- Итак, вы хотите знать, каков простой и ясный ответ на Великий Вопрос Жизни,Вселенной и всего остального? вопросил Проницательный Интеллектоматик.
-Да! Немедленно!-воскликнули инженеры.
-Сорок два,с беспредельным спокойствием сообщил компьютер.
(Дуглас Адаме, Руководство для путешествующих автостопом по галактике)
Существует целый класс задач, которые состоят в описании поведения сложных систем, при решении которых изучение поведения отдельных элементов системы не позволяет эффективно описать процессы, идущие в системе на макроуровне. Речь в данном случае идет о процессах самоорганизации, хаотическому возникновению в различных средах упорядоченных структур за счет подвода к ним энергии.
С другой стороны, хотя подобные системы имеют совершенно различную природу, число математических моделей, которые используются для описания процессов в них невелико. То есть, там, где присутствует упорядоченность, внутренняя сложность макросистем не проявляется, они ведут себя схожим образом. Собственно синергетика занимается поиском и изучением моделей сложных систем, вопросами возникновения порядка из хаоса и перехода от упорядоченных структур к хаотическим.
В качестве примеров самоорганизующихся систем можно назвать поток жидкости, который по мере увеличения скорости перестает быть ламинарным, в нем образуются сложные упорядоченные структуры. При дальнейшем увеличении скорости течения выделить упорядоченность становится все сложнее и поток приобретает хаотичный вид. К сложным самоорганизующимся системам относятся живые организмы любого уровня, от клеток до социумов. В неживом мире примеры самоорганизации также можно найти везде, вплоть до крупномасштабного строения вселенной [15]...
Последние несколько десятилетий развития физики показали, что упорядоченность образуется в открытых системах (обменивающихся веществом и энергией с окружающей средой), находящихся в неравновесном состоянии. Такие системы обычно оказываются неустойчивыми, не всегда возвращаются к начальному состоянию. Им свойственно наличие бифуркационных точек, где нельзя однозначно предсказать дальнейшую эволюцию системы. При этом малое воздействие на систему может привести к значительным непредсказуемым последствиям (к раскрытию неустойчивости). В открытых системах, далеких от равновесия, возникают эффекты согласования, когда элементы системы кореллируют свое поведение на макроскопических расстояниях через макроскопические интервалы времени. В результате согласованного взаимодействия происходят процессы возникновения из хаоса определенных структур, их усложнения.
Собственно синергетика возникла из объединения трех направлений исследований: разработки методов описания существенно неравновесных структур, разработки термодинамики открытых систем и определения качественных изменений решений нелинейных дифференциальных уравнений.
Открытые системы, в которых наблюдается прирост энтропии, называют диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного хаотического движения, в тепло. Если замкнутая система (гамильтонова система), выведенная из состояния равновесия, всегда стремится вновь придти к максимуму энтропии, то в открытой системе отток энтропии может уравновесить ее рост в самой системе и есть вероятность возникновения стационарного состояния. Если же отток энтропии превысит ее внутренний рост, то возникают и разрастаются до макроскопического уровня крупномасштабные флюктуации, а при определенных условиях в системе начинают происходить самоорганизационные процессы, создание упорядоченных структур.
При изучении систем, их часто описывают системой дифференциальных уравнений. Представление решения этих уравнений как движения некоторой точки в пространстве с размерностью, равной числу переменных называют фазовыми траекториями системы. Поведение фазовой траектории в смысле устойчивости показывает, что существует несколько основных его типов, когда все решения системы в конечном счете сосредотачиваются на некотором подмножестве. Такое подмножество называется аттрактором. Аттрактор имеет область притяжения, множество начальных точек, таких, что при увеличении времени все фазовые траектории, начавшиеся в них стремяся именно к этому аттрактору. Основными типами аттракторов являются устойчивые предельные точки, устойчивые циклы (траектория стремится к некоторой замкнутой кривой) и торы (к поверхности которых приближается траектория). Движение точки в таких случаях имеет периодический или квазипериодический характер. Существуют также характерные только для диссипативных систем так называемые странные аттракторы, которые, в отличие от обычных не являются подмногообразиями фазового пространства (не вда-ваясь в подробности, замечу, что точка, цикл, тор, гипертор - являются) и движение точки на них является неустойчивым, любые две траектории на нем всегда расходятся, малое изменение начальных данных приводит к различным путям развития. Иными словами, динамика систем со странными аттракторами является хаотической.
Уравнения, обладающие странными аттракторами вовсе не являются экзотическими. В качестве примера такой системы можно назвать систему Лоренца, полученную из уравнений гидродинамики в задаче о термоконвекции подогреваемого снизу слоя жидкости.
Замечательным является строение странных аттракторов. Их уникальным свойством является скейлинговая структура или масштабная самоповторяемость. Это означает, что увеличивая участок аттрактора, содержащий бесконечное количество кривых, можно убедиться в его подобии крупномасштабному представлению части аттрактора. Объекты, обладающие способностью бесконечно повторять собственную струкуру на микроуровне называются фракталами.
Для динамических систем, зависящих от некоторого параметра, характерно, как правило, плавное изменение характера поведения при изменении параметра. Однако для параметра может иметься некоторое критическое (бифуркационное) значение, при переходе через которое аттрактор претерпевает качественную перестройку и, соответственно, резко меняется динамика систе-мы, например, теряется устойчивость. Потеря устойчивости происходит, как правило, переходом от точки устойчивости к устойчивому циклу (мягкая потеря устойчивости), выход траектории с устойчивого положения (жесткая потеря устойчивости), рождение циклов с удвоенным периодом. При дальнейшем изменении параметра возможно возникновение торов и далее странных аттракторов, то есть хаотических процессов.
Здесь надо оговорить, что в специальном смысле этого слова хаос означает нерегулярное движение, описываемое детерминистическими уравнениями. Нерегулярное движение подразумевает невозможность его описания суммой гармонических движений.
В системах, рассмотренных выше, предполагалась ограниченность числа фазовых переменных. Однако более близкими к реальности являются распределенные системы с бесконечномерным фазовым пространством, типичным примером которых являются активные среды. Исследования показывают, что в этих системах могут существовать конечномерные аттракторы. Существование бесконечномерных аттракторов еще не изучено.
До пятидесятых годов нашего века считалось, что в реакциях неорганических компонентов периодические явления наблюдаться не могут, хотя первые сведения о наблюдении таких реакций датируются концом XIX века. Современный этап в исследовании колебательных химических реакций начался со случайного открытия, сделанного в 1958 году Б. П. Белоусовым, который заметил, что если растворить лимонную и серную кислоты в воде вместе с броматом и солью церия, то окраска смеси изменяется периодически от бесцветной до бледно-желтой. Систематическое исследование этой реакции провел через несколько лет А. М. Жаботинский. Он же отметил возникновение в ходе этой реакции различных упорядоченных структур. Сразу после этого было создано множество вариантов реакции с более быстрыми и более медленными осцилляциями. Однако детальное изучение глубинных механизмов реакции было проведено только в семидесятых годах авторами работы [19].
Интересно рассмотреть типы регулярных структур, возникающих во время реакции. Наиболее простыми из них являются ведущие центры, спонтанно возникающие точки, из которых исходят концентрические волны. Природа таких центров до конца не изучена, но так как в ходе экспериментов такие центры имели тенденцию к появлению в одном и том же месте, можно сказать, что их вызывают посторонние примеси в растворе, в окрестностях которых элементы среды переходят в автоколебательный режим.
Нередко в среде можно обнаружить или вызвать возникновение спиральных волн. Все спиральные волны имеют одну частоту, центр спирали может перемещаться. Эксперименты на клеточных автоматах показали, что причиной появления спиральной волны может являться разрыв сложного фронта волны возбуждения, их существование является исключительно свойством самоорганизации среды и не связано с внешними воздействиями. Перемещение центра спиральной волны тоже является замечательным свойством, так как является резонансом волны с некоторым внешним периодическим воздействием.
Описанные структуры способны взаимодействовать. В исследованиях отмечены эффекты подавления одного ведущего центра другим, более высокочастотным. Неподвижные спиральные волны способны к сосуществованию, с другой стороны, можно создать две перемещающиеся спиральные волны, которые при столкновении саннигилируют. Такие взаимодействия позволяют говорить о построении на базе структур активных сред логических элементов (описанный пример представляет собой элемент исключающее или , сигнал на выходе присутствует тогда и только тогда, когда есть сигнал только на одном из входов).
На практике также была доказана возможность хаотического поведения реакции Белоусова-Жаботинского, когда появление и поведение структур не подчинялось никакому гармоническому закону, т.е. у системы появлялась физическая реализация странного аттрактора.
Колебательные процессы в химических реакциях вероятно являются ключом к разгадке некоторых свойств живых существ:сложных биологических часов, транскрипции ДНК, процессов в мускулах.
Классическое уравнение гидродинамики - уравнение Навье-Стокса - представляет поток жидкости как сумму движущихся частиц. Однако такой подход применим, только если речь идет о ламинарном потоке. По мере увеличения скорости потока в жидкости сначала появляются устойчивые вихри. Их число незначительно а расположение и скорость постоянно (вырожденная турбулентность). При дальнейшем росте скорости число вихрей растет, они начинают перемещаться, образуя повторяющуюся картину (частично упорядоченная турбулентность). Наконец, стройная картина рушится, уступая место хаотической смеси вихрей.
Ведущая роль в анализе перехода течения жидкости с турбулентное состояние принадлежит О. Рейнольдсу. До него были установлены эмпирические закономерности для различных случаев, но именно Рейнольдс обнаружил, что возникновение турбулентности связано с превышением скоростью потока некоторой критической величины. Ему удалось вывести соотношение, связывающий радиус трубы, скорость течения и вязкость жидкости, которое дает универсальный критерий перехода в турбулентную фазу. Однако теоретически обосновать его значение Рейнольдс не смог. Проявление турбулентности, как изменения макроскопической вязкости жидкости связанной с явлениями перемешивания, турбулентной диффузии было математически описано Прандтлем и, позднее. Карманом. Они сформулировали понятие подобия пульсации скорости. Дальнейшее развитие теории турбулентности было сделано Колмогоровым, описавшим закон распределения энергии по пульсациям потока.
Численное решение произвольных задач с турбулентными потоками на базе уравнений Навье-Стокса и Рейнольдса имеющимися в настоящее время вычислительными средствами не представляется возможным. Помимо этого, есть вероятность, что упрощения, сделанные при выводе этих уравнений, а именно игнорирование слабых взаимодействий между группами атомов, может сделать такую методику неприменимой, так как именно эти детали могут быть критическими при описании сложных потоков.
Удачным походом в данном случае может быть статистическое описание движения. Для это строятся функции корреляции значений скорости различных рангов. Такие функции, будучи весьма обобщенной моделью системы, нечувствительны к начальным данным и дают удовлетворительное соответствие макроскопическому поведению системы. Основной проблемой статистической гидромеханики является построение конечной цепочки корреляционных функций, обнаружения внутренних взаимозависимостей законов распределения и изменения скоростей.
В статистической гидромеханике на первом месте стоит изучение поведения структур, возникающих в пограничном слое. Именно структура потока в этом слое определяет величину вязких сил, действующих на поверхность обтекаемого тела и поэтому основными приложениями теории стали практические задачи, возникающие при конструировании летательных аппаратов и скоростных судов.
При изучении форм растущих в условиях неоднородностей кристаллов было замечено, что их структура фрактальна, т.е. повторяется на разных уровнях масштаба. Причины, по которым возникает такая упорядоченность в деталях неизвестны.
Говоря о процессе осаждения частиц при электролизе, Л. Сандер [13] предположил, что появление скейлинговой регулярности может быть связано с тем, что вероятность прилипания частицы к выпуклому участку поверхности выше, чем вероятность ее проникновения во впадины. Таким образом, стимулируется развитие отростков. Однако процесс является неустойчивым и на отростках в свою очередь появляются зародыши роста боковых ответвлений. Таким образом, взаимодействие стохастических процессов и процессов роста приводит к образованию огромного диапазона различных узоров.
В пользу такой теории говорит поразительное соответствие между компьютерной моделью диффузного роста кристаллов и реальными природными образованиями.
Фрактальная структура свойственна не только кристаллам. Похожую форму имеют пальцы, образующиеся при взаимодействии двух жидкостей различной вязкости, например, между водой и нефтью. Совершенно иную природу но похожий вид имеет электрический разряд в газе. Сандер предполагает, что такой подход к описанию возникновения фрактальных структур может быть применен для объяснения биологических объектов, коралловых рифов, ветвления сосудов кровеносной системы.
Человеческий мозг - это гигантская сеть из десятков миллиардов нервных клеток, связанных между собой отростками (дендритами и аксонами). Благодаря работам нейрофизиологов достаточно хорошо известен механизм действия отдельного нейрона. Отвлекаясь от быстрых переходных процессов, можно сказать, что нервная клетка способна находиться в одном из трех дискретных состояний: покое, возбуждении и невозбудимости (рефрактерности). Переходы между состояниями управляются как процессами внутри самой клетки, так и электрическими сигналами, поступающими к ней по отросткам от других нейронов. Переход от состояния покоя к возбуждению происходит пороговым образом при почти одновременном поступлении достаточно большого числа импульсных сигналов возбуждения. Оказавшись в возбужденном состоянии, нейрон находится в нем в течение определенного времени, а потом самостоятельно переходит к состоянию рефрактерности. Это состояние характеризуется очень высоким порогом возбуждения: нейрон практически не способен реагировать на приходящие к нему сигналы возбуждения. Через некоторое время способность к возбуждению восстанавливается и нейрон возвращается в состояние покоя.
Кроме устройства отдельной нервной клетки относительно хорошо изучены глобальные аспекты деятельности мозга - назначение его отдельных областей, связи между ними. Однако попытки описать работу мозга с позиций текущих принципов функ-ционирования вычислительных устройств с линейной организацией вычислений приводят к фантастическим цифрам скорости передачи информации. Несколько ближе оказываются распределенные вычислительные сети, но они и построены на дискретных принципах, в то время как мозг использует аналоговую обработку.
Непрекращающиеся попытки построить подобные мозгу вычислительные системы привели к идее использования нечеткой логики. Большие надежды связаны с нанотехнологиями и молекулярными компьютерами, что требует нового взгляда на проблему обеспечения надежности, так как вероятность прекращения функционирования отдельного элемента достаточно высока. Видимо и программирование такого компьютера будет отличаться от традиционного подхода, возможно более напоминая процесс тренировки/обучения.
В качестве модели таких устройств сейчас рассматриваются клеточные автоматы. Ими обычно называют сети из элементов, меняющих свое состояние в дискретные моменты времени по определенному закону, в зависимости от того, каким было состояние самого элемента и его ближайших соседей по сети в предыдущий дискретный момент времени.
Самым известным клеточным автоматом является игра Жизнь. Здесь сеть представляет собой двумерную или трехмерную решетку элементов, каждый из которых может иметь два состояния: жив или мертв. Смерть, жизнь или оживление клетки определяется количеством живых соседей: в пустоте или при перенаселенности клетка гибнет, в некотором диапазоне числа соседей продолжает жить, такое же число может воспроизвести новую клетку. Более сложные автоматы могут иметь большее количество состояний элементов, элементы могут быть подвержены случайным возмущениям и т. п. По своему поведению клеточные автоматы делятся на четыре класса. К первому классу относятся автоматы, приходящие через определенное время к устойчивому однородному состоянию. Автоматы второго класса через некоторое время после пуска генерируют стационарные или периодические во времени структуры.
В автоматах третьего класса по прошествии некоторого времени перестает наблюдаться корреляция процесса с начальными условиями. Наконец, поведение автоматов четвертого класса сильно определяется начальными условиями и с их помощью можно генерировать весьма различные шаблоны поведения. Такие автоматы являются кандидатами на прототип клеточной вычислительной машины. В частности, с помощью специфических клеточных конфигураций игры Жизнь, которая как раз и является автоматом четвертого типа, можно построить все дискретные элементы цифрового компьютера.
Клеточные автоматы используются для моделирования гидродинамических течений, так как уравнения гидродинамики соответствуют математической модели, описывающей поведение решетчатого газа, одного из клеточных автоматов, на макроуровне. Структуры, возникающие в игре Жизнь , очень точно повторяют возмущение поведение поверхности потока жидкости механическим препятствием. Примитивные одномерные клеточные автоматы мо-гут моделировать процесс горения различного характера.
Такие автоматы используются для моделирования поведения во времени и пространстве популяций живых организмов. Чтобы пояснить, о чем идет речь, опишем автомат Aquatorus , предложенный Аланом Дьюдни [2]. Здесь элементами автомата являются не просто участки среды, а объекты различных типов, способные перемещаться в среде и взаимодействовать между собой. В автомате Дьюдни таких типов два: акулы и рыбы. Некоторый временной параметр задает период, после которого у объектов каждого типа возникает потомство, т.е. новый объект того же типа. Еще один параметр задает время жизни объектов каждого типа, причем для акул он меньше, но последние могут продлить свое существование, поглотив объект типа рыба .
При достаточно большом размере виртуальной среды, не представляет большой сложности подобрать вышеназванные параметры таким образом, чтобы система существовала достаточно долго. При этом количество рыб и акул будет испытывать колебания, но не упадет до нуля. Наблюдения за мо-делью показали, что возникновение упорядоченности в характере распределения объектов разных классов по среде, как правило, приводило к гибели одной из популяций.
Как отмечает Дьюдни, статистические данные по колебанию числа особей каждого вида намного лучше описывают встречающиеся в природе изменения количества хищников и жертв, чем решение уравнений аналитической модели.
Существует масса приложений, требующих реализации эффективной системы распознавания образов. Один из возможных путей ее создания - построение динамической системы, аттракторами которой в ее конфигурационном пространстве были бы типичные картины-образы. Начальные условия всегда окажутся в области притяжения одной из картин, с течением времени система трансформирует начальные параметры, приведя их к наиболее близкой структуре-аттрактору. То есть произойдет автоматическое распознавание образа.
Теоретическая модель подобной динамической системы была предложена Дж. Хопфилдом и названа спиновым стеклом. Спиновое стекло состоит из набора элементов, каждый из которых обладает положительным или отрицательным спином. Задается некоторая матрица попарных взаимодействий элементов, определяющая суммарную энергию взаимодействующих спинов. Со временем состояние элементов меняется таким образом, чтобы понизить полную энергию системы.
Оказывается, матрица взаимодействий может быть записана таким образом, чтобы соответствовать состояниям с минимумом энергии для нескольких картин состояния элементов. При этом некоторое начальное состояние элементов со временем сэволюционирует в ближайшее с минимумом энергии, или, что то же самое, в наиболее похожее, запрограммированное в матрице. Собственно в этом и состоит процесс распознавания образов. На спиновых матрицах можно построить и обучающиеся системы. В них элементы матрицы взаимодействия имеют состояние программирования, когда их значение меняется по определенному закону, учитывающему демонстрируемый образ, то есть текущее состояние спиновых элементов.
Недостаток такой схемы системы распознавания образов состоит в невозможности анализа закономерностей во входных данных. Его лишены так называемые персептроны, принцип действия которых описан далее. Персептрон имеет сетчатку, т.е. набор клеток, принимающих входной образ. Помимо сетчатки в персептроне присутствуют элементы (надо заметить, что их количество превышает число клеток сетчатки), анализирующие состояние определенного подмножества клеток сетчатки. Выходной сигнал такого элемента передается на следующий логический уровень. Выходной сигнал является положительной реакцией на появление во вверенной такому элементу части сетчатки одного из заданных образов. В конце концов, сигналы поступают на центральный анализатор, который умножает их на соответствующие весовые коэффициенты, складывает их и оценивает уровень результата на предмет превышения им некоторого заданного порога.
Возможно построить прибор, обнаруживающий некоторые несложные зависимости в демонстрируемых образах, типа наличия линий определенной ориентации, геометрических фигур и т.п. Персептроны также могут иметь механизм обучения.
Необходимо заметить, что на описанных в этом параграфе принципах строятся практические (и коммерческие!) реализации электронных схем распознавания образов.
Часто в различных сферах деятельности возникают задачи нахождения оптимального варианта из неограниченного числа возможных. Точного решения, как правило, не требуется, но дискретный компьютер не способен эффективно дать даже приблизительно оптимальный результат. Рассмотрим в качестве элементарного примера задачу о прокладке трубопровода между двумя населенными пунктами, причем стоимость прокладки зависит от территории, по которой пройдет трасса, а целевой функцией является максимальная дешевизна работы.
Для ее решения существует оригинальная модель аналогового компьютера, представляющая собой два листа некоторого материала, изображающие территорию строительства, соединенных двумя шпильками, в местах, соответствующим населенным пунктам. Расстояние между листами неравномерно по всей поверхности и моделирует распределение стоимости прокладки на данном участке местности. Прибор опускается в мыльный раствор и образовавшаяся пленка, автоматически придя к состоянию с наименьшей энергией, ляжет на линии одного из наиболее оптимальных маршрута.
В серьезных задачах пользуются описанным в предыдущем параграфе спиновым полем. В частности, для задач поиска разбиения графа на группы с минимальным числом связей между ними, для спиновой сетки задается матрица связей со значениями О или 1 для несвязанных и связанных элементов соответственно. Суть решения сводится к переходу в состояние с минимумом энергии. Отличие от системы распознавания образов состоит в подборе функции энергетических переходов элементов. Функция должна позволять элементу переходить вверх по поверхности потенциальной энергии, чтобы обеспечить возможность прохождения локального минимума. Проблема решается введением вероятностного алгоритма переходов, т.е. переход с приростом энергии возможен, но с вероятностью, обратно пропорциональной этому приросту.
Представим себе клеточный автомат, для клеток которого дополнительным условием выживания является выработка некоторой последовательности выходных данных (назовем ее условно реакцией) в ответ на последовательность входных данных (являющейся свойством среды, раздражение), предсказывающая следующее состояние среды. Чтобы такой автомат функционировал, добавляется также механизм случайного изменения правил выработки реакции (мутации) и передачи вновь возникающим клеткам информации о правилах реагирования соседей (наследования). Помимо исследования условий развития моделей живых систем, такой подход позволяет решать и некоторые практические задачи, в частности поиск кратчайшего пути на графе. Структура графа кодируется некоторым образом в хромосомах клеток. Предполагается, что алгоритмы, приобретенные вследствие мутаций и наследования, будут соответствовать решениям задачи.
Иллюзия того, что процессы, происходящие в природе, можно моделировать и предсказывать чисто детерминистическими методами постепенно развеялась, когда стало ясно, что вычислительные средства в обозримом будущем не смогут достичь необходимой мощности и что точность имеющихся моделей недостаточна для объяснения макроскопических процессов. Наступил кризис парадигмы.
Синергетика предлагает вместо аналитических построений заняться поиском общих закономерностей в разнообразных явлениях. Об успехе такого подхода свидетельствует то, что дисциплина, возникшая как отрасль физики, теперь находит свои приложения в биологии, социологии, психологии, изучении развития науки и философии вообще. Говорят о применении синергетики в теории искусства. Итак, уже можно сказать о появлении жизнеспособной новой парадигмы. Ей еще нет полувека, но результаты исследований, основанных на ней уже приносят практическую пользу.
Отдельно необходимо отметить приложения различных отраслей синергетики в компьютерной технике и информатике. Их можно видеть на каждом шагу: устройства управления температурными режимами, автофокусировка оптических устройств, системы автоматического распознавания текста.
Изучение структур и свойств фракталов неожиданно привело к появлению нового направления в изобразительном искусстве, сложность и естественность этих структур оказались необыкновенно эстетически привлекательны.
1. В. Васильев, Ю, Романовский, В. Яхно, Автоволновые процессы , М. Наука, 1987
2. А. Дьюдни, Акулы и рыбы в компьютерной модели // В мире науки 2 1985 г.
3. А. Дьюдни, Исследование генетических алгоритмов // В мире науки 1 1986 г.
4. А. Дьюдни, Недостатки электронного глаза // В мире науки 11 1984 г.
5. А. Дьюдни, Об аналоговых компьютерах // В мире науки 8 1984 г.
6. А. Дьюдни, Построение одномерных компьютеров // В мире науки 7 1985 г.
7. А. Дьюдни, Странная привлекательность хаоса// В мире науки 9 1987 г.
8. А. Дьюдни, Трехмерные версии игры Жизнь // В мире науки 4 1987 г.
9. В. Коротков, Развитие концепции ноосферы на основе парадигмы синергетики
10. Дж. Кратчфилд, Дж. Фармер, Н. Паккард, Р. Шоу Хаос // В мире науки, 2 1997 г.
11. А. Лоскутов, А. Михайлов, Введение в синергетику, М, Наука, 1990
12. Новое в синергетике: загадки мира неравновесных структур , М. Наука, 1996
13. Л. Сандер, Фрактальный рост // В мире науки 3 1987 г.
14. Дж. Силк, А. Салаи, Крупномасштабная структура вселенной // В мире науки 12 1983 г.
15. Дж. Уолкер, Восстанавливающиеся фазы // В мире науки 7 1987 г.
16. Г. Хакен, Синергетика, М. Мир , 1980
17. Б. Хейес, Клеточный автомат // В мире науки 5 1984 г.
18. У. Хиллис, Коммутационная машина// В мире науки 8 1987 г.
19. И. Эпстэйн, К. Кастин, П. Кеппер, М. Орбан, Колебательные химические реакции // В мире науки 5 1983 г.
Для подготовки данной работы были использованы материалы с сайта http://www.mediaterra.ru/