Рефетека.ру / Транспорт

Контрольная работа: Параметры и силы, влияющие на вагон при движении

Московский Государственный институт путей сообщения

(МИИТ)

Воронежский филиал


Контрольная работа

по дисциплине: «Динамика вагонов»


Воронеж 2010

СОДЕРЖАНИЕ


Часть 1

1. Определение собственных частот колебаний вагона

2. Расчет параметров гасителей колебаний

3. Проверка рессорного подвешивания на отсутствие «валкости»

4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона

Часть 2

1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути

2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую

3. Расчет наибольших сил инерции необрессоренных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания

Часть 3

1. Расчет запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде

Исходные данные


Тип вагона Хоппер грузоподъемностью 50 т
Тара вагона Gтар, т 21
Грузоподъемность Gгр, т 50
База вагона L, м 5,081
Длинна вагона Lв, м 10,03
Боковая поверхность кузова вагона (площадь ветрового «паруса») F, м 25
Высота центра ветровой поверхности кузова относительно центра колеса hв, м 1,87
Условное обозначение и тип тележки 1
База тележки lт, 1,8
Вес тележки Gтел, Н 45,70
Вес необрессоренных частей, приходящихся на колесо q, Н 9,75
Наибольший прогиб рессорного комплекта с1, кН/м 10000
Полярный момент инерции тележки, относительно вертикальной оси, проходящей через центр I0, Н*м*с2 0,595*105
Тип гасителя колебаний Fгас=-FтрsignZ
Использование грузоподъемности вагона a, % 0
Высота центра тяжести кузова с грузом над уровнем рессорного подвешивания hц, м 1.1

Момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной:

а) параллельно оси пути Ix, Н*м*с2* 104

б) перпендикулярно оси пути Iy, Н*м*с2*104


5.9

14.9

Скорость движения вагона v, км/ч 50
Длина периода неровности пути lн, см 1250
Радиус круговой кривой R, м 800
Длина переходной кривой lн, м 75
Амплитуда неровностей пути h, см 0.95
Угол, образуемый концами рельсов в стыке при перекатывании колеса через стык g, рад 0,021
Длина ползуна на колесе а, мм 22
Масса пути, взаимодействующая с колесом при ударе ползуна m, Н*с/м*103 0,09
Боковая жесткость пути сп, 106 H/м 28,9
Величина сжимающего продольного усилия в поезде S, кН 200
Разность высот автосцепок у соседних вагонов D hа, мм 100

ЧАСТЬ 1


Определение собственных частот колебаний вагона

Круговая частота собственных колебаний вагона определяем по формуле:


Параметры и силы, влияющие на вагон при движении (1)


где g = 9, 81 м/с2 – ускорение свободного падения;

fст – статический прогиб рессор.

Статический прогиб рессор определяем по формуле:


Параметры и силы, влияющие на вагон при движении (2)


где G – вес кузова вагона;

с1 – жесткость одного рессорного комплекта.

Вес кузова вагона определяем по формуле:


Параметры и силы, влияющие на вагон при движении


где Gтар – тара вагона;

Gгр – грузоподъемность вагона;

a - доля использования грузоподъемности вагона;

Gтел – вес тележки.


G = 210000+0*50-2*45,70 = 209908,6 Н

fст = 209908,6/4*1000000 = 0,052 м

Параметры и силы, влияющие на вагон при движении (3)


Тогда период колебаний подпрыгивания будет равен:


Параметры и силы, влияющие на вагон при движении (4)


Угловую частоту собственных колебаний галопирования кузова вагона находим по формуле:


Параметры и силы, влияющие на вагон при движении (5)


где l1 +l2 = L – база вагона;

h – высота центра тяжести вагона с грузом над уровнем рессорного подвешивания

Iy – момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной перпендикулярно оси пути.


Параметры и силы, влияющие на вагон при движении

Тогда

Параметры и силы, влияющие на вагон при движении (6)


Из формулы 7 следует, что чем меньше жесткость рессорного подвешивания с1, чем больше момент инерции кузова Iy и выше центр тяжести h, тем меньше частота собственных колебаний галопирования nгал и тем больше период галопирования Tгал.

Колебания боковой качки могут быть рассмотрены с помощью той же схемы, приняв в ней вместо l1 и l2 величины b1 и b2 и вместо момента инерции кузова вагона Iy (относительно оси y) – момент инерции кузова вагона относительно оси x – Ix


Параметры и силы, влияющие на вагон при движении


Тогда период колебаний будет равен


Параметры и силы, влияющие на вагон при движении


Линейные частоты колебаний кузова определяются по формуле:


Параметры и силы, влияющие на вагон при движении


Тогда


Параметры и силы, влияющие на вагон при движении

Параметры и силы, влияющие на вагон при движении

Параметры и силы, влияющие на вагон при движении


Следовательно, чем больше величина частоты, тем больше плавность хода вагона.

Расчет параметров гасителей колебаний

Задан гаситель с постоянной силой трения


Параметры и силы, влияющие на вагон при движении


где Nтр – нормальная сила (нажатие) в трущейся паре гасителя;

j - коэффициент трения частей пары.


Проверка рессорного подвешивания на отсутствие «валкости»

Для определения высоты метоцентра рассмотрим вагон, вес кузова которого G и жесткость рессоры с. Тогда, реакции рессорных комплектов при наклоне кузова на угол q составят:


Параметры и силы, влияющие на вагон при движении


Момент реакции рессор относительно точки О1


Параметры и силы, влияющие на вагон при движении


Заменим действие силы R1 и R2 их равнодействующей R, а точку пересечения равнодействующей в наклонной осью вагона назовем метацентром вагона. Момент равнодействующей R относительно точки O1


Параметры и силы, влияющие на вагон при движении

где hМ – высота метацентра от пола вагона.

Поскольку угол q мал, то tgq»0, т.е. M0=RhMq, где R = R1 + R2 = Q, то приравнивая момент силы R1 и R2 моменту от их равнодействующей R, получим qhMG = 2b2ecq, отсюда


Параметры и силы, влияющие на вагон при движении


где fст – статический прогиб рессорного подвешивания вагона;

b – половина базы тележки.


Параметры и силы, влияющие на вагон при движении


Высота метацентра выше центра тяжести вагона более чем на 2 м, следовательно вагон устойчив.


4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона


Решение дифференциального уравнения n = 2p/Т является аналитическим выражением процесса вынужденных колебаний подпрыгивания вагона при движении его по регулярным неровностям вида z = hcoswt.

Это решение имеет вид:

Параметры и силы, влияющие на вагон при движении


где n - скорость движения вагона;

lн – длинна периода неровностей;

2h – высота неровностей;

n - круговая частота собственных колебаний

Для колеса вагона номер i возмущение функции имеет вид:


Параметры и силы, влияющие на вагон при движении


где li – расстояние от первого до i-го колеса.

Амплитуда вынужденных колебаний подпрыгивания кузова вагона будет иметь вид:


Параметры и силы, влияющие на вагон при движении


Для заданного вагона


Параметры и силы, влияющие на вагон при движении


Аналитическое выражение описывающее процесс вынужденных колебаний будет иметь вид:

Параметры и силы, влияющие на вагон при движении


Для построения графика определяем зависимость z от t


Параметры и силы, влияющие на вагон при движении


При t=1 сек


Параметры и силы, влияющие на вагон при движении


Для других значений t


Параметры и силы, влияющие на вагон при движении

ЧАСТЬ II


1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути


Наибольшие боковые силы возникают тогда, когда при движении вагона наибольшее допустимое непогашенное ускорение на вагон достигает 0,7 м/с2. Это возможно при минимально допустимом для этой кривой возвышении наружного рельса. Его можно определить используя формулу:


Параметры и силы, влияющие на вагон при движении


Величина действующей на одну тележку поперечной горизонтальной силы:


Параметры и силы, влияющие на вагон при движении


где m – масса вагона;

анет – непогашенное поперечное ускорение;

Hв – сила ветра, действующая на вагон и направленная поперек пути


Параметры и силы, влияющие на вагон при движении


Принимая aнет = 0,8 м/с2, получим


Параметры и силы, влияющие на вагон при движении

При действии на вагон продольных сил S, которые могут возникнуть, например при рекуперативном напряжении на шкворень тележки действуют дополнительная сила Hторм которая приближенно равна:


Параметры и силы, влияющие на вагон при движении


Наибольший угол y можно определить по формуле:


Параметры и силы, влияющие на вагон при движении

Общее усилие на шкворень в этом случае


Параметры и силы, влияющие на вагон при движении


где S – продольное усилие в поезде;

2k – расстояние между клиновыми отверстиями автосцепок.


Параметры и силы, влияющие на вагон при движении


Поскольку, в своем движении по кривой тележка непрерывно вращается вокруг полюса поворота, то образующийся от силы H0брт момент относительно точки О уравновешивается направляющим усилием Y (давление гребня набегающего колеса первой оси тележки на боковую поверхность) поперечными силами трения колес по рельсам.


Параметры и силы, влияющие на вагон при движении


где P – вертикальная нагрузка, передаваемая колесом рельсу;

m - коэффициент трения колесом по рельсу (принимаем m = 0,25).

Уравнение проекций этих сил имеет вид:


Параметры и силы, влияющие на вагон при движении


Положение центра поворота в общем случае находим методом попыток. Для двухосной тележки по графику [2] определяем расстояние от шкворня до точки О в зависимости от отношения Параметры и силы, влияющие на вагон при движении. Из рисунка 4 видно, что


Параметры и силы, влияющие на вагон при движении


где s1 = 1,6 м – расстояние между осями рельсов;

lТ – база тележки (180 см).


Параметры и силы, влияющие на вагон при движении


Определим направляющее усилие Y

Боковая сила определяется из уравнения


Параметры и силы, влияющие на вагон при движении

а рамная сила


Параметры и силы, влияющие на вагон при движении

где

Параметры и силы, влияющие на вагон при движении


2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую


Наибольшую величину боковой силы Y при извилистом движении в прямом участке определяют по формуле:


Параметры и силы, влияющие на вагон при движении


где nD=40 мм – зазор между рабочими гребнями колес и рельсами;

J0 = 0,595*104 – полярный момент инерции тележки относительно вертикальной оси проходящей через центр;

n = 1/20 – наклон образующей конуса и оси;

Сn = 19,1*106 кгс/м – боковая жесткость пути;

j = 0,25 – коэффициент трения поверхности обода по рельсу.


Параметры и силы, влияющие на вагон при движении

Рамная сила:


Параметры и силы, влияющие на вагон при движении

Определим боковую силу при входе вагона в кривые участки пути


Параметры и силы, влияющие на вагон при движении

где Параметры и силы, влияющие на вагон при движении

Параметры и силы, влияющие на вагон при движении


Параметр переходной кривой Cпер следует рассчитывать по заданному радиусу R круговой кривой и l0 – длине переходной кривой и до ближайшего числа кратного 5000 м2


Параметры и силы, влияющие на вагон при движении

Параметры и силы, влияющие на вагон при движении


Рамная сила


Параметры и силы, влияющие на вагон при движении


3. Расчет наибольших сил инерции необрессореных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания


Наибольшая величина силы инерции необрессореных масс вагона рассчитывается по формуле:


Параметры и силы, влияющие на вагон при движении

где vk – cкорость удара колеса о рельс;

Cк = 5*105 кгс/см – контактная жесткость;

mn = 100 кгс/g – масса пути.

Необходимо предварительно определить скорость удара колес по рельсу. Она равна при движении колес с ползуном


Параметры и силы, влияющие на вагон при движении


При прохождении стыка, в котором рельсы при прогибе образуют угол g


Параметры и силы, влияющие на вагон при движении

Часть III


Расчеты запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде


Для расчета устойчивости движения колес по рельсу следует определить величины нагрузок, передаваемых на шейки колесной пары P1 и Р2.

Кроме статической нагрузки на шейке колесной пары передаются усилия вызванные колебаниями надрессорного строения. Наиболее выгодным положением с точки зрения устойчивости колеса на рельс будет случай, когда в целом колесная пара разгружается колебаниями галопирования и подпрыгивания, а в колебаниях боковой качки обезгружено колесо, набегающее на наружный рельс кривой.

Если общий динамический коэффициент колебаний надрессорного строения равен KДО = 0,277, в боковой качки Кбк = 0,09


Параметры и силы, влияющие на вагон при движении


где q = 975 кгс – необрессоренный вес, приходящийся на одно колесо;

PСТ – нагрузка от колеса на рельс.


Параметры и силы, влияющие на вагон при движении


Кроме того, за счет действия непогашенного ускорения и ветровой нагрузки произойдет перегрузка шейки колеса идущего по наружной грани нити и разгрузка шейки колеса, идущего по внутренней нитке. Если центр тяжести кузова находится на hц от головки рельса, а центр ветровой поверхности на высоте hв от головки рельса, то момент опрокидывающих сил будет равен:


Параметры и силы, влияющие на вагон при движении


Момент удерживающих сил


Параметры и силы, влияющие на вагон при движении


где b – расстояние между серединами шеек колесной пары (203,6 см)

DP1 – величина нагрузки колеса, идущего по наружному рельсу, или величина разгрузки колеса, идущего по внутреннему рельсу


Параметры и силы, влияющие на вагон при движении


При разности высот автосцепок у соседних вагонов Dha=75 мм и при действии на вагон продольных сил S происходит разгрузка тележки, которая равна Параметры и силы, влияющие на вагон при движении

Если разница в высоте автосцепок соседних вагонов равна Dhа, то

Параметры и силы, влияющие на вагон при движении


где Lв – длинна вагона

k – 6,365 м – половина расстояния между клиновыми отверстиями автосцепок


Параметры и силы, влияющие на вагон при движении


Так как разгрузки DР1 и DР2 распределяются на четыре колеса тележки, то


Параметры и силы, влияющие на вагон при движении


Зная Р1, Р2 и Yр можно определить коэффициент запаса устойчивости колесной пары по вползанию гребня колеса на рельс

С учетом размеров колесной пары b1 = 0,228 м; b2 = 1,808 м; R = 0,475 м; r = 0,075 м

Определение устойчивости пути поперечному сдвигу.

Для определения устойчивости рельсовой решетки поперечному сдвигу при заданных расчетных данных следует применять условие Параметры и силы, влияющие на вагон при движении, где

Параметры и силы, влияющие на вагон при движении


Условие 52279 т Ј 210000т соблюдается. Рельсовая решетка устойчива поперечному сдвигу.

Похожие работы:

  1. • Железнодорожный транспорт Украины
  2. • Обслуживание пассажирских вагонов
  3. •  ... вентиляция, водоснабжение пассажтрских вагонов
  4. • Проектирование роботехнических средств для поточных ...
  5. • Разработка и проектирование тормозной рычажной ...
  6. • Грузовые вагоны нового поколения
  7. • Статистика ж/д транспорта
  8. •  ... кондиционирования воздуха пассажирских вагонов
  9. • Вагон
  10. • Проектирование восьмиосной цистерны модели 15-1500
  11. • Подтверждение цикла работы автоматики винтовки с ...
  12. • Организация железнодорожных пассажирских перевозок
  13. • Организация деповского ремонта пассажирского вагона
  14. • Привод подвагонного генератора
  15. • Производство маневров на железной дороге
  16. • Организация вагонного хозяйства на отделении дороги
  17. •  ... по ремонту электрооборудования пассажирских вагонов
  18. • Правила погрузочно-разгрузочных работ по выгрузке ...
  19. • Вибір основного електрообладнання і мережі ...
Рефетека ру refoteka@gmail.com