Исходные данные
параметры после кола | параметры перед турбиной | в конденсаторе | температура питательной воды | ||
9,5 | 540 | 9 | 530 | 30 | 240 |
- относительный внутренний КПД турбины.
- относительный внутренний КПД насоса.
- механический КПД.
- КПД парового котла.
- КПД электрического генератора.
- низшая теплота сгорания топлива.
Для питательной воды нагрев в каждом из регенеративных подогревателей
Параметры в характерных точках
2 | 3 | ||||||
9,5 | 9 | 0,0030 | 0,0030 | 0,0030 | 9,5 | 9,5 | |
540 | 530 | 24,08 | 24,08 | 24,08 | 24,249 | 24,512 | |
813,15 | 803,15 | 297,23 | 297,23 | 297,23 | 297,399 | 297,662 | |
3482,1 | 3462,451 | 2003,605 | 100,99 | 2222,43 | 110,479 | 111,533 | |
6,7563 | 6,7555 | 6,7555 | 0,3543 | 7,4917 | 0,3543 | 0,3580 | |
- | - | 0,7785 | 0 | 0,8680 | - | - |
Точка :
Точка :
Определим число подогревателей в данном цикле:
При принимаем число подогревателей 7.
Схема установки.
На 1-6 подогревателях нагрев происходит на 300С, а в 7 на 35,488.
Параметры точек цикла
9,5 | 60 | 333,15 | 259,107 | 0,8262 | ||
9,5 | 90 | 363,15 | 384,272 | 1,1859 | ||
9,5 | 120 | 393,15 | 510,346 | 1,5195 | ||
9,5 | 150 | 423,15 | 637,869 | 1,8320 | ||
9,5 | 180 | 453,15 | 767,550 | 2,1281 | ||
9,5 | 210 | 483,15 | 900,443 | 2,4120 | ||
9,5 | 240 | 513,15 | 1038,232 | 2,6886 | ||
11 | 0,02504 | 65 | 338,15 | 272,079 | 0,8935 | |
12 | 0,08461 | 95 | 368,15 | 398,019 | 1,2502 | |
13 | 0,23222 | 125 | 398,15 | 525,062 | 1,5815 | |
14 | 0,54342 | 155 | 428,15 | 653,877 | 1,8926 | |
15 | 1,12327 | 185 | 458,15 | 785,324 | 2,1878 | |
16 | 2,10555 | 215 | 488,15 | 920,609 | 2,4714 | |
17 | 3,65091 | 245 | 518,15 | 1061,491 | 2,7477 | |
18 | 0,02504 | 65 | 338,15 | 2254,298 | 6,7555 | 0,8451 |
2435,521 | 7,2914 | 0,9224 | ||||
19 | 0,08461 | 95 | 368,15 | 2424,812 | 6,7555 | 0,8930 |
2580,461 | 7,1783 | 0,9616 | ||||
20 | 0,23222 | 125 | 398,15 | 2585,092 | 6,7555 | 0,9415 |
2716,696 | 7,0860 | 1 | ||||
21 | 0,54342 | 155 | 428,15 | 2735,931 | 6,7555 | 0,9924 |
242,963 | 516,113 | 2944,909 | 7,2036 | |||
22 | 1,12327 | 185 | 458,15 | 2882,072 | 6,7555 | |
263,683 | 536,833 | 2969,131 | 6,9238 | |||
23 | 2,10555 | 215 | 488,15 | 3029,707 | 6,7555 | |
331,902 | 605,052 | 3094,621 | 6,8654 | |||
24 | 3,65091 | 245 | 518,15 | 3177,510 | 6,7555 | |
399,916 | 673,066 | 3220,252 | 6,8199 |
Точка :
Точка :
Точка :
Точка :
Точка :
Точка :
Точка :
Энергетический баланс:
Находим теплоту, подведённую в паровой котёл к рабочему телу:
Учитывая КПД парового котла, определяем теплоту, первоначально внесённую в установку за счёт сгорания топлива:
Здесь - испарительная способность топлива, ; - расход топлива, .
Определяем значение , которым будет удобно пользоваться при дальнейших вычислениях:
Потеря теплоты при горении топлива:
Потеря теплоты трубопроводами на пути от парового котла до турбины:
Механические потери работы на трение в подшипниках турбины:
Работа на муфте электрогенератора:
Электрические потери в электрогенераторе:
Работа на клеммах электрогенератора:
Подсчитаем КПД установки (брутто) на клеммах электрогенератора:
Энергетический метод:
Параметры окружающей среды:
Прирост энергии в паровом котле:
Уменьшение энергии в трубопроводе:
Уменьшение энергии в конденсаторе:
Увеличение энергии в подогревателях по воде:
подогреватель.
подогреватель.
подогреватель.
подогреватель.
подогреватель.
подогреватель.
подогреватель.
Уменьшение энергии в подогревателях по пару:
подогреватель.
подогреватель.
Подогреватель.
подогреватель.
подогреватель.
подогреватель.
подогреватель.
Теперь сводим энергетический баланс для тех узлов установки, в которых происходит изменения состояния рабочего тела.
Увеличение энергии, |
Уменьшение энергии, |
||
в насосе | 6,27996 | в трубопроводе | 19,41688 |
в парогенераторе | 1263,6279 | в проточной части турбины | 1187,3421 |
в подогревателях по воде | 209,0656 | в конденсаторе | 33,50615 |
в подогревателях по пару | 238,8638 | ||
Итого: | 1478,9735 | 1479,1289 |
Невязка баланса составляет 0,1554%
Вычисляем энергетические КПД узлов.
Энергетический КПД парового котла:
Энергетический КПД трубопровода:
Энергетический КПД турбины:
Энергетический КПД конденсатора:
Энергия, отданная конденсирующимся влажным паром в конденсаторе, равна:
Это составляет от теплоты в конденсаторе.
Энергетический КПД питательного насоса:
Энергетический КПД процессов отвода в окружающую среду теплоты трения и теплоты, выделившейся в генераторе, равны: .
Энергетический КПД конденсатора не учитывается
Определим энергетические потери и коэффициенты энергетических потерь
Потери энергии в паровом котле:
Потери энергии в трубопроводе:
Потери энергии в турбине:
Потери энергии в конденсаторе:
Потери энергии в питательном насосе:
Потери энергии на трение в подшипниках турбины:
Потери в электрогенераторе:
Потери в подогревателях:
подогреватель.
подогреватель.
подогреватель.
подогреватель.
подогреватель.
Коэффициент энергетических потерь для всёй установки равен сумме таких же коэффициентов для отдельных узлов:
температура энергия конденсатор давление
Как видно, оказался практически равным КПД (брутто) для всёй установки.
Существенных результатов можно достигнуть путем уменьшения разности температур продуктов сгорания топлива в паровом котле и рабочего тела. Уменьшение этой разности температур можно добиться 2 путями: или уменьшением температуры продуктов сгорания в топке котла, или увеличением средней температуры рабочего тела в процессе подвода теплоты. При уменьшении температуры сгорания в котле потеря энергии снижается, но на такое же значение снизится и энергия потока теплоты. Значительные потери энергии в турбине (уменьшение может быть достигнуто за счет улучшения проточной части и механических элементов) и в конденсаторе.
Потери в паропроводе и насосе малы. Уменьшение потерь энергии в конденсаторе можно добиться за счет уменьшения разности температур конденсирующегося пара и охлаждающей воды путем снижения давления в конденсаторе. КПД подсчитанные разными способами не равны, но отличаются на очень маленькое значение, это может быть связано с неточность измерений, упрощенной схемой и тем, что цикл является необратимым (потери энергии неизбежны).