Рефетека.ру / Математика

Реферат: Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

Интеграл по комплексной переменной.
Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно- гладкая кривая С длиной ?, используя параметрическое задание кривой С зададим ?(t) и ? (t), где ? и ? являются кусочно-гладкими кривыми от действительной переменной t. Пусть ? 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек ? i , то этот предел называется интегралом от функции f (? ) по кривой С.
[pic] (2) f (?i* ) = u (Pi*) + iv (Pi*) (3) где ?? i = ?? (t) + i??(t) (? (t) и ?(t) - действительные числа)
Подставив (3) в (1) получим :

(4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при ?? и ??
> 0 и предполагая, что данные пределы существуют, получаем :

(5)

Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (? ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :

О ограниченности интеграла.
При этом z = ? (? ).

7.) Пусть Cp – окружность радиуса ?, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : ? = Z0 + ??ei?, 0
? ? ? 2?, d? = i??ei? d? .
Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.

ТЕОРЕМА КОШИ.
В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :
Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1- го порядка непрерывны в G, то имеет место формула Грина:

( 8 )

ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G
, равен нулю.
Доказательство : из формулы (5) следует:
Т.к. f(? ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-
Римана. Используя свойство криволинейных интегралов:
Аналогично :
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :

ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(?) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.

TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
Пусть f (?) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (?) непрерывна в замкнутой области G, тогда :

, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn.
Причем обход кривой С осуществляется в положительном направлении.

Неопределенный интеграл.
Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим: интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция
Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф' (Z) = f( Z).
Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

( 9)


Это аналог формулы Ньютона-Лейбница.

Интеграл Коши. Вывод формулы Коши.
Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.
Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию ? (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур ? с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и ?. Согласно теореме Коши имеем :

По свойствам интегралов :

(2 )
Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве ? окружность ?? с радиусом ? . Тогда:

(3)

Уравнение окружности ?? : ? = Z0 + ?ei? (4)
Подставив (4) в (3) получим :

( 5 )

( 6 )

(7)


Устремим ??> 0, т.е. ?> 0.
Тогда т.к. функция f(?) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех ?>0 существует ?>0, что для всех ? из ?–окрестности точки Z0 выполняется | f(?) – f(Z0) | < ?.

(8)


Подставив ( 7) в ( 6) с учетом ( 8) получаем :
Подставляя в ( 5) и выражая f(Z0) имеем :

(9)

Это интеграл Коши.
Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(?) в некоторой точке Z0 через ее значение на произвольном контуре
? , лежащем в области аналитичности функции f(?) и содержащем точку Z0 внутри.
Очевидно, что если бы функция f(?) была аналитична и в точках контура С, то в качестве границы ? в формуле (9) можно было использовать контур С.
Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.

Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :
При Z0 ? Г указанный интеграл не существует.

Интегралы, зависящие от параметра.

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2- х комплексных переменных : переменной интегрирования ? и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.
Пусть задана функция двух комплексных переменных ? (Z, ? ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. ?= ?+ i? ?
С. (С - граница G).
Взаимное расположение области и кривой произвольно. Пусть функция ? (Z, ? ) удовлетворяет условиям : 1) Функция для всех значений ? ? С является аналитической в области G. 2) Функция ? (Z, ? ) и ее производная ??/?? являются непрерывными функциями по совокупности переменных Z и ? при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :
Интеграл существует и является функцией комплексной переменной. Справедлива формула :

[pic] (2)

Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :


(3)

С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен
0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.

Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными
(до n-го порядка ), то существует разложение этой функции в ряд Тейлора :
[pic]
Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:
[pic] (2) – разложение в ряд Тейлора.

Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 | ? .

Формулы ЭЙЛЕРА.
Применим разложение (3) положив, что Z = ix и Z= - ix;
[pic]
[pic]
[pic] (6)
Аналогично взяв Z = - ix получим :
[pic] (7)
Из (6) и (7) можно выразить т.н. формулы Эйлера :
[pic] (8)
В общем случае :
[pic] (9)
Известно, что :
[pic] (10)
Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:
[pic]

Ряд ЛОРАНА.
Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.
ТЕОРЕМА 1.
[pic]
Однозначная функция f(Z) аналитическая в круге радиусом |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z0.
Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.
Возьмем в круге радиуса r точку Z, а на границе области точку ? , тогда f(z) будет аналитична внутри круга с радиусом r и на его границе.
Выполняется условие для существования интеграла Коши :
[pic]

(13)
[pic] (11)
Поскольку
[pic], то выражение [pic] можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем [pic], т.е. :
[pic][pic]
[pic] (12)
Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на
1/(2?i) и интегрируя по L при фиксированном Z, получим : слева интеграл
(13) который равен f (Z), а справа будет сумма интегралов :
[pic]

Обозначая [pic], получим : [pic] (14)
Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что [pic]

(15)

ТЕОРЕМА 2.
Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :
[pic]
(16) где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить [pic] (17) , получим :
[pic] (18)

ТЕОРЕМА 3.
Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |

Рефетека ру refoteka@gmail.com