Рефетека.ру / Промышленность и пр-во

Контрольная работа: Сопротивление материалов при нагрузке

Вариант 37

Задача 1

Абсолютно жесткий брус опирается на шарнирно-неподвижную опору и прикреплен к двум стержням с равным поперечным сечением. Площадь сечения стержней А = 2∙10-4 м2. Модуль упругости материала стержней Е = 2Ч105 МПа, коэффициент линейного расширения a = 12Ч10–6 1/град. Размеры бруса: a = 0,5 м, b = 3 м, h = 1м, с = 2 м.


Сопротивление материалов при нагрузке


Требуется:

Вычислить допускаемую нагрузку [Q], приняв большее из напряжений за допускаемое [s] = 160 МПа.

Вычислить допускаемую нагрузку по предельному состоянию [Q]пр.

Сравнить полученные результаты.

Вычислить монтажные напряжения в обоих стержнях, если длина второго стрежня короче номинальной на величину d2 = 2∙10-3 м

Вычислить напряжения в обоих стержнях, если температура первого стержня увеличится на величину Dt1 = -40°С.

Вычислить напряжения в обоих стержнях от совместного действия нагрузки, неточности изготовления второго стержня и изменение температуры первого стержня.


Сопротивление материалов при нагрузке


Вычислить допускаемую нагрузку [Q], приняв большее из напряжений в стержнях за допускаемое [s].

Составляем расчетную схему. Под действием силы Q стержни 1 и 2 будет растягиваться. Вследствие этого появятся внутренние силы N1 и N2. Составим уравнение моментов относительно точки О:


Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке


При неизвестных реактивных усилиях N1, N2, Rox, Roy и трех уравнений статики (плоская система сил) заданная стержневая система является статически неопределимой, и степень статической неопределимости (ССН) определяется:


ССН = m – n,


где m – количество неизвестных реакций, n – количество уравнений. Таким образом, ССН = 4 – 3 =1, то есть для решения данной задачи необходимо составить еще одно дополнительное уравнение, называемое уравнением совместности деформаций.

Составляем уравнение совместности деформаций. Из подобия треугольников АА1О и СС1О имеем:

Сопротивление материалов при нагрузке.


Считаем, что угловые деформации малы, поэтому изменением угла b пренебрегаем.


АА1=Dl2, Сопротивление материалов при нагрузке, KА1=Dl1. То есть: Сопротивление материалов при нагрузке


По закону Гука имеем:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке.


Длину первого стержня определяем по теореме Пифагора:


Сопротивление материалов при нагрузке м


Подставляем значения удлинений в уравнение совместности деформаций:


Сопротивление материалов при нагрузке.


Тогда, Сопротивление материалов при нагрузке. Окончательно имеем: N2 = 1,3ЧN2

Из этого выражения видно, что N1<N2. Соответственно, напряжения в первом стержне sI меньше, чем напряжения во втором sII. Поэтому, максимальные напряжения по абсолютному значению будут во втором стержне: sII = [s] и Сопротивление материалов при нагрузкекН. Значение N1 = 24,62 кН.

Оба стержня сжаты.

Найдем напряжения в обоих стержнях: sII = [s] = -160 МПа; sI = -123,1 МПа. растянуты.

Подставим значения сил N1 и N2 в первое уравнение и определим значение [Q]:


Сопротивление материалов при нагрузкекН.


Вычислить допускаемую нагрузку по предельному состоянию [Q]пр.

Предельное состояние будет возникать, если напряжения в стержнях будут равны предельным, то есть пределу текучести sт: sI = sII = sт

Составляем уравнение предельного равновесия:


Сопротивление материалов при нагрузке;Сопротивление материалов при нагрузке.


Предельные усилия в каждом из стержней:


Сопротивление материалов при нагрузке.


Решаем относительно предельной нагрузки для системы:


Сопротивление материалов при нагрузке.


Допускаемая нагрузка по предельному состоянию [Q]пр определяется как:

Сопротивление материалов при нагрузке,


где n – коэффициент запаса прочности.

С учетом, что Сопротивление материалов при нагрузке получим [Q]пр = 23,51 кН.

Сравнить полученные результаты.

Определяем погрешность между расчетами:


Сопротивление материалов при нагрузке%.


По условию предельного состояния допускаемую нагрузку можно не менять (погрешность d < 5%).


Сопротивление материалов при нагрузке


Вычислить монтажные напряжения в обоих стержнях, если длина второго стержня короче номинальной на величину d2=1,5 мм.

Составляем расчетную схему. С учетом удлинения стержня 2 точка А должна совпасть с точкой Е, если бы не было стержня 1. Сопротивление первого стержня приводит к тому, что точка А занимает положение А1. В связи с этим, в стержнях появляются внутренние усилия N1 и N2. Составим уравнение статики:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке


Из этого уравнения следует, что:


Сопротивление материалов при нагрузке

Составляем уравнение совместности деформаций. Из подобия треугольников АА1О и ВВ1О имеем:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке

KВ1=Dl1.


По закону Гука:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке.


Решая совместно уравнения получим:


N1= 29,76 кН; N2= 41,34 кН.


2 стержень сжат; 1 – растянут.


Сопротивление материалов при нагрузке


Определим напряжения:


sI =148,8 МПа; sII = -206,7 МПа.

5. Вычислить напряжения в обоих стержнях, если температура первого стержня уменьшится на величину Dt1=40°.

Составим расчетную схему. С учетом удлинения стержня 1 точка В должна совпасть с точкой Е, если бы не было стержня 2. Сопротивление второго стержня приводит к тому, что точка В занимает положение В1. В связи с этим, в стержнях появляются внутренние усилия N1 и N2. Составим уравнение статики:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке


Из этого уравнения следует, что: Сопротивление материалов при нагрузке

Составляем уравнение совместности деформаций. Из подобия треугольников АА1О и ВВ1О имеем:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке; АА1=Dl2.


По закону Гука:


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке.


Решая совместно получим:


N1=5,15 кН; N2=7,15 кН.


2 стержень сжат; 1 – растянут.

Определим напряжения:


sI =25,75 МПа; sII = -35,76 МПа.


Вычислить напряжения в обоих стержнях от совместного действия нагрузки, неточности изготовления второго стержня и изменение температуры первого стержня.

Сведем данные расчетов в Таблицу


Таблица 1.

Фактор, вызывающий напряжения Напряжения, МПа

1 стержень 2 стержень
Нагрузка [Q] = 20,96 МПа -160 -123,1
Неточность изготовления 2-го стержня 148,8 -206,7
Изменение температуры 1-го стержня 25,75 -35,76
ИТОГО -365,56 -365,56

Из таблицы видно, что для заданной схемы для стержня 1 сочетания всех трех факторов является благоприятным фактором (напряжения значительно меньше допускаемых), а для стрежня 2 - неблагоприятным: стержень разрушится.


Сопротивление материалов при нагрузке


Задача 2

Дана двух опорная балка с приложенными к ней нагрузками М= -15кНм; F=-20 кН; q = 12 кН/м. Допускаемое напряжение [s] = 160 МПа. размеры балки a = 0,8 м; b = 0,7 м; c = 0,5 м.

Требуется:

1. Подобрать для схем (а) балку круглого, прямоугольного (отношение сторон h/b=2), кольцевого (отношение диаметров с=0,5), двутаврового сечений при заданном [s];


Сопротивление материалов при нагрузке


2. Сравнить площади поперечных сечений и сделать вывод о том, какая форма наиболее рациональна.

Решение

Определяем опорные реакции балки.


Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке


Проверяем правильность определения опорных реакций:


Сопротивление материалов при нагрузкеСопротивление материалов при нагрузке


Реакции определены верно.

Запишем уравнения поперечных сил и изгибающих моментов для каждого участка балки.

Участок I. О ≤ Z1≤0,8


Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке кН;

Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке кНм.


Строим эпюры по вычисленным значениям.

Участок


П. 0 < Z2 < 0,7

Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузке кН;

Сопротивление материалов при нагрузке; Сопротивление материалов при нагрузкекНЧм; Сопротивление материалов при нагрузкекНЧм.


Строим эпюры по вычисленным значениям.

Участок IП.


0 < Z3 < 0,5

Q(z3) = -RВ + qЧz3; Q(0) = 87 кH; Q(0.5) = 93 кН

M(z3)= RВ z3 – qЧz3Чz3Ч0.5; M(0) = 0; M(0.5)= -45 кHЧм


3. Опасным будет сечение, в котором изгибающий момент достигает максимального значения по абсолютной величине.

В данной задаче Mmax = 45 кНЧм.

Вычисляем необходимый момент сопротивления поперечного сечения балки


Сопротивление материалов при нагрузке см3.

3.1. Двутавровое поперечное сечение.

Этому моменту сопротивления соответствует двутавр №24, момент сопротивления и площадь поперечного сечения которого соответственно равны Wx=289 cм3; А= 34,8 см2.

3.2. Прямоугольное сечение (h/b = 2).


Сопротивление материалов при нагрузкесм


h=15 см; b=7,5 см; А=112,5 см2.

3.3. Круглое поперечное сечение:


Сопротивление материалов при нагрузке, Сопротивление материалов при нагрузкесм

Сопротивление материалов при нагрузке см2.


3.4. Кольцевое сечение (с = 0,7).


Сопротивление материалов при нагрузкесм

Сопротивление материалов при нагрузке см2


Сравниваем площади поперечных сечений А, подобранных профилей, сведя данные в Таблицу 2:


Таблица 2.

Тип сечения Площадь сечения, см2
Двутавровое 38,4
Прямоугольное 112,5
Круглое 156,4
Кольцевое 95,7

Таким образом, при изгибе оптимальным является сечение двутавра.


Сопротивление материалов при нагрузке


Задача 3

Дан стержень с опорами, закрепленными по указанной схеме, сжат силой F = 90 кН. Поперечное сечение – равносторонний треугольник. Длина стержня 1 = 0,85 м. Материал стержня - чугун. Модуль упругости Е = 1,3Ч105 МПа, допускаемое напряжение [σ] = 130 МПа. Коэффициент закрепления опор m = 0,7

Требуется определить:

- размеры поперечного сечения при допускаемом напряжении на сжатие [σ];

- величину критической силы Fk;

- коэффициент запаса устойчивости nу.

Решение.

Задача решается методом приближения. В первом приближении задаемся коэффициентом уменьшения основного допускаемого напряжения j1 = 0,5. Из условия устойчивости определяем площадь сечения:


Сопротивление материалов при нагрузке


Из площади сечения находим сторону сечения b:


Сопротивление материалов при нагрузке Ю Сопротивление материалов при нагрузке= 4,3 см.


Определяем минимальный радиус инерции по формуле:


Сопротивление материалов при нагрузке, где Сопротивление материалов при нагрузке.

Сопротивление материалов при нагрузке=0,88 см


Определяем гибкость стержня:


Сопротивление материалов при нагрузке


По таблице находим соответствующее значение коэффициента уменьшения основного допускаемого напряжения j' = 0,36. Производим проверку на устойчивость:


Сопротивление материалов при нагрузке МПа > [s]


Так как σ > [σ], то задаемся новым значением φ и повторяем весь расчет.


Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке=6,1 см. Сопротивление материалов при нагрузке= 1,24 см.

Сопротивление материалов при нагрузке


По таблице находим соответствующее значение коэффициента уменьшения основного допускаемого напряжения j' = 0,6. Производим проверку на устойчивость:


Сопротивление материалов при нагрузке МПа


Допускаемая погрешность не более 5%. Определяем погрешность


Сопротивление материалов при нагрузке


Погрешность больше допустимой, поэтому задаемся новым значением φ и повторяем весь расчет.


Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке=5,54 см. Сопротивление материалов при нагрузке= 1,13 см.

Сопротивление материалов при нагрузке


По таблице находим соответствующее значение коэффициента уменьшения основного допускаемого напряжения j' = 0,46. Производим проверку на устойчивость:


Сопротивление материалов при нагрузке МПа


Определяем погрешность


Сопротивление материалов при нагрузке


Погрешность не находится в допускаемых пределах.

Задаемся новым значением φ и повторяем весь расчет.


Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке=5,71 см. Сопротивление материалов при нагрузке= 1,16 см.

Сопротивление материалов при нагрузке


По таблице находим соответствующее значение коэффициента уменьшения основного допускаемого напряжения j' = 0,56. Производим проверку на устойчивость:


Сопротивление материалов при нагрузке МПа

Определяем погрешность


Сопротивление материалов при нагрузке


Погрешность не находится в допускаемых пределах.

Задаемся новым значением φ и повторяем весь расчет.


Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке

Сопротивление материалов при нагрузке=5,5 см. Сопротивление материалов при нагрузке= 1,12 см.

Сопротивление материалов при нагрузке


По таблице находим соответствующее значение коэффициента уменьшения основного допускаемого напряжения j' = 0,46. Производим проверку на устойчивость:


Сопротивление материалов при нагрузке МПа


Значения повторяются. Поэтому принимаем b = 5,71 см, А = 14,1 см2.

Определяем критическую силу:


Сопротивление материалов при нагрузке кН.


Определяем коэффициент запаса устойчивости:


Сопротивление материалов при нагрузке


Ответ: FK=695 кН; nу = 7,7.

Рефетека ру refoteka@gmail.com