Рефетека.ру / Геология

Реферат: Термометрия

МОСКОВСКАЯ  

 ГОСУДАРСТВЕННАЯ    ГЕОЛОГОРАЗВЕДОЧНАЯ 

  АКАДЕМИЯ

РЕФЕРАТ: По курсу  ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ ТЕМА: ТЕРМОМЕТРИЯ

Выполнил:

 Студент группы РФ–00–2

Азизов М. А.

Руководитель:

 Профессор Демура Г. В.

МОСКВА 2000 ВВЕДЕНИЕ

Геофизические исследования при контроле разработки месторождений существенно отличаются от геофизических работ, проводимых в бурящихся необсаженных скважинах. Обусловлено это тем , что при контроле исследуются различные категории скважин при различных режимах их работы , используются различные технологии исследований и, наконец , часто каждая обсаженная скважина , как объект измерений , требует , индивидуального подхода как к методике , так и к интерпретации полученных данных. Тогда как при исследовании необсаженных скважин и интерпретации результатов их исследования чаще всего используются типовые шаблоны, стандарты.

Сегодня, когда реальная ситуация в отрасли такова, что объемы бурения падают, значимость геофизического контроля за разработкой месторождений для снижения темпов падения добычи и ее последующей стабилизации существенно возрастает.

В контроле за разработкой выделяют три основных направления: изучение процесса выработки  запасов залежей нефти, оценка эффективности применения различных методов повышения коэффициента нефтеизвлечения, диагностика состояния нефтяных пластов и скважин.

Наибольший объем исследований в производстве выполняется для решения задач, связанных с диагностикой пластов и скважин.

Задачи диагностики нефтяных пластов и скважин.

В направлении диагностики состояния нефтяных пластов и скважин выделяют три группы задач.

1. Определение эксплуатационных характеристик продуктивного пласта.

- определение интервалов потока и поглощения жидкости ;

- определение мест притока нефти , воды и газа;

- определение продуктивности пласта и расхода флюида;

- определение энергетических параметров пласта .

2. Контроль технического состояния скважины.

                         

- определение мест нарушения герметичности обсадной колонны и забоя скважины ;

- выявление межпластовых заколонных перетоков в скважине;

- исследование интервалов перфорации обсадных скважин.

3. Контроль за работой насосно-подъемного оборудования.

- определение статического и динамического уровня жидкости и нефтеводораздела в межтрубном пространстве

- определение местоположения и режима работы глубинных насосов

- определение герметичности насосно-компрессорных труб

- определение мест положения и  работы мандрелей.

-

Геофизические методы, применяемые для диагностики скважин и пластов.

Задачи диагностики решаются при установившихся и неустановившихся режимах работы скважины. В общем случае диагностика скважин и пластов осуществляется методами термометрии, расходометрии, влагометрии, резистивиметрии, плотнометрии, барометрии и шумометрии. Опыт показывает, что наиболее информативным методом при решении задач диагностики является термометрия. Однако, термометрия (по сравнению с другими геофизическими методами) является и наиболее сложным (в методическом плане) методом.

Термометрия.  Выделение работающих (отдающих и принимающих) пластов; выявление заколонных перетоков снизу и сверху ; выявление внутриколонных перетоков между пластами; определение мест негерметичности обсадной колонны, НКТ и забоя скважины; определение нефте –газо- водопритоков; выявление обводненных пластов; определение динамического уровня жидкости и нефте- водораздела в межтрубном пространстве; контроль работы и местоположения глубинного насоса; определение местоположения мандрелей и низа НКТ; оценка расхода жидкости в скважине, оценка Рпл и Рнас ;определение Тзаб и Тпл ; контроль за перфорацией колонны, контроль за гидроразрывом пласта.      

Особенности термометрии при решении задач  диагностики

Основным параметром, который измеряется и несет информационную нагрузку в методе термометрии, является температура. Температура – это энергетический параметр системы , и поэтому любое изменение системы вследствие изменения режима работы скважины, уменьшения или увеличения давления , промывки, нарушения целостности колонны и т.п. приводит к изменению температуры (распределения температуры) в скважине. Система скважина-пласт в этом отношении является очень чувствительной системой, т.к. на практике используются термометры с высокой разрешающей способностью.

Диагностика осуществляется в течение всей “жизни” скважины: при заканчивании, эксплуатации и ремонте. При этом скважины подразделяют по типам (категориям) в соответствии с режимом работы, способом эксплуатации , конструкцией и т.д. С точки зрения методических особенностей решения задач скважины можно классифицировать следующим образом : простаивающие, действующие, осваиваемые.

Диагностика скважин в различные периоды “жизни” (заканчивание, эксплуатация, ремонт) имеет свои особенности. Они сводятся к тому, что решение задачи осуществляется при различных режимах работы скважин и, следовательно , при установившихся ,квазистационарных, неустановившихся и переходных температурных полях в скважинах.

Тепловое поле инерционно: для расформирования теплового возмущения в скважине требуется время, определяемое теплофизическими свойствами системы, длительностью возмущения и применяемой аппаратурой. Поэтому следующая особенность связана с тем, что (при измерениях) в различные периоды “жизни” скважины на термограммах может отражаться тепловая история скважины. Так, при освоении после бурения могут наблюдаться тепловые аномалии, связанные с бурением, цементажом, перфорацией и т.д.; в ремонте могут наблюдаться аномалии, обусловленные эксплуатацией.

Задачи необходимо решать в длительное время работающих скважинах при быстроменяющихся процессах, связанных с кратковременностью работы скважины, и в длительное время простаивающих скважинах. Поэтому, при разработке методики исследований необходимо учитывать особенность, связанную с временным фактором .

Принятая на предприятиях технология освоения связана с применением компрессора. При вызове притока флюида компрессором создаются переменные давления в скважине. Здесь можно выделить режим, связанный с репрессией, а затем , после прорыва воздуха, режим с депрессией на пласт, т.е. сочетание режимов нагнетания и отбора. Для  освоения в скважину предварительно спускают НКТ, через которые можно проводить исследования. Необходимость решения задач в интервалах, перекрытых НКТ, возникает в нагнетательных скважинах ив скважинах ЭЦН.

Изменение давления в системе можно наблюдать не только при освоении, но и в длительное время работающих скважинах. Отличия могут быть в скоростях (темпах) изменения давления, что необходимо учитывать. В действующих скважинах изменение давления и системы в целом наблюдается при кратковременной их остановке, а затем при пуске. При стравливании избыточного давления (разрядке) в межтрубном пространстве перед исследованием насосных скважин происходит относительно быстрое изменение давления в системе.

Освоение характеризуется кратковременным пуском скважины. Как правило, скважина перед освоением промывается, и чаще  всего,  пресной или опресненной водой. В таких условиях , если из осваиваемого пласта поступает более минерализованная вода, в зумпфе скважин существуют условия для возникновения гравитационной конвекции. Кроме того, промывка, в зависимости от ее длительности, сама нарушает тепловое поле в скважине.

Ряд месторождений характеризуется высоким значением давления насыщения нефти газом. Это приводит к тому, что при эксплуатации скважины работают с забойными давлениями ниже давления насыщения. В таких условиях в скважине наблюдаются многофазные потоки (нефть, газ, вода). При освоении скважин многофазные потоки могут , очевидно, возникать и при более низких давлениях насыщения, поскольку забойное давление здесь определяется глубиной спуска НКТ и может быть еще ниже.

Различие пластовых давлений при одновременно вскрытых нескольких объектах, высокая обводненность скважин при низких дебитах- это условия, которые также необходимо учитывать при температурной диагностике, поскольку они могут отражаться на тепловом поле скважины.

Еще одна особенность, которую надо учитывать при термических исследованиях, связана с инерционностью термометра. В случае высоковязкой нефти, грязи на стенках скважины, наличии осадка в зумпфе инерционность прибора может меняться существенно, что, в свою очередь, сильно искажает температурную картину. С другой стороны инерционность определяет скорость регистрации. В любом случае она ограничена. При быстроменяющихся переходных процессах в скважине конечная скорость регистрации температуры так же может приводить  к искажению регистрируемых  термограмм.

Таким образом, существует многообразие факторов, влияющих на распределение температуры в скважине. Для достоверного решения задач важно знать эти факторы и особенности их проявления в конкретных ситуациях.

Основными эффектами, обуславливающими температурное поле в пласте и в скважине, являются: эффект Джоуля-Томсона, адиабатический, баротермический, смешивания и теплоты разгазирования. Решение практических задач базируется на анализе формы температурной кривой и величины температурной аномалии. Последняя  (аномалия), в свою очередь, выделяется на основе сопоставления зарегистрированной термограммы с геотермической (базовой). Характер изменения формы величины и знака температурной аномалии во времени определяется так же путем сопоставления термограмм, зарегистрированных в различные моменты времени ( или при различных режимах работы скважины). 

Заключение

Выбранный метод термометрии хорош тем, что для решения задач в скважинах эксплуатационного фонда проще, надежнее и достовернее метода на сегодняшний день не существует.

 


Похожие работы:

  1. • Бураковско-Аганозёрский расслоенный массив Заонежья
  2. • Термометрия - понятие и принципы
  3. • Распределение температуры по стволу скважины с целью ...
  4. • Цикл усовершенствования "сестринская помощь"
  5. • Комплект лабораторного оборудования для углубленного ...
  6. • Геофизические методы исследования горизонтальных ...
  7. • Інтраопераційна профілактика ускладнень хірургічного ...
  8. • Танатология
  9. • Пропедевтика
  10. • Діагностика та хірургічне лікування гострої непрохідності ...
  11. • Практические навыки ветеринарного специалиста
  12. • Методы исследования больных с заболеваниями ...
  13. • Мероприятия по ликвидации и профилактике парвовирусного ...
  14. • Пропедевтика внутренних болезней
  15. • Клиническая термография
  16. • Полное клиническое исследование животного
  17. • Гипотония преджелудков у крупного рогатого скота
  18. • Заболевания периферических вен
  19. • Чума собак
Рефетека ру refoteka@gmail.com