится к обучению входным языкам, представлению справочной информации, адаптированной к характеру запроса, диагностике ошибок и сопровождению пользователя в процессе проектирования;
- обучение САПР, предполагающее настройку системы на конкретную предметную область или класс проектных процедур;
- организация диалога в процессе проектирования с целью описания объекта проектирования, технологического задания и заданий на выполнение проектных процедур;
- изготовление проектной и справочной документации, оформляющей проектные решения;
- контроль за функционированием системы и отображение статистических данных о количестве и качестве проектных решений.

Перечисленные задачи во многом совпадают с требованиями, которые предъявляются к обобщенной эксперной системе.

Дополнительно можно сформулировать две задачи:
- обеспечение возможности развития САПР в части совершенствования методов моделирования объектов проектирования и расширения числа проектных процедур, основанных на формализованных методах;
- обеспечение возможности накопления и обмена опытом проектантов в единой вычислительной среде.

Эти задачи не могут решаться в среде экспертной системы, структуру которой мы рассмотрели. Ясно, что ее ориентация на обработку не формализуемых, эвристических данных, определяющая структуру и принципы функционирования, не позволяет использовать ее для обработки моделей объектов проектирования, построенных на строгой или даже приближенной математической основе.

ВЫВОДЫ

1. Основное свойство вычислительных систем, называемых экспертными - менять свою структуру и содержание в процессе функционирования - отвечает основному требованию, предъявляемому к САПР - возможности адаптироваться к характеру проектных работ. Принцип обучаемости эксперных систем за счет изменений структуры и содержания должен сочетаться с принципом неизменной совокупности формализованных процедур, на котором строятся
САПР с детерминированной структурой.
2. Реализация САПР, построенных на концепции развития с помощью проектантов, возможна на основе учета их мнений и опыта, накопленного в процессе проектных работ с применением технологических принципов, используемых при разработке экспертных систем. Способы учета экспертных оценок проектантов, методы сочетания формализуемых и эвристических алгоритмов связаны с предметной областью САПР в части моделирования объектов проектирования, организации диалога и принятия решений.
3. В зависимости от степени детализации описания объекта проектирования меняется сочетание эвристических и формализованных способов представления знаний. Чем выше иерархический уровень САПР, тем в большей мере необходимо использовать в качестве инструментальных средств вычислительные системы класса экспертных. На уровнях, допускающих строгую формализацию в модельном представлении объекта проектирования, структура программного обеспечения может выполняться на основе четких алгоритмов. Если объект проектирования не всегда имеет адекватное модельное представление на определенном иерархическим уровне, структура соответствующей САПР должна сочетать четкие и нечеткие алгоритмы.
4. Направления в разработке САПР:
- использование экспертных систем непосредственно для автоматизации проектных работ, не поддающихся формализованному описанию (как правило, на высших иерархических уровнях);
- использование отдельных структурных компонент экспертной системы для интеллектуализации САПР с целью обеспечения большей лояльности к пользователю;
- разработка САПР с экспертными компонентами на основе сочетания формализованных и эвристических представлений знаний с целью обеспечения их развития пользователями и экспертами без участия разработчиков САПР.

ЛЕКЦИЯ (10

Тема: ”Процесс проектирования технологических операций”

1. Классификация моделей объектов проектирования

ОБЪЕКТ инженерного проектирования - материальный объект искусственной природы, который должен быть создан для разрешения определенной проблемы, возникающей или выделенной в одном из фрагментов действительности.

В машиностроении в качестве объекта инженерного проектирования выступают технологические операции определенных классов.

Совокупность СВОЙСТВ объекта проектирования делится на внешние Y и внутренние Х свойства.

ВНЕШНИЕ свойства объекта проектирования разделяются на два подмножества:

- существенные (функциональные или свойства назначения) Yн, которые подлежат непосредственной реализации при использовании объекта по прямому назначению,

- утилитарные (нефункциональные) - Yу, присущие любому реальному объекту (объем, масса, стоимость и др.).

Справедливо соотношение: Y = Yн U Yу.

ВНУТРЕННИЕ свойства проектирования характеризуют физический, химический и др. процессы, а также техническую форму его реализации как принцип действия данного объекта проектирования.

МОДЕЛЬ ОБЪЕКТА M(О) - приближенное описание какого-либо класса явлений, выраженное с помощью математической символики.

Модели объектов проектирования классифицируют по ряду признаков:

- способу построения,

- степени полноты отображения рассматриваемых сторон объекта,

- степени общности в отношении к объекту,

- пригодности для целей прогнозирования,

- назначению.

Кратко рассмотрим каждую из групп моделей.

А. По способу построения различают модели семиотические (знаковые) и материальные (предметные ).

Семиотические модели предназначены для отображения с помощью знаков объектов различной природы, свойств этих объектов, а также различных отношений между объектами свойствами и значениями свойств.

Материальные (предметные) модели включают натурные (экспериментальные, лабораторные, опытные образцы объектов); геометрически подобные
(пространственные макеты); физически подобные (модели, обладающие механическим, кинематическим, динамическим и другими видами физического подобия с объектом); предметно-математические (созданными с помощью ЭВМ).

Б. По степени полноты отображения (представления) объекта модели могут быть полными - M(O); неполными (различной степени неполноты по содержанию или объему) - M'(O), M"(O),..., Mn (O).

B. По степени общности в отношении к оригиналу выделяют модели описания
Mo(O) (отображают характерные стороны объектов); модели-интерпретаторы
Mi(O) (представляют отдельные объекты, входящие в состав некоторого класса и учитывают особенности их частной реализации); модели - аналоги Ma(O)
(различные по форме представления, но равные между собой степени общности в отношении оригинала).

Г. По характеру воспроизводимых сторон объекта проектирования выделяют субстанциональные модели SbM(O) (характеризуют пространство возможных состояний объекта, примеры: справочники, описания типовых проектных решений, технологических операций); функциональные модели FnM(O) (в отличие от моделей SbM(O) характеризуют объект только в аспекте определенных его отношений со средой или другими объектами. Отображают поведение объекта, его приспособленность к определенным воздействиям); структурные модели StrM(O) (характеризуют внутреннюю организацию объектов); смешанные модели.

Д. По пригодности для целей прогнозирования модели относятся к пригодным и непригодным.

Е. По назначению модели могут быть целевыми и продуктивными.

Целевые модели Mц(O) призваны в явной форме отображать цель создания, назначение объекта проектирования.

Продуктивные модели Mпр(O), под ними понимается совокупность технической документации на объект.

2. Модельное представление технологических операций

По способу построения различают модели семиотические (знаковые) и материальные (предметные).

Семиотические модели предназначены для отображения с помощью знаков объектов различной природы, свойств этих объектов, а также различных отношений между объектами, свойствами и значениями свойств. Они делятся на языковые (логико-лингвистические - символьные структуры, входящие в некоторую систему, логико-математические - упорядоченные знаковые цепочки); неязыковые (наглядно-образные, например, схемы, эскизы, чертежи).

Материальные модели включают:

- натурные (экспериментальные, лабораторные, опытные образцы объектов);

- геометрически подобные (пространственные макеты );

- физически подобные (модели, обладающие механическим, кинематическим, динамическим и другими видами физического подобия с объектом;

- предметно-математические, созданные на базе ЭВМ и воспроизводящими объекты в определенном масштабе времени и реализующими подобие объектов.

Рассмотрим логико-математические модели.

Логико-математические модели любых объектов M(O) обычно определяются как множества (М1,M2,...,Mk) с заданными наборами отношений (r1,r2,...,rm).
При этом справедливо следующее выражение:

M (O) = .

(Под сигнатурой понимается набор идентификаторов (имен) отношений, входящих в состав модели, с указанием их арности.

Моделью Mk(О) в сигнатуре Om называют пару , где M = {Mik} - базовое множество модели, ( - инъективное отображение, которое сопоставляет каждое название (уникальное имя, идентификатор) с отношением Rn из сигнатуры Om.

В моделях технологических операций M(TO) будем квалифицировать множества (M1,M2,...,Mk) как базовые, если значения их элементов могут быть непосредственно интерпретированы как значения внешних или внутренних свойств технологических операций, значения свойств среды операции или свойств предметов последней.

Координатами элементов отношений (r1,r2,...,rm), входящих в M(TO), могут быть как элементы базовых множеств, так и элементы независимо определяемых, вложенных отношений.

Для описания схем связей координат в отношениях в M(TO), могут быть использованы передаточные функции, дифференциальные, разностные, регрессионные уравнения, табличные или словесные описания.

На рис.1. показан упрощенный образ реальных технологических операций.
В среде технологических операций, характеризуемой вектором Z, учитывать окрестностные условия Z0 и внешние условия Zy. Тогда справедливо выражение вида Z = Z0 ( Zy.

В окрестностных условиях среды технологических операций выделим:

- предметы (материалы, полуфабрикаты, заготовки), состояние которых характеризуется составом и значениями ряда свойств (в общем случае как внешних, так и внутренних) т.е. вектором Z(0; результаты технологических операций, состояние которых характеризуется вектором Z((0.

трудоемкости, материалоемкости, энергоемкости, фондоемкости операции);
Y((у - показатели степени экологической безопасности.

В качестве внутренних свойств технологической операции X будем рассматривать:

Рис.1.1. Наглядная модель технологической операции и ее среды.

Внешние условия среды, описываемые вектором Zy, отображают условия функционирования средств технологического оснащения (оборудования, оснастки), реализующего данную технологическую операцию, условия, в которых пребывают предметы и результаты технологических операций (температура, влажность, запыленность окружающей среды, квалификация рабочих), а также тип производства, в котором используется данная технологическая операция
(массовое, серийное, единичное, опытное).

В качестве внешних свойств технологических операций, характеризуемых вектором Y, выступают: а) свойства назначения или функциональные Yн, в числе которых Y(н - главное свойство - способность преобразовывать предметы технологической операции в ее результат, т.е. Y(н : Z(0 -> Z((0 ; Y((0 - параметры производительности технологической операции (оценивается показателями среднего значения и дисперсии процента выхода, цикла операции, ритма выпуска, такта выпуска, числа одновременно изготавливаемых единиц и др.). б) утилитарные свойства Yу, в числе которых Y(у параметры ресурсоемкости технологической операции синтезирован.

Известно, что Str-FnM(O) отображает внутренние свойства Х объекта на внешние Y (состав элементов объекта, состав и схему его внутренних связей, а также свойства этих элементов и связей на внешние свойства объекта.

Модель Str-FnMo(O) характеризует пространство возможных состояний объектов определенного класса в границах своей применимости для всех допускаемых данной моделью значений X и Y.

Решение задачи проектирования в данном случае заключается в формировании Str-FnMi(O) проектируемого объекта. Это сводится к выбору значений ряда параметров, которые являются наилучшими в смысле выполнения условий задача проектирования передвижения в пространстве допустимых значений параметров X и Y в

Str-FnMo(O).
Решение задачи проектирования при использовании представлений (оценивается показателями - параметры, характеризующие естественный процесс
(физический, химический, физико-химический) Xп и техническую форму или способ осуществления этого процесса Хф, выступающие в качестве принципа построения/действия данной технологической операции,

- режимы функционирования технологического оборудования X0, реализующие данную операцию.
При этом справедливо X = Xп ( Xф ( Xо.

В общем случае внутренние свойства технологических операций могут описываться в терминах, лишь косвенно характеризующих естественный процесс.

ФУНКЦИОНАЛЬНЫЕ модели ТO могут быть представлены описаниями базовых множеств, характеризующих важнейшие свойства предметов, результатов и самой технологической операции, а также описанием отношения отображения предмета ТО на ее результат в форме передаточной функции:

FnM (ТО) ( Y ( Z , y ( Yп, z ( Zо.

СТРУКТУРНЫЕ модели ТО представляются описаниями базовых множеств, характеризующих только выделяемые внутренние свойства операции X = Xп ( Xф
( Xо.

Для отображения взаимосвязи внутренних свойств ТО обычно используются термины и условные обозначения той предметной области, к которой относится естественный процесс, выступающий в качестве принципа действия или построения технологической операции.

ФУНКЦИОНАЛЬНО-СТРУКТУРНЫЕ модели ТО представляются описаниями базовых множеств. Они характеризуют важнейшие свойства результата, предметов, свойства назначения и выделяемые внутренние свойства самой ТО. Также используются табличные или словесные описания отношения соответствия
'результат - предметы ТО' паре 'естественный процесс - техническая форма реализации процесса ':

Fn - StrM (ТО) : Y х Z -> X, y ( Yн, z ( Zо, x ( Xп .

Cтруктурно-функциональные модели ТО представляются с помощью описаний базовых множеств, характеризующих все выделяемые внешние и внутренние свойства ТО, свойства ее результата, предметов, среды реализации, а также описаниями отображений внутренних свойств ТО, свойств предметов и внешних условий среды на внешние свойства ТО ее результата.

Обычно отношения, входящие в состав модели Str - FnM(ТО), представлены вектор - функциями, отображающими зависимость свойств:

- результата ТО Z"о от внутренних свойств ТО X, свойств предметов операций Z'о и внешних условий среды ТО Zу ;

- самой ТО Y = Yн ( Yу от внутренних свойств операции X = Xп U Xф U
Xо и свойств среды Z = Zо ( Zу ; тогда справедливо выражение:

Z"о = f(X, Z'о, Zу) ;

Str - FnM(ТО) = { Y = f(X, Z) ; z ( Z, y ( Y, x ( X.

Продуктивная модель ТО - операционная карта по ГОСТ ЕСТД.
3. Задача проектирования технологических операций в обобщенной постановке

Предварительно определим цель проектирования. Ее можно представить в следующем виде:

< Da, D*тр, Dусл > , где (1.1)
- Dа - предмет задачи проектирования,
- D*тр - желаемое состояние этого предмета,
- Dусл - условия, ограничения, которые должны быть выполнены в процессе перевода предмета задачи из его исходного состояния в требуемое.

По отношению к задаче проектирования компоненты интерпретируются следующим образом:
- Dа - заявка на объект проектирования. Эту заявку в задаче проектирования представляет целевая модель объекта проектирования - M(O)ц;
- D*тр - продукционная модель объекта проектирования;
- M(O)пр - комплект технической документации для изготовления или использования объекта в производственных условиях, которая отвечает требованиям определенных стандартов (ЕСКД, ЕСТД или др.);
- Dусл - условия реализации задачи или ограничения на временные, трудовые, материальные ресурсы Q, выделяемые для решения данной задачи проектирования.

Под ЗАДАЧЕЙ ПРОЕКТИРОВАНИЯ любых объектов, в том числе технологических операций, понимается задача построения модели объекта M(O)пр, для которого определена целевая модель M(О)ц и установлены условия или ресурсы решения задачи.
В обобщенной постановке задача проектирования может быть представлена в виде:

ЗП = < M(O)ц, M(O)пр, Q > = , M(О)пр, Q > ,
(1.2) где компоненты Z', Y', X', G являются в общем случае векторами.

Требования к функциональным свойствам объекта проектирования определены в форме модели Fn M (O) Yн ( Z.

Требования к условиям функционирования объекта проектирования Z' задаются допустимыми областями множества возможных состояний среды (внешних
Zy или окрестностных условий), а также продолжительностью функционирования
Yн".
Требования к свойствам объекта проектирования помимо Fn M (O) ограничивают: a) допустимую область множества возможных значений внешних свойств объекта проектирования Y' для всех z ( Z; b) допустимую область множества возможных значений внутренних свойств объекта Х' которые характеризуют принципы его действия.

Границы допустимой области множества значений свойств объекта X' часто определяются ресурсами, необходимыми для изготовления или использования объекта проектирования.

Условия решения задачи проектирования задаются допустимой областью значений ресурсов Q, выделенных для использования в процессе проектирования объекта. В качестве таких ресурсов обычно рассматриваются продолжительность решения, общая трудоемкость, полная стоимость решения задачи проектирования. При этом стоимость проектирования может выражаться не только в виде денежных расходов, но и в количестве дефицитных материалов, времени использования уникального оборудования и др.

Условия предпочтения в допустимой области множества возможных решений задачи проектирования определяются:
1. Критерием эффективности, функцией ценности или качества объектов G, которые обобщенно характеризуют данный объект проектирования, а также параметров функционирования (Y", X", Z").
2. Оценочной функцией M, которая соотносит внешние и внутренние свойства объекта проектирования при z ( Z с затратами (ресурсами), необходимыми для реализации процесса проектирования. В общем случае

M : (Y(Х(Z) ( Q, и оценочная функция M характеризует затраты, определяемые в виде различных ресурсов (временных, трудовых, материальных и т.п.), на создание объекта с данным набором свойств. Предпочтение может быть отдано проектному решению с таким набором внешних y (Yи внутренних x ( X свойств, реализуемых при z ( Z, что M ((у,(х,(z ) (
M ( y, x, z ) для всех допустимых y ( Y, x ( X, z ( Z.

Таким образом, все многообразие задач проектирования любых объектов проектирования сводится к двум: a) максимизировать эффективность G проектируемого объекта (допустимые затраты на процесс проектирования Q задаются в виде ограничений); b) минимизировать затраты Q (временные, трудовые, материальные), необходимые для реализации процесса проектирования (требования к внешним
Y, внутренним Х свойствам и условиям функционирования Z объекта проектирования задаются в виде ограничений).

4. Модель процесса проектирования технологических операций

Обычно при решении человеком той или иной задачи обращают внимание на умение найти такую ясную точку зрения, при которой ее решение является достаточно простым.

Один из путей построения такой "ясной точки зрения" на рассматриваемую задачу основан на использовании метода выбора представлений для решения задачи. Этот подход предполагает существование упорядоченного и относительно устойчивого отношения предпочтения между тем, что понимается под типами представлений для решения задач, с одной стороны, и классами
(наборами) методов решения задач, с другой.

Все множество представлений для решения задач инженерного проектирования может быть отнесено к трем основным типам:
- выбору из перечислений,
- определению в пространстве состояний,
- сведению задачи к подзадачам.

Рассмотрим каждый из типов представлений.
Использование представлений на основе выбора из перечислений возможно при наличии множества готовых, ранее спроектированных объектов (систем, устройств, сборочных единиц, технологических операций), описания которых в форме SbMi(O) или FnMi(O) доступны проектировщикам.

Решение задачи проектирования при использовании представлений по типу выбора из перечислений реализуется по следующей схеме:
- поиск или построение перечислений в виде упорядоченных множеств
{SbMi(O)}, {FnMi(O)} готовых проектных решений, соответствующих тем объектам, которые составляют предмет задачи проектирования;
- выделение на множествах потенциально возможных решений {SbMi(O)} или
{FnMi(O)} подмножества допустимых и целесообразных решений;
- выбор одного из ранее существовавших, готовых объектов в качестве наиболее предпочтительного решения данной задачи проектирования.

Существующие объекты представляют собой решения других, ранее поставленных задач проектирования с иными условиями реализации, ограничениями и др. Это позволяет предположить, что использование представлений на основе выбора из перечислений имеет приоритет в тех случаях, когда требования к свойствам объекта проектирования задаются в виде ограничений. При этом целевая ориентация задачи проектирования направлена на минимизацию временных, трудовых, материальных ресурсов, реализуемых в процессе создания нового изделия и (или) освоения его в производстве.

Представление на основе выбора из перечислений широко используется при решении задач проектирования объектов низких уровней : материал, деталь, простая сборочная единица, простая технологическая операция и цепочка технологических операций.

Использование представлений на основе определения в пространстве состояний предполагает наличие или возможность построения полной Str-
FnMo(O) объектов того класса, к которому может быть отнесен конкретный объект данной задачи проектирования, а также существование готовых ранее спроектированных компонентов и (или) элементов, из которых данный объект проектирования может быть по типу определения в пространстве состояний реализуется по следующей схеме:
- заимствование или построение множества моделей {Str-FnMo(O)}, которые потенциально пригодны для формирования частных Str-FnMi(O), отображающих отдельные структуры конкретного объекта;
- выбор или синтез полной, отображающей все выделяемые структуры, Str-
FnMo(O), наилучшей в смысле конкретного объекта, условий реализации и ограничений данной задачи проектирования;
- построение модели Str-FnMi(O) проектируемого объекта.

Использование представлений на основе сведения задачи к подзадачам предполагает разбиение задачи на совокупность подзадач. Их решение приводит к выполнению исходной задачи. Процесс этот применяют рекурсивно для порождения подзадач, до тех пор пока их решение не станет тривиальным.

Решение задачи проектирования в этом случае реализуется по следующей схеме:
- заимствование или построение множества моделей {Str-FnMo(O)}, потенциально пригодных для формирования Str-FnMi(O) конкретного объекта, составляющего предмет данной задачи проектирования (формирование множества возможных вариантов декомпозиции объекта проектирования на подобъекты);
- выбор модели Str-FnMo(O), наилучшей в смысле возможности построения соответствующей Str-FnMi(O) объекта данной задачи проектирования с учетом особенностей условий реализации задачи и ограничений;
- построение Str- FnMi(O) проектируемого объекта - параметризация, интерпретация Srt-FnMo(O), наилучшая в смысле условий данной задачи проектирования.

Представления на основе сведения задачи к подзадачам используются тогда, когда из-за высоких уровней сложности проектируемых объектов или из-за отсутствия необходимых методов и средств задача проектирования не может быть решена на основе других типов представлений. Они используются и в тех случаях, когда целевая ориентация задачи проектирования предполагает максимизацию степени использования готовых проектных решений.

Следует отметить, что в общем случае на разных стадиях решения каждой конкретной задачи проектирования могут использоваться различные типы представлений:
- на высшем уровне решение по типу сведения задачи к подзадачам;
- на уровне составных единиц - по типу определения в пространстве состояний;
- на уровне элементов - по типу выбора из перечислений и т.п.

При вариантном проектировании возможен "конкурс" типов представлений, когда одна и та же задача проектирования данного уровня решается параллельно, на основе различных типов представлений, а окончательный вывод варианта производится на уровне сопоставления результатов полученных решений.

Под ПРОЦЕССОМ РЕШЕНИЯ задачи проектирования будем понимать совокупность последовательно меняющихся состояний задачи, а значит, и моделей объекта проектирования.

Классификация моделей объекта проектирования позволяет отобразить предметную сторону структуры процесса проектирования (при реализации по одному варианту решения и рассмотрении в линейной проекции без учета возможных итераций).

В этом случае процесс проектирования может быть представлен в следующем виде:

M(TO)ц ( {Fn - StrM(O)} ( {StrMok (O)} ( {Str Mik(O)} (

( {Str - FnM (O)} ( Str - FnMi(O)G ( SbM'i(O) ( SbMi(O) ( M(O)пр.

-----------------------

Техническое задание

Документация на готовое изделие

Эксплуатация

Изготовление серийной продукции

Рабочий проект

Рабочее проектирование

Технический проект

Изготовление опытного образца

Техническое проектирование

Эскизный проект

Эскизное проектирование

Подготовительный этап

да

нет

да

да

нет

да

Формирование или корректировка ТЗ

Выполнены требования ТЗ

Изменять параметры элементов

Изменять структуру

Синтез варианта структуры

Изменение параметров X

АНАЛИЗ

нет

Выбор исходных значений параметров

IBM-370

DMS-2

DMS-2

DMS-2

DMS-2

. . .

. . .

УС

ГАП

МПК

ПК

ЕС

ПК

М

Т

ПК

Д

ГП

ГД

КЭВМ

МПК

Т

М

ПК

Д

ГП

ГД

КЭВМ

НМД

ОЗУ

НМЛ

РМ

РМ

К

А

Н

А

Л

Процессор мини-ЭВМ

Машинописные и перфоленточные устройства вывода

К

А

Н

А

Л

Другие ЭВМ

Другие САПР

Другие АРМ

Символьная печать

Функциональная клавиатура

Графопостроитель

Кодировщик

Графический дисплей

Символьный дисплей

Накопители на магнитных дисках

Процессор микро-ЭВМ

Накопители на магнитной ленте

Оперативное запоминающее устройство

АРМ1

АРМ3

АРМ2

б)

ЭВМ

РМ

РМ

РМ

а)

ЭВМ ЦВК

ГУС

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

...

в)

ЭВМ ЦВК

ГУС

ИУС

АПД

АРМ

ГУС

АПД

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

ИУС

АРМ

...

г)

а)

б)

. . . .

. . . .

|Тип |Номер узла |
|Номер узла |


0 2 3 31

a b

a b

c d

c d

a b

a b

c d

c d

a b

a b

c d

c d

a)

a b

a b

c d

c d

б)

Минимальный охватывающий прямоугольник

c

a

b

b’

d

yп

y

xл xа xп x

Тактирование

Распараллеливание

Смешанная

Конвеерная

Последовательная

Каскадная

Параллельная

Технических требований

Допусков

Параметров

Параметрическое

Структурное

Композиция

Декомпозиция

Параметричес-кий

Структурный

Идентификация

Преобразова-ние

Параметричес-кая

Структурная

Многовариант-ный

Одновариант-ный

Оптимизация

Синтез

Анализ

Алгоритмов

Параметров

Структуры

Проектные процедуры

Модель объекта проектирования

Модель подсистемы одной физической природы

Модель подсистемы одной физической природы

Модель компоненты

Модель компоненты

|Модель объекта |
|проектирования |
|Звено 1 | |
|Звено 2 | |
|. | |
|. | |
|. | |
|Звено N | |
|Макромоде| |
|ль 1 | |
|Макромоде| |
|ль 2 | |
|. | |
|. | |
|. | |
|Узел 1 | |
|Узел 2 | |
|. | |
|. | |
|. | |
|Назначени| |
|е | |


|Модель | |
|звена | |
|Имя | |
|Тип | |
|Парамет| |
|р 1 | |
|Парамет| |
|р 2 | |


|Макромо| |
|дель | |
|Имя | |
|Тип | |
|Парамет| |
|р 1 | |
|Парамет| |
|р 2 | |


|Модель | |
|узла | |
|Имя | |
|Тип | |
|Число | |
|входов | |

Имя модели

Тип

Параметр

Параметр

|Прототип |
|модели звена|
|Имя| |
|Тип| |
| | |

Лингвистический процессор

Подсистема логического вывода

Селектор

Интерпретатор

База знаний

Подсистема ревизии знаний

Рабочая память

Входное

сообщение

|Анализ сообщений |
|Морфологиче|Синтаксичес|Семантическ|
|ский |кий |ий |

Внутреннее представление

|Словарь |
|Аффик|Морфо|Синта|Семан|
|сы |ло-ги|к-сис|-тика|
| |я | | |


|Модель предметной|
|области |
|Структур|Структур|
|а данных|а правил|

Программа диалога

Выходящее сообщение

|Набор шаблонов |
|Шаблон входных |
|сообщений |


|Морфологичес|Семантико-си|
|кий |нтаксический|
|Синтез сообщений |


...

...

Рабочая память

Выбор

Сопоставление

Разрешение конфликтов

Изменение рабочей памяти

База знаний

Активный набор данных и правил

Конфликтный набор означенных правил (модулей)

Выбранный означенный модуль

Технологическая операция

Параметры, характеризующие естественный процесс, выбранный в качестве принципа построения или действия ТО, Хп

Параметры, характеризующие техническую форму реализации естественного процесса в ТО, Хф

Параметры средств технологического оснащения, Хо

Внутренние свойства ТО

Предмет ТО

Продукт ТО

Zy - условия функционирования ТО

Z(о - свойства предметов ТО

Z((о - свойства предметов ТО

Внешние свойства ТО Y = Yн ( Yу

Среда технологической операции Z = Zy ( Z(о ( Z((о


Похожие работы:

  1. • Системное автоматизированное проектирование
  2. • Разработка структуры автоматизированного рабочего ...
  3. • Организация конструкторской подготовки производства
  4. • САПР
  5. • САПР
  6. • Технология и оборудование литейного производства
  7. • Разработка 3D модели балки с применением "SolidWorks"
  8. • Совершенствование методов проектирования кораблей и ...
  9. • Компьютерная подготовка
  10. • Программные средства информационных систем управления ...
  11. • Автоматизированные информационные системы
  12. • Разработка технологического процесса изготовления детали с ...
  13. • Блочно-симметричные модели и методы проектирования ...
  14. • Базовые сведения о надежности информационных технологий ...
  15. • Моя профессиональная деятельность на инженерном уровне ...
  16. • Анализ системы автоматизации розничной торговли
  17. • Деятельность с ценными бумагами
  18. • Блок управления и контроля автоматизированного ...
  19. • Разработка технологического процесса детали "Шатун"
Рефетека ру refoteka@gmail.com