Рефетека.ру / Коммуникации и связь

Реферат: Фазові кутові моноімпульсні системи

1. Фазовий кутовий пеленгатор


У оглядових моноімпульсних системах із фазовою пеленгацiєю напрямок на ціль визначається порівнянням фаз сигналів, прийнятих двома рознесеними на відстань l антенами А1 і А2 (рис. 1). Оскільки відстань від цілі до антен значно більше базової відстані l між антенами, то прийняті від відповідача сигнали практично однакові за амплітудою, але різняться за фазою на Дш. Різниця фаз Дш визначається різницею відстаней DS від цілі до антен А1 і А2, де розмір DS є, у свою чергу, функцією кутового відхилення цілі DjЦ від РСН


Фазові кутові моноімпульсні системи.


Отже


Фазові кутові моноімпульсні системи, (1)


де l – довжина хвилі сигналу відповіді.

Оскільки кути DjЦ зазвичай не перевищують двох-трьох градусів, то Фазові кутові моноімпульсні системи.

Звідси


Фазові кутові моноімпульсні системи


або в градусах


Фазові кутові моноімпульсні системи.

Фазові кутові моноімпульсні системи


На рис. 2 показані графіки цієї залежності для чотирьох випадків, коли відносні значення антенної бази l/l дорівнюють 5, 10, 20 і 40. Крутизна відповідних характеристик, тобто


Фазові кутові моноімпульсні системи


дорівнює, відповідно, 31, 62, 124 і 248.


Таким чином, чим більше відносне рознесення антен А1 і А2, тим із більшою точністю можна визначати кутове положення цілі відносно РСН антени.

Здобуття інформації, яка міститься у різниці фаз прийнятих сигналів, провадиться за допомогою найпростішого кутового дискримінатора – фазового детектора (ФД). Якщо характеристика ФД описується виразом


Фазові кутові моноімпульсні системи,


де U – відносне значення амплітуди сигналу на його виході, а Dy – різниця фаз сигналів, що надходять до ФД, то вираз (1) прийме вигляд


Фазові кутові моноімпульсні системи . (2)


Звідси


Фазові кутові моноімпульсні системи . (3)


Відповідні графіки для чотирьох співвідношень l/l наведені на рис. 3.

Однозначне визначення DjЦ у функції амплітуди сигналу U на виході ФД можливе лише в тому випадку, коли різниця фаз сигналів Dy лежить у межах ±90°. Таким чином граничні однозначні значення кутів Dj°Ц ГРАН будуть згідно з рівнянням (1) визначатися виразом


Фазові кутові моноімпульсні системи.


Фазові кутові моноімпульсні системи


Для зазначених вище співвідношень l/l (5, 10, 20 і 40) граничні значення кутових відхилень Dj°Ц ГРАН, що можуть бути визначені за допомогою фазового пеленгатора і ФД, складуть, відповідно, ±2,68°, ±1,48°, ±0,72° і ±0,36°, але з огляду на значне падіння на ділянках 0,8 < UВІДН < 0,9 і – 0,9 < UВІДН < – 0,8 (рис. 3) крутизни характеристик UВІДН = f(DjЦ) реальні граничні значення DjЦ орієнтовно дорівнюватимуть ±1,64°; ±0,41° і ±0,21°.

Розглянемо деякі питання практичної реалізації фазових пеленгаторів.

У фазовому пеленгаторі антенна система має сформувати дві ідентичні ДН, рівносигнальні напрямки яких строго паралельні, а фазові центри рознесені на відстань l відносно один одного. Ширина ДН кожної з антен A1 і A2 згідно з рекомендаціями ICAO не повинна перевищувати 3°. Ця вимога обумовлена необхідністю зменшення кількості ПС, що одночасно потрапляють у промінь антени, тобто відповідають одночасно на запити, передані ВРЛ. Крім того, з вузькими ДН антен радіолокаторів поліпшуються енергетичні показники їхніх передавачів.

У фазових пеленгаторах ДН можуть формуватися дзеркальними антенами або антенними ґратками. У випадку застосування дзеркальних антен виконати таку антену з одним відбивачем і двома рознесеними на достатньо велику відстань опромінювачами неможливо. Сформовані такою антеною ДН виявляються неідентичними, а РСН – непаралельними. Отже, антенна система такого пеленгатора повинна складатися з двох самостійних дзеркальних антен, розміщених на обертовій балці і рознесених, як мінімум, на відстань поземного розкриву (діаметра) їхніх дзеркал.

Поземний розкрив дзеркала кожної з антен може бути визначений із таких міркувань.

Ширина ДН параболічних антен на рівні половинної потужності (Dj°А) в градусах визначається за формулою


Фазові кутові моноімпульсні системи,


де R – радіус розкриву антени; l – довжина хвилі; f – фокусна відстань параболічного дзеркала; a=0,5 для площини Е, яка збігається з площиною поляризації випромінюваної або прийнятої хвилі, і а=0,2 для площини Н, перпендикулярної до площини Е.

Для ВРЛ, які задовольняють вимоги ICAO, сигнали відповіді передаються на частоті 1090 МГц із прямовисною поляризацією. Отже, обраний коефіцієнт а дорівнює 0,2, а l=27,5 см. З практичних міркувань для отримання задовільної форми ДН краще використовувати довгофокусні антени. Тому обираємо f = 3 м. Тоді для DjА°=2,5° отримуємо радіус R = 3,7 м, тобто відстань l між антенами А1 і А2 буде не меншою 7,4 м. За графіками на рис. 10 і за формулою (3), у якій значення U обирається 0,9, визначаємо граничне значення кутової поправки Dj°ц ГРАН однозначного визначення азимутального положення цілі. Отримуємо Фазові кутові моноімпульсні системи

Якщо ширина ДН Фазові кутові моноімпульсні системи°, сигнал відповіді може прийти під будь-яким кутом у межах цієї діаграми, але такий обмежений діапазон визначення азимута цілі є неприпустимим.

У тих випадках, коли як фазовий кутовий пеленгатор використовуються антенні ґратки, поземний розмір однієї антени за тих самих вихідних вимог до ДН і рівня бокових пелюсток може становити 5…8,5 м. Для граничного випадку, коли поземний розмір антенних ґраток дорівнює 5 м, діапазон однозначного визначення азимута цілі буде дещо більшим Фазові кутові моноімпульсні системи, але і він є неприпустимим.

Зазначений вище головний недолік фазового пеленгатора, а також деякі інші недоліки, як наприклад, конструкційні труднощі реалізації двоантенної системи, вимоги високої фазової стабільності каналів, відсутність єдиного каналу відповідей, за яким приймається додаткова інформація, труднощі в реалізації систем придушення сигналів бокових пелюсток ДН антен за запитом і відповіддю та ін. призвели до того, що на цей час у вторинних оглядових радіолокаторах фазовий принцип побудови пеленгаторів не використовується. Це саме зауваження стосується і комбінованих кутових пеленгаторів.


2. Фазовий кутовий дискримінатор


Головним недоліком амплітудних кутових дискримінаторів є необхідність точного узгодження амплітудних характеристик сумарного і різницевого каналів. Для такого узгодження необхідне застосування ряду додаткових заходів, що ускладнюють просту, на перший погляд, структуру дискримінатора. Для радикального зменшення впливу неузгодженості амплітудних характеристик і коефіцієнтів передачі каналів приймачів використовують метод, заснований на застосуванні сумарно-різницевих фазових кутових дискримінантів, або, як їх іноді називають, фазових дискримінаторів. Суть цього методу полягає в тому, що амплітудні співвідношення вхідних сигналів US і UD перетворюються у фазові співвідношення сигналів r+ і r-, отриманих векторними додаванням і відніманням вхідних сигналів. Отримані у такий спосіб сумарні і різницеві сигнали перетворюються в сигнали проміжної частоти, підсилюються й обмежуються за амплітудою. Остання операція провадиться для того, щоб надалі за оберненого перетворення фазових співвідношень сигналів в амплітудні, що провадиться ФД, результат перетворення залежав би тільки від співвідношення фаз сигналів, які надходять на ФД, і не залежав від коефіцієнтів передачі сумарного і різницевого каналів приймачів. Отримана у такий спосіб пеленгаційна характеристика в результаті буде функцією співвідношення амплітуд сигналів US і UD, прийнятих сумарною і різницевою ДН антени, а проміжне перетворення амплітудних співвідношень сигналів у фазові необхідно лише для зменшення впливу амплітудних характеристик каналів приймача на результат зміни напрямку на ціль Djц° щодо миттєвого азимутального положення осі антени цА. Це ілюструється рис. 4 і рис. 5, на яких зображена спрощена функціональна схема фазового кутового дискримінатора і векторні діаграми сигналів у різних точках цієї функціональної схеми.


Наведемо опис роботи фазового дискримінатора.

На вхід дискримінатора надходять сигнали, прийняті сумарною і різницевою ДН пеленгатора і позначені на функціональній схемі і векторних діаграмах як е і ∆ (точки 1 і 2 на функціональній схемі). На векторних діаграмах показаний випадок, коли обидва сигнали попередньо фазовані і сумарний сигнал е більше різницевого ∆. Ці сигнали перетворяться у векторну суму е + i∆ і векторну різницю е − i∆ цих сигналів. Перетворення здійснюється сумарно-різницевим перетворювачем П i фазообертачем Фазові кутові моноімпульсні системи, що виконує операцію множення на – i. Множення на i відповідає повороту фази вектора на +90˚, множення на – i – повороту фази вектора на -90˚. Перетворення провадиться на високій частоті за допомогою пасивних елементів. За такі елементи можуть бути використані кільцеві хвилеводні або смужкові мости, подвійні хвилеводні трійники і хвилеводні або смужкові фазообертачі.

Після перетворювачів високочастотні сигнали е+i∆ і е-i∆ надходять на змішувачі і далі у вигляді сигналів проміжної частоти, що зберігають усі фазові співвідношення високочастотних сигналів, підсилюються й обмежуються за амплітудою. Після обмеження всі сигнали, незалежно від того, на якій відстані від радіолокаційної позиції знаходиться ПС, матимуть однакову амплітуду, а інформація про те, наскільки напрямок на ПС відрізняється від напрямку осі ДН, утримуватиметься в межах кута б, оскільки згідно з векторними діаграмами, наведеними на рис. 5, Фазові кутові моноімпульсні системи.

Сигнали е+i∆ і е− i∆, позначені після обмеження як r+ і r-, подаються на ФД, нормована характеристика якого описана функцією синуса різниці фаз сигналів, що надходять на його входи, тобто для аналізованого випадку


Фазові кутові моноімпульсні системи. (4)


Напруга на виході ФД несе інформацію не тільки про кутове відношення цілі від напрямку осі антени jа, але і про знак цього відхилення. Дійсно, з векторних діаграм, поданих на рис. 6, при зміні фази різницевого сигналу D відносно сумарного сигналу S на 180°, вектори r+ і r – міняються місцями, кут між ними дорівнює -2a і напруга на виході ФД Фазові кутові моноімпульсні системи


Якщо припустити, що сумарна і різницева ДН кутового пелeнгатора описуються, як і для випадку амплітудного дискримінатора, виразами (3) і (2), то згідно з виразом (4) пеленгаційна характеристика вторинного моноімпульсного радіолокатора, що використовує сумарно-різницевий амплітудний пеленгатор і фазовий кутовий дискримінатор, описуватиметься виразом Фазові кутові моноімпульсні системи.

Відповідні характеристики наведені на рис. 7. Вони подані для випадку, коли довжина хвилі l = 27,5 см, розкриви антенних ґраток пеленгатора дорівнюють 10; 8 або 5 м, а ДН антени відповідають виразам (4) і (3).

Графіки, наведені на рис. 7, і вираз (3) підтверджують основний недолік фазового кутового дискримінатора – малі межі робочого сектора пеленгаційної характеристики.

Дійсно, згідно з виразом (3) межі однозначного визначення UВИХ обмежуються значеннями аргументу синусу ±90°, тобто Фазові кутові моноімпульсні системи. Звідси Фазові кутові моноімпульсні системи.

фазовий пеленгація кутовий дискримінатор

Фазові кутові моноімпульсні системи


Цю умову задовольняє граничний випадок, коли D/S=1, тобто робочий сектор пеленгаційної характеристики принципово не може виходити за межі кутів Dj°Ц, які відповідають точкам перетинання сумарної і різницевої ДН антени (рис. 5, точки а і б). Оскільки крутизна пеленгаційної характеристики поблизу цих точок низька, то реальний робочий сектор характеристики буде ще меншим. Згідно з виразом (3) межа робочого сектора визначатиметься наближеним виразом

Фазові кутові моноімпульсні системи,


де розкрив антени l вимірюється у метрах, а Dj°гран – у градусах.


3. Фазовий напівкутовий дискримінатор


Як уже наводилося вище, основним недоліком фазового кутового дискримінатора, функціональна схема якого наведена на рис. 4, є мала межа однозначного визначення кутового положення цілі. Однозначність зберігається в межах, коли кут 2a між векторами r+ і r – лежить у діапазоні ±90°, тобто коли кут a лежить у межах ±45°.

Робочий сектор, однозначно визначений коригувальною поправкою Djц, в цьому випадку визначатиметься областю, де співвідношення прийнятих сигналів D/У лежить у межах від нуля до одиниці, тобто до точок перетинання сумарної і різницевої ДН антени.

Для усунення цього недоліку використовують метод, суть якого полягає в тому, що сигнали r+ і r – порівнюються за фазою не між собою, а із сигналом сумарної ДН е у двох окремих ФД. Пелeнгаційна характеристика в цьому випадку утвориться додаванням результатів окремого порівняння сигналів, фазовий кут між якими дорівнює не 2a, а a. Для кожного з ФД рівняння (3) прийме вигляд


Фазові кутові моноімпульсні системи,


із чого витікає, що відношення сигналів D і е для однозначного визначення значення U лежатиме в межах від нуля до нескінченості. Робочий сектор пеленгаційної характеристики значно збільшується, а його межі фактично визначатимуться шириною ДН сумарного променя антени.

Кутовий дискримінатор, в основу роботи якого покладений цей принцип, одержав назву сумарно-різницевого напівкутового фазового дискримінатора або, просто, напівкутового фазового дискримінатора. На рис. 8 показана спрощена функціональна схема такого дискримінатора, а на рис. 9 і 10 наведені векторні діаграми сигналів, що ілюструють принцип роботи цієї схеми.

На вхід схеми надходять сигнали сумарного і різницевого каналів амплітудного пеленгатора (точки 1 і 2 на функціональній схемі) і відповідні сигнали на векторних діаграмах. Перетворювач П, виконаний на пасивному елементі у вигляді кільцевого моста або хвилеводного трійника, утворює на своїх двох виходах сумарні сигнали +iД і Д+iУ із поворотом фази одного з вхідних сигналів У або Д на +90° (точки 3 і 4 на функціональній схемі). Сигнали У і Д попередньо фазовані для одного з напрямків відхилення цілі від положення осі антени (рис. 10).


Для випадку відхилення цілі від напрямку осі антени в протилежну сторону, різниця фаз цих сигналів, як очевидно з рис. 9, змінюється на 180˚ (рис. 9, вектори 1 і 2). Після перетворення високочастотних сигналів у проміжну частоту, їхнього підсилення і «м’якого» обмеження в логарифмічних підсилювачах проміжної частоти (ППЧ-ЛОГ) сигнали надходять до фазових детекторів ФД-1 і ФД – Опорною напругою для цих ФД служить сумарний сигнал У, який отримав перед тим такі самі перетворення, що і сигнали У+iД і Д+iУ, і сумарний сигнал iУ, зсунутий попередньо за фазою на +90°.


Фазові кутові моноімпульсні системи


В схемі використані так називані «косинусні» ФД, у яких вихідна напруга визначається не синусною, а косинусною залежністю від фазового кута між векторами сигналів вхідної й опорної напруг. Ці детектори схемно відрізняються від «синусних» ФД тільки тим, що один із вхідних сигналів попередньо повернений за фазою на 90°.

Згідно з векторними діаграмами, наведеними на рис. 10,


Фазові кутові моноімпульсні системи;

Фазові кутові моноімпульсні системи;

Фазові кутові моноімпульсні системи;

Фазові кутові моноімпульсні системи. (4)


Для векторних діаграм, наведених на рис. 10, b=90°+a.

Отже, Фазові кутові моноімпульсні системи.

Тоді


Фазові кутові моноімпульсні системи;

Фазові кутові моноімпульсні системи.


З цих виразів витікає, що знак пеленгаційної функції міститься у самій функції і вживати спеціальні заходи для визначення сторони відхилення цілі від напрямку осі антени, як це робилося в амплітудних ФД, немає потреби.

Якщо припустити, що сумарна і різницева ДН амплітудного пеленгатора визначаються виразами (4) і (5), то вираз пеленгаційної характеристики напівкутового фазового дискримінатора, що працює разом із сумарно-різницевим амплітудним пеленгатором, матиме вигляд


Фазові кутові моноімпульсні системи.


Графіки цієї функції наведені на рис. 10.

Графіки обраховані за умови, що довжина робочої хвилі бортових відповідачів дорівнює 27,5 см, а розкриви антенних ґраток у поземному напрямку дорівнюють відповідно 10; 8 і 5 м. Як очевидно з рисунку, на відміну від пеленгаційних характеристик кутового фазового дискримінатора (див. рис. 8) робочий сектор однозначного визначення відхилення цілі від напрямку осі антени в цьому випадку практично обмежується лише шириною ДН сумарного променя антени і припустимої зміни крутизни пеленгаційної характеристики.

Фазові кутові моноімпульсні системи


Деяке ускладнення схеми напівкутового дискримінатора, пов’язане з необхідністю введення третього каналу для сумарного сигналу, двох ФД і додаткових перетворювачів фаз, не принципове. Основним недоліком аналізованої схеми, як і для кутового фазового дискримінатора, є необхідність стабілізації фазових співвідношень сигналів у всіх трьох каналах. Нестабільність фази може призвести до прямих помилок визначення азимутального положення цілі. Усувається цей недолік в сучасних моноімпульсних ВРЛ раціональністю рішень під час розробки і виготовлення апаратури приймачів, а також застосуванням контрольних відповідачів і спеціальних каліброваних пілот-сигналів, за якими провадиться постійна корекція фазових характеристик дискримінаторів.

На разі принцип напівкутового фазового визначення азимутального положення цілей використовується в радіолокаторах RSM 970 (Thomson-CSF, Thales, Франція), RSM 970S (Airsys ATM, Франція), IRS-20 MP/L (Indra-Іспанія), MSSR/Mode S (Northrop Grumman, США), S-470 Messenger (Marconi Radar Systems, Англія), CM SSR-401 (Cardion Electronics, США) і в деяких інших радіолокаторах.


Рефетека ру refoteka@gmail.com