Рефетека.ру / Эк.-мат. моделирование

Контрольная работа: Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ

(ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)


КАФЕДРА РЕДКИХ МЕТАЛЛОВ И ПОРОШКОВОЙ МЕТАЛЛУРГИИ


КОНТРОЛЬНАЯ РАБОТА

ТЕМА: «МЕТОДИКА ЭКСПЕРИМЕНТА И РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА ПОЛУЧЕНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ»

Постановка задачи


Предложить оптимальный режим получения антифрикционного покрытия на твердой подложке с максимально возможной толщиной (Y1 ) при наибольшей твердости (Y2 ).

Из девяти факторов методом априорного ранжирования надо выбрать три наиболее значимых.

На процесс оказывают влияние следующие факторы:

Х1 – давление паров селена, мм.рт. ст.;

Х2 – температура нагрева пластины, С;

X3 – время термообработки, мин.;

X4 – чистота молибденового покрытия, %;

X5 – наличие защитной атмосферы, %;

Х6 – толщина молибденового покрытия, % ;

Х7 – габариты пластины, см;

Х8 – чистота селена, %;

Х9 – предварительный отжиг пластины.

Анализируем опубликованную информацию о влиянии факторов на данный объект исследования, или получаем необходимые сведения путем независимого опроса пяти специалистов, предлагая им расположить факторы по степени их влияния на процесс получения покрытия (см. табл. 2.1).


Таблица 1 - Результаты ранжирования факторов

Специалисты Ранги

Х1 Х2 Х3 Х4 Х5 Х6 Х7 Х8 Х9
1 1 2 4 4 6 5 7 5 8
2 2 3 3 7 9 5 8 6 7
3 1 1 4 5 8 6 9 7 9
4 2 2 3 6 7 5 7 5 6
5 1 2 2 8 7 6 8 6 7

Обрабатываем результаты, приведенные в таблице 1 Определяем сумму рангов в каждом столбце. Например, в столбце Х1


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия , где с - число специалистов.


Определяем среднюю сумму рангов:


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


Находим отклонение суммы рангов от среднего значения, например для Х1:


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


Результаты такой обработки данных приведены ниже:


Сумма рангов 7 10 16 30 37 27 39 29 37
Отклонение суммы рангов от средней (∆i) -19 -3 -9 -23 -30 -20 -32 -22 -30
∆i2 361 9 81 529 900 400 1024 484 900

Определяем согласованность мнений специалистов по χ2 -критерию.

Мнения специалистов согласуются, если χ2расч≥ χ2табл;


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


здесь Методика эксперимента и расчет технологического режима получения антифрикционного покрытия; tU - число групп, образованных факторами одинакового ранга;


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


По табл. П. 1 [1] при определенном уровне значимости α и числе степеней свободы f=k-1 выбираем табличное значение χ2табл = 15,51 для α = 0,05 и f=(9-1) = 8. Поскольку χ2расч≥ χ2табл, мнения специалистов согласуются.

Графически сумму рангов представляем в виде диаграммы


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Рисунок 1 - Диаграмма суммы рангов


По диаграмме выбираем наиболее значимые факторы. Как видно из рисунка 1, эксперты отдали предпочтение следующим трем факторам:

Х1 – давление паров селена, мм.рт. ст.;

Х2 – температура нагрева пластины, С;

X3 – время термообработки, мин.;

Используя результаты ПФЭ и обобщенный параметр оптимизации, составляем уравнение регрессии.

Выбираем параметр оптимизации,:

Y1 – толщина антифрикционного слоя, мкм;

Y2 – твердость, кг/мм2

Выбираем основной уровень и интервал варьирования факторов:

Х1 = (140 ± 100, мм.рт.ст.),

Х2 = (600 ± 100, С ),

X3 = (40 ± 20, мин.).


Таблица 2 – Матрица планирования ПФЭ

№ опыта Х0 Х1 Х2 Х3 Y1 Y2 d1 d2 d1 d2

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

1 + 240 500 20 18 94 0,92 0,89 0,819 0,904
2 + 40 700 20 8 56 0,37 0,48 0,177 0,421
3 + 40 500 60 5 54 0,12 0,44 0,052 0,223
4 + 240 700 20 12 29 0,69 0,06 0,041 0,202
5 + 240 500 60 5 80 0,12 0,80 0,096 0,309
6 + 40 700 60 5 50 0,12 0,37 0,044 0,209
7 + 240 700 60 15 80 0,84 0,80 0,672 0,819
8 + 40 500 20 4 36 0,07 0,13 0,009 0,094
9 + 140 600 40 8,5 83 0,41 0,83 0,340 0,583
10 + 140 600 40 8,3 81 0,40 0,81 0,324 0,569
11 + 140 600 40 8,4 82 0,40 0,82 0,328 0,572
12 + 140 600 40 8,4 84 0,40 0,84 0,336 0,579

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

Рисунок 2 Функция желательности

Y1 –степень извлечения циркония;

Y2 –содержание гафния в цирконии

По табл. П2 [1] строим график функции Харрингтона. По осям откладываем натуральные значения обобщаемых параметров. Числовые значения границ желательности, согласно техническим условиям, следующие:


d Y1 Y2
0,95 25 130
0,37 8 50

Методика эксперимента и расчет технологического режима получения антифрикционного покрытияНаходим по графику формальные значения (d1 и d2) обобщаемых параметров оптимизации и вычисляем обобщенный параметр оптимизации по формуле Методика эксперимента и расчет технологического режима получения антифрикционного покрытия Полученные данные, т.е. значения d1, d2 и D, заносим в таблицу 2.

Вычисляем коэффициенты уравнения

D = bo + b1X1 + b2X2 + b3X3 + bl2X1X2 + bl3X1X3+ b23X2X3 + bl23X1X2 X3 для обобщенного параметра оптимизации (таблица 3).


Таблица 3 - Расчет коэффициентов уравнения

номер опыта Х0 Х1 Х2 Х3 X1X2 X1X3 X2X3 X1X2 X3 D
1 + + - - - - + + 0,904
2 + - + - - + - + 0,421
3 + - - + + - - + 0,223
4 + + + - + - - - 0,202
5 + + - + - + - - 0,309
6 + - + + - - + - 0,209
7 + + + + + + + + 0,819
8 + - - - + + + - 0,094

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

3,181 1,287 0,121 -0,061 -0,505 0,105 0,871 1,553
bi 0,397 0,160 0,015 -0,007 -0,063 0,013 0,108 0,194

Коэффициенты bi уравнения регрессии рассчитываем по формуле:


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


Уравнение регрессии для обобщенного параметра оптимизации имеет вид:


D = 0,397 + 0,160X1 + 0,015X2 - 0,007X3 - 0,063 X1X2 + 0,013X1X3+ 0,108X2X3 + 0,194X1X2 X3


Для проверки значимости коэффициентов регрессии выполняем четыре параллельных опыта на основном уровне (таблица 2 опыты 9...12).

Статистическая обработка результатов.

Рассчитываем дисперсию параметра оптимизации и доверительный интервал для коэффициентов уравнения. По параллельным опытам (9... 12 в задании) подсчитываем дисперсию параметра оптимизации и доверительный интервал для коэффициентов уравнения.

Дисперсию параметра оптимизации вычисляем по формуле:


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


где т = 4 – число опытов на основном уровне;

Dn – значение D, получаемое в каждом из четырех параллельных опытов;

D – среднее арифметическое значение D.

Значение S2D =0,42.10-4.

Доверительный интервал для коэффициентов регрессии определяем по формуле:

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


где t - критерий Стьюдента;

α - уровень значимости;

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия- дисперсия, характеризующая погрешность в определения коэффициентов (здесь S2D - дисперсия параметра оптимизации, N - число опытов матрицы планирования).

Подставляя в эту формулу значения S'D =0,42.10-4 и N = 8, получаем S^ = 0,52-10-5. Доверительный интервал для коэффициентов регрессии


∆bi = ±3,18 (0,52.10-5)1/2 = 0,007


Величину t = 3,18 (при α = 0,05 и f = m–1 = 3) выбираем из табл. ПЗ [1].

Все абсолютные величины коэффициентов регрессии, кроме коэффициентов при Х3, больше доверительного интервала, и поэтому они являются статистически значимыми. Окончательно уравнение регрессии имеет вид:


D = 0,397 + 0,160X1 + 0,015X2 – 0,063 X1X2 + 0,013X1X3 + 0,0108X2X3 + 0,194X1X2 X3


Рассчитываем дисперсию адекватности модели. Схема расчета дисперсии адекватности модели приведена в таблице 4.


Таблица 4 - Расчет дисперсии адекватности

№ опыта Dэксп Dрасч Dэксп – Dрасч (Dэксп – Dрасч)2 .104
1 0,904 0,894 0,01 1
2 0,421 0,414 0,007 0,49
3 0,223 0,232 -0,009 0,81
4 0,202 0,194 0,008 0,64
5 0,309 0,316 -0,007 0,49
6 0,209 0,216 -0,007 0,49
7 0,819 0,824 -0,005 0,25
8 0,094 0,086 0,008 0,64

Примечание. Dрасч – арифметическая сумма членов уравнения регрессии, умноженных на знаки строк (таблица 3).

Дисперсию адекватности определяем по формуле:


Методика эксперимента и расчет технологического режима получения антифрикционного покрытияМетодика эксперимента и расчет технологического режима получения антифрикционного покрытия


где Dэксп и Dрасч – значение Dрасч, рассчитанное соответственно по экспериментальным данным и по уравнению регрессии;
N = 8 – число опытов матрицы;
k = 6 – число статистически значимых коэффициентов;
1 – учитывает свободный член в уравнении регрессии.

Получаем S2ад = 4,81.10-4.

Проверяем гипотезу адекватности модели по критерию Фишера.

Расчетное значение критерия Фишера:


Методика эксперимента и расчет технологического режима получения антифрикционного покрытия


Табличное значение Fra6л =10,1 при fз = m – 1=3, fч = N – k – 1=1 и α=0,05

Поскольку Fpacч < Fтабл , гипотеза об адекватности уравнения не отвергается и им можно пользоваться для следующих этапов планирования, например, использовать метод «крутого восхождения».

Интерпретация уравнения регрессии.

Анализ уравнения регрессии показывает, что на формирование покрытия с заданными свойствами наиболее сильное влияние оказывает соотношение водной и органической фаз (Х1), затем концентрация трибутилфосфата (Х2) и в меньшей степени соотношение циркония и гафния в растворе (Хз), межфакторные взаимодействия повышают величины всех трех факторов.

Таким образом, уже из первых восьми опытов извлекаем значительную информацию об изучаемом объекте.

Метод «крутого восхождения».

После получения адекватного линейного уравнения осуществляем движение по его градиенту в область оптимума («крутое восхождение»). На этом этапе используем основные факторы со статистически значимыми коэффициентами; межфакторные взаимодействия не учитываем. Если коэффициент регрессии при факторе статистически незначим, то в опытах крутого восхождения номинал этого фактора поддерживаем постоянным.

При определении направления движения рекомендуется изменять значения факторов пропорционально величинам произведений коэффициентов регрессии с учетом их знаков на соответствующий интервал варьирования. В нашем примере при Х2 коэффициент положителен (+0,015), поэтому, двигаясь в область оптимума, образец следует нагревать.

В заданиях рекомендуется сделать не менее 5 шагов, путь ограничен масштабами координат контурных карт. При этом использовать координаты [Х1; Х3] Для нахождения толщины покрытия и [Х2; Х3] Для нахождения его твердости. В целях сокращения числа реальных опытов и увеличения шага намечается серия «мысленных опытов», результаты которых можно определить по контурным картам и графику функции желательности.

После нахождения обобщенного параметра оптимизации для соответствующего режима, по графику функции желательности определяются натуральные параметры оптимизации.

«Крутое восхождение» прекращается, когда натуральные параметры оптимизации удовлетворяют исследователя, либо когда достигнута область оптимума, т. е. движение в любую сторону от максимально полученного обобщенного параметра оптимизации приводит к худшим показателям качества.


Таблица 5 - Результаты и расчет крутого восхождения

Факторы

Соотноше

ние водной и органической фаз, Х1

Концентрация трибутилфосфата, (%), С, Х2 Соотношение циркония и гафния в растворе, X3 Степень извлечения церкония, ηZr Содержание гафния в цирконии, ηHf/Zr d1 d2 D=( d1. d1)1/2
1 2 3 4 5 6 7 8 9
Основной уровень 140 600 40




Интервал варьирования (I) 100 100 20




Коэффициент регрессии bi +0,160 +0,015 -0,007




Произведение I. bi +16 +1,5 -0,7




Округелние, z +16 +2 -1




Шаг,z.3 16 2 -3




1 опыт (реализован-ный) 156 602 37 5 75 0,16 0,69 0,33
2 опыт (мысленный) 172 604 34




3 опыт (мысленный) 188 606 31




4 опыт (реализован-ный) 204 608 28 18 90 0,86 0,82 0,84
5 опыт (мысленный) 220 610 25




6 опыт (реализован-ный) 236 612 22 25 100 0,97 0,87 0,92
7 опыт (мысленный) 252 614 19




8 опыт (реализован-ный) 268 616 16 22 110 0,94 0,92 0,93
9 опыт (мысленный) 284 618 13




10 опыт (реализован-ный) 300 620 10 15 100 0,78 0,87 0,82
11 опыт (мысленный) 316 622 7




12 опыт (реализован-ный) 332 624 4 5 85 0,16 0,78 0,35

Примечание. Увеличение шага в 3 раза вызвано погрешностью в измерении температуры и давления.

Определяем наилучшее значение качества по максимальной величине D.

Лучшие показатели качества, которые оцениваются по максимальному значению обобщенного параметра оптимизации (D = 0,93), получены в опыте № 8 при давлении паров селена 268 мм. рт. ст., температуре образца 616°С и времени селенирования 16 минут. При этом толщина самосмазывающегося покрытия диселенида молибдена составила 22 мкм, а микротвердость H =110 кг/мм2. Этот режим и был рекомендован для получения антифрикционных покрытий на изделиях, работающих в настоящее время в различных областях промышленности.

Список использованных источников


[1] Колчин Ю.О., Егорычев К.Н., Миклушевский В.В. Организация и планирование эксперимента // Учебное пособие для практических занятий. – М.: МИСиС, 1997

Рефетека ру refoteka@gmail.com