Рефетека.ру / Информатика и програм-ие

Реферат: Математическое программирование

Математическое программирование

1. Общая задача линейного программирования (ЗЛП):

[pic]
Здесь (1) называется системой ограничений , ее матрица имеет ранг r ( n,
(2) - функцией цели (целевой функцией). Неотрицательное решение (х10, x20,
... , xn0) системы (1) называется допустимым решением (планом) ЗЛП.
Допустимое решение называется оптимальным, если оно обращает целевую функцию (2) в min или max (оптимум).

2. Симплексная форма ЗЛП. Для решения ЗЛП симплекс - методом необходимо ее привести к определенной (симплексной) форме:

[pic](2`) f+cr+1xr+1 + ... + csxs + ... + cnxn = b0 ( min

Здесь считаем r < n (система имеет бесчисленное множество решений), случай r = n неинтересен: в этом случае система имеет единственное решение и если оно допустимое, то автоматически становится оптимальным.
В системе (1`) неизвестные х1, х2, ... , хr называются базисными
(каждое из них входит в одно и только одно уравнение с коэффициентом +1), остальные хr+1, ... , xn - свободными. Допустимое решение (1`) называется базисным (опорным планом), если все свободные неизвестные равны 0, а соответствующее ему значение целевой функции f(x10, ... , xr0,0, ... ,0) называется базисным.
В силу важности особенностей симплексной формы выразим их и словами: а) система (1`) удовлетворяет условиям :
1) все ограничения - в виде уравнений;
2) все свободные члены неотрицательны, т.е. bi ( 0;
3) имеет базисные неизвестные; б) целевая функция (2`) удовлетворяет условиям :
1) содержит только свободные неизвестные;
2) все члены перенесены влево, кроме свободного члена b0;
3) обязательна минимизация (случай max сводится к min по формуле max f = - min(-f)).

3) Матричная форма симплекс-метода. Симплексной форме ЗЛП соответствует симплекс - матрица :

1 0 ... 0 ... 0 a1,r+1 ... a1s ... a1n b1
0 1 ... 0 ... 0 a2,r+1 ... a2s ... a2n b2
.................................................................
0 0 ... 1 ... 0 ai,r+1 ... ais ... ain bi
.................................................................
0 0 ... 0 ... 1 ar,r+1 ... ars ... arn br

0 0 ... 0 ... 0 cr+1 ... cs ... cn b0

Заметим, что каждому базису (системе базисных неизвестных ) соответствует своя симплекс - матрица , базисное решение х =
(b1,b2, ... ,br, 0, ... ,0) и базисное значение целевой функции f(b1,b2,
... ,br, 0, ... ,0) = b0 (см. Последний столбец !).

Критерий оптимальности плана . Если в последней (целевой) строке симплекс- матрицы все элементы неположительны, без учета последнего b0, то соответствующий этой матрице план оптимален, т.е. сj ( 0 (j = r+1, n) => min f (b1, ... ,b2,0, ... ,0) = b0.
Критерий отсутствия оптимальности. Если в симплекс-матрице имеется столбец
(S-й), в котором последний элемент сs > 0, a все остальные элементы неположительны, то ЗЛП не имеет оптимального плана, т.е. сs > 0, ais ( 0
( i= 1,r ) => min f = -(.
Если в симплекс-матрице не выполняются оба критерия, то в поисках оптимума надо переходить к следующей матрице с помощью некоторого элемента ais > 0 и следующих преобразований (симплексных):
1) все элементы i-й строки делим на элемент a+is;
2) все элементы S-го столбца, кроме ais=1, заменяем нулями;
3) все остальные элементы матрицы преобразуем по правилу прямоугольника, что схематично показано на фрагменте матрицы и дано в формулах:

[pic] akl` = akbais - ailaks = akl - ailaks; ais ais

bk` = bkais - biaks; cl` = clais - csail ais ais


Определение. Элемент ais+ называется разрешающим, если преобразование матрицы с его помощью обеспечивает уменьшение (невозрастание) значения, целевой функции; строка и столбец, на пересечении которых находится разрешающий элемент, также называются разрешающими.
Критерий выбора разрешающего элемента. Если элемент ais+ удовлетворяет условию

bi = min bk ais0 aks0+

где s0 - номер выбранного разрешающего столбца, то он является разрешающим.

4. Алгоритм симплекс-метода (по минимизации).
5) систему ограничений и целевую функцию ЗЛП приводим к симплексной форме;
6) составим симплекс-матрицу из коэффициентов системы и целевой функции в симплексной форме;
7) проверка матрицы на выполнение критерия оптимальности; если он выполняется, то решение закончено;
8) при невыполнении критерия оптимальности проверяем выполнение критерия отсутствия оптимальности; в случае выполнения последнего решение закончено - нет оптимального плана;
9) в случае невыполнения обоих критериев находим разрешающий элемент для перехода к следующей матрице, для чего : а) выбираем разрешающий столбец по наибольшему из положи тельных элементов целевой строки; б) выбираем разрешающую строку по критерию выбора разрешающего элемента; на их пересечении находится разрешающий элемент;
6) c помощью разрешающего элемента и симплекс-преобразований переходим к следующей матрице;
7) вновь полученную симплекс-матрицу проверяем описанным выше способом (см. п. 3)

Через конечное число шагов, как правило получаем оптимальный план ЗЛП или его отсутствие

Замечания.
1) Если в разрешающей строке (столбце) имеется нуль, то в соответствующем ему столбце (строке) элементы остаются без изменения при симплекс- преобразованиях.
2) преобразования - вычисления удобно начинать с целевой строки; если при этом окажется, что выполняется критерий оптимальности, то можно ограничиться вычислением элементов последнего столбца.
3) при переходе от одной матрицы к другой свободные члены уравнений остаются неотрицательными; появление отрицатель ного члена сигнализирует о допущенной ошибке в предыдущих вычислениях.
4) правильность полученного ответа - оптимального плана - проверяется путем подстановки значений базисных неизвестных в целевую функцию; ответы должны совпасть.

5. Геометрическая интерпретация ЗЛП и графический метод решения (при двух неизвестных)

Система ограничений ЗЛП геометрически представляет собой многоугольник или многоугольную область как пересечение полуплоскостей - геометрических образов неравенств системы. Целевая функция f = c1x1 + c2x2 геометрически изображает семейство параллельных прямых, перпендикулярных вектору n
(с1,с2).
Теорема. При перемещении прямой целевой функции направлении вектора n значения целевой функции возрастают, в противоположном направлении - убывают.
На этих утверждениях основан графический метод решения ЗЛП.


6. Алгоритм графического метода решения ЗЛП.
7) В системе координат построить прямые по уравнениям, соответствующим каждому неравенству системы ограничений;
8) найти полуплоскости решения каждого неравенства системы (обозначить стрелками);
9) найти многоугольник (многоугольную область) решений системы ограничений как пересечение полуплоскостей;
10) построить вектор n (с1,с2) по коэффициентам целевой функции f = c1x1 + c2x2;
11) в семействе параллельных прямых целевой функции выделить одну, например, через начало координат;
12) перемещать прямую целевой функции параллельно самой себе по области решения, достигая max f при движении вектора n и min f при движении в противоположном направлении.
13) найти координаты точек max и min по чертежу и вычислить значения функции в этих точках (ответы).


Постановка транспортной задачи.
Приведем экономическую формулировку транспортной задачи по критерию стоимости:
Однородный груз, имеющийся в m пунктах отправления (производства) А1, А2,
..., Аm соответственно в количествах а1, а2, ..., аm единиц, требуется доставить в каждый из n пунктов назначения (потребления) В1, В2, ..., Вn соответственно в количествах b1, b2, ..., bn единиц. Стоимость перевозки
(тариф) единицы продукта из Ai в Bj известна для всех маршрутов AiBj и равна Cij (i=1,m; j=1,n). Требуется составить такой план перевозок, при котором весь груз из пунктов отправления вывозиться и запросы всех пунктов потребления удовлетворяются (закрытая модель), а суммарные транспортные расходы минимальны.
Условия задачи удобно располагать в таблицу, вписывая в клетки количество перевозимого груза из Ai в Bj груза Xij > 0, а в маленькие клетки - соответствующие тарифы Cij:
[pic]
Математическая модель транспортной задачи.
Из предыдущей таблицы легко усматривается и составляется математическая модель транспортной задачи для закрытой модели [pic]


Число r = m + n - 1, равное рангу системы (1), называется рангом транспортной задачи. Если число заполненных клеток (Xij № 0) в таблице равно r, то план называется невырожденным, а если это число меньше r, то план вырожденный - в этом случае в некоторые клетки вписывается столько нулей (условно заполненные клетки), чтобы общее число заполненных клеток было равно r.
Случай открытой модели даi № дbj легко сводится к закрытой модели путем введения фиктивного потребителя Bn+1 c потребностью bn+1=дai-дbj, либо - фиктивного поставщика Аm+1 c запасом am+1=дbj-дai ; при этом тарифы фиктивных участников принимаются равными 0.
Способы составления 1-таблицы (опорного плана).
Способ северо-западного угла (диагональный). Сущность способа заключается в том, что на каждом шаге заполняется левая верхняя клетка (северо-западная) оставшейся части таблицы, причем максимально возможным числом: либо полностью вывозиться груз из Аi, либо полностью удовлетворяется потребность
Bj. Процедура продолжается до тех пор, пока на каком-то шаге не исчерпаются запасы ai и не удовлетворяются потребности bj . В заключение проверяют, что найденные компоненты плана Xij удовлетворяют горизонтальным и вертикальным уравнениям и что выполняется условие невырожденности плана.
Способ наименьшего тарифа. Сущность способа в том, что на каждом шаге заполняется та клетка оставшейся части таблицы, которая имеет наименьший тариф; в случае наличия нескольких таких равных тарифов заполняется любая из них. В остальном действуют аналогично предыдущему способу.
Метод потенциалов решения транспортной задачи.
Определение: потенциалами решения называются числа ai®Ai, bj®Bj, удовлетворяющие условию ai+bj=Cij (*) для всех заполненных клеток (i,j).
Соотношения (*) определяют систему из m+n-1 линейных уравнений с m+n неизвестными, имеющую бесчисленное множество решений; для ее определенности одному неизвестному придают любое число (обычно a1=0), тогда все остальные неизвестные определяются однозначно.
Критерий оптимальности. Если известны потенциалы решения X0 транспортной задачи и для всех незаполненных клеток выполняются условия ai+bj Ј Ci j, то
X0 является оптимальным планом транспортной задачи.
Если план не оптимален, то необходимо перейти к следующему плану (таблице) так, чтобы транспортные расходы не увеличились.
Определение: циклом пересчета таблицы называется последовательность клеток, удовлетворяющая условиям: одна клетка пустая, все остальные занятые; любые две соседние клетки находятся в одной строке или в одном столбце; никакие 3 соседние клетки не могут быть в одной строке или в одном столбце
.
Пустой клетке присваивают знак « + », остальным - поочередно знаки « - » и
« + ».
Для перераспределения плана перевозок с помощью цикла перерасчета сначала находят незаполненную клетку (r, s), в которой ar+bs>Crs, и строят соответствующий цикл; затем в минусовых клетках находят число X=min{Xij}.
Далее составляют новую таблицу по следующему правилу: в плюсовые клетки добавляем X; из минусовых клеток отнимаем Х; все остальные клетки вне цикла остаются без изменения.
Получим новую таблицу, дающее новое решение X, такое, что f(X1) Ј f(X0); оно снова проверяется на оптимальность через конечное число шагов обязательно найдем оптимальный план транспортной задачи, ибо он всегда существует.


Алгоритм метода потенциалов. проверяем тип модели транспортной задачи и в случае открытой модели сводим ее к закрытой; находим опорный план перевозок путем составления 1-й таблицы одним из способов - северо-западного угла или наименьшего тарифа; проверяем план (таблицу) на удовлетворение системе уравнений и на невыражденность; в случае вырождения плана добавляем условно заполненные клетки с помощью « 0 »; проверяем опорный план на оптимальность, для чего: а) составляем систему уравнений потенциалов по заполненным клеткам; б) находим одно из ее решений при a1=0; в) находим суммы ai+bj=Cўij («косвенные тарифы») для всех пустых клеток; г) сравниваем косвенные тарифы с истинными: если косвенные тарифы не превосходят соответствующих истинных(Cўij Ј Cij) во всех пустых клетках, то план оптимален (критерий оптимальности). Решение закончено: ответ дается в виде плана перевозок последней таблицы и значения min f.

Если критерий оптимальности не выполняется, то переходим к следующему шагу.
Для перехода к следующей таблице (плану): а) выбираем одну из пустых клеток, где косвенный тариф больше истинного
(Cўij= ai+bj > Cij ); б) составляем цикл пересчета для этой клетки и расставляем знаки « + », « -
» в вершинах цикла путем их чередования, приписывая пустой клетке « + »; в) находим число перерасчета по циклу: число X=min{Xij}, где Xij - числа в заполненных клетках со знаком « - »; г) составляем новую таблицу, добавляя X в плюсовые клетки и отнимая X из минусовых клеток цикла
См. п. 3 и т.д.
Через конечное число шагов (циклов) обязательно приходим к ответу, ибо транспортная задача всегда имеет решение.

Похожие работы:

  1. • Задачи математического программирования
  2. • Математическое программирование
  3. • Математические программирование
  4. • Математическое программирование
  5. • Математическое программирование
  6. • Линейная алгебра и математическое программирование
  7. • Математическое программирование
  8. • Математическое программирование и моделирование в ...
  9. • Линейное программирование как метод оптимизации
  10. • Практикум по решению линейных задач математического ...
  11. • Решение задачи линейного программирования графическим ...
  12. • Применение линейного программирования для решения ...
  13. • Стохастическое программирование
  14. • Задача линейного программирования
  15. • Решение оптимизационной задачи линейного программирования
  16. • Решение задач линейного программирования симплекс ...
  17. • Линейное программирование
  18. • Математические методы в решении экономических задач
  19. • Решения задач линейного программирования ...
Рефетека ру refoteka@gmail.com