Курсовая работа на тему:
Конструктивный расчет ванн
Содержание
1.1 На основании этих данных определяем размеры анода.
1.4 Внутренние размеры катодного кожуха.
1.5 Наружные размеры катодного кожуха
3.1 Определяем падение напряжения в анодном устройстве
3.1.1 Падение напряжения в стояках
3.1.2 Определяем падение напряжения в анодных шинах
3.1.3 Определяем падение напряжения в анодных спусках
3.1.4 Определяем падение напряжения в самообжигающемся аноде
3.1.5 Определяем падение напряжения в контактах анодного узла
3.1.6 Падение напряжений в анодном устройстве определяется суммой всех падений напряжения в аноде
3.2 Падение напряжения в электролите
3.3 Падение напряжения в катодном устройстве
3.3.1 Падение напряжения в подине
3.3.2 Падение напряжения в стержнях не заделанных в подину
3.3.3 Падение напряжения в катодных спусках
3.3.4 Падение напряжения в катодных шинах
3.3.5 Падение напряжения в контактах
3.4 Падение напряжения за счет анодных эффектов
3.8 Определяем основные показатели
4.2.4 Потери тепла с поверхности электролизера
5) Расчет числа электролизеров в серии
1) Конструктивный расчет
Конструктивный расчет выполняется для определения размеров конструктивных элементов ванн, для этого необходимы следующие показатели: сила тока на ванне, анодная плотность тока. Анодную плотность тока принимаем 0,78 А/см2
1.1 На основании этих данных определяем размеры анода
,
где: I - сила тока, А, dA - плотность тока, А/см2
ВА - ширина анодного массива принимаем 210 см, тогда длина анодного массива будет:
НА - высота анодного массива:
НА= hконуса спекания + hжидкой части = 135 + 45 =180 см
1.2 Размеры шахты ванны
Внутренние размеры шахты ванны определяются исходя из размеров анодного массива и расстояния до боковой футеровки, которое составляет: по продольной стороне 55см, а по торцевой 50см.
Ширина шахты - ВШ
ВШ = ВА + 2 · 55 = 210 + 110= 320 см
Длина шахты - LШ
LШ = LАМ + 2 · 50 = 427,4 + 100 = 527,4 см
Глубина шахты - НШ
НШ = hМЕ + hЭЛ = 30 + 20 =50 см
1.3 Конструкция подины
Число блоков. В настоящее время длина катодных блоков 60 - 220 см, шириной 55 см, высотой 40 см, ширина угольной засыпки 4 см. Отсюда число катодных блоков в ряду будет равно:
а - размер набоечного шва в торцах
b - Размер набоечного шва по продольным сторонам
,
где L1 и L2 длина катодных блоков, см
1.4 Внутренние размеры катодного кожуха.
Определяются размерами шахты ванны с учетом теплоизоляции
Длина катодного кожуха LКОЖ.
LКОЖ. = LШ + 2 (20 + hТЕПЛ) = 527,4 + 2 (20 + 8) = 583,4 см
Ширина катодного кожуха ВКОЖ.
ВКОЖ. = ВШ + 2 (20+8) = 320 + 56 = 376 см
Высота кожуха НКОЖ.
НКОЖ. = НШ + НБ + 6,5 + 5 = 50 + 40 + 11,5 = 101,5 см
1.5 Наружные размеры катодного кожуха
Наружная длина LКОЖ.Н.
LКОЖ.Н. = LКОЖ. + (2 · 40) = 583,4 + 80 = 663,4 см
Наружная ширина кожуха ВКОЖ.Н.
ВКОЖ.Н. = ВКОЖ. + (2 · 40) = 376 + 80 = 456 см
2) Материальный расчет
Проводится для определения производительности электролизера и расхода сырья на производство алюминия. Исходными данными является сила тока, выход по току и расходные нормы по сырьевым материалам и анодной массе.
ηi - выход по току, принимаем 0,9
I - сила тока 70000 А
2.1 Расходные нормы
AI2O3 - 1,92 - 1,93 т/т AI - Рг
Анодная масса - 0,5 т/т AI - Ра
Фторсоли 0,057 т/т AI - Рф 2.1 Приходная часть
Производительность электролизера определяется по формуле
Р AI = С · I · ηi · 10-3,где С - электрохимический эквивалент, 0,336 г/А·ч
Р AI = 0,336 · 70000 · 0,9 · 0,001 = 21,17 кг/ч
Определяем приход материалов в ванну
Р AI2O3 = Р AI · Рг = 21,17 · 1,92 = 40,65 кг
РАНОД = Р AI · Ра = 21,17 · 0,5 = 10,6 кг
РФТОР = Р AI · РФ = 21,17 · 0,057 = 1,21 кг
2.2 Расходная часть
Анодные газы
Количество СО и СО2.
NСО и NСО2 - мольные доли СО и СО2 в анодных газах, NСО - 0,4, а NСО2 - 0,6.
Весовое количество СО и СО2
РСО2 = МСО2 · 44 = 0,44 · 44 = 19,36 кг
РСО = МСО · 28 = 0,29 · 28 = 8,12 кг
Потери глинозема ΔР AI2O3.
ПAIп, т - практический и теоретический расход глинозема, т/т AI
ΔР AI2O3 = Р AI (ПAIп - ПAIт) = 21,17 · (1,92 - 1,89) = 0,635 кг
Потери фторсолей ΔРФТОР.
ΔРФТОР = РФТОР = 1,21 кг
Потери углерода РС = (МСО + МСО2) · 12 = (0,29 + 0,44) · 12 = 8,76 кг
ΔРС = РАНОД - РС = 10,6 - 8,76 = 1,84 кг
Таблица материального баланса.
3) Электрический расчет
Цель: определение конструктивных размеров ошиновки, определение падения напряжения на всех участках цепи, составление баланса напряжений. Определение рабочего греющего и среднего напряжения. Определение выхода по энергии и удельного расхода по электроэнергии.
dAI = 0,415 A/мм2 = 41,5 A/см2
dCu = 0,7 A/мм2 = 70 A/см2
dFe = 0,18 A/мм2 = 18 A/см2
3.1 Определяем падение напряжения в анодном устройстве
3.1.1 Падение напряжения в стояках
,
где:
I - сила тока, А
ρt - удельное сопротивление проводника, Ом · см
а - длина участка шинопровода, см
SОб - общее сечение проводника, см2
SЭК -экономически выгодное сечение стояка, см2
nШ - число алюминиевых шин, шт
,
где:
SПР - практическое сечение одной шины, см2
SОб - общее сечение стояка, см2
SОб = nШ · SПР = 6 · (43 · 6,5) = 1677 см2
ρt AI - удельное сопротивление алюминиевых шин
ρt AI = 2,8 (1 + 0,0038 · t) · 10-6 Ом · см,
где t из практических данных 60 ° С
ρt AI = 2,8 (1 + 0,0038 · 60) · 10-6 = 3,44 · 10-6 Ом · см
высота стояка а - из практических данных 265 см
3.1.2 Определяем падение напряжения в анодных шинах
Общее сечение анодных шин
SОб= SОб ст = nШ · SПР = 6 · (43 · 6,5) = 1677 см2
Удельное сопротивление АI шин при t = 80 ° С
ρt AI = 2,8 (1 + 0,0038 · 80) · 10-6 = 3,65 · 10-6 Ом · см
Длина анодных шин принимается равная длине кожуха + 100 см
LА.Ш. = LКОЖ + 100см = 583,4 + 100 = 683,4 см
Падение напряжения в анодных шинах
Определяем количество рабочих штырей
,
где:
2 - количество рабочих рядов, шт
Р - периметр анода, см
Р = 2 · (LА + ВА) = 2 · (210 + 427,4) = 1274,8 см
Определяем среднее сечение штыря
Определяем средний диаметр штыря
Длина штыря 105см
3.1.3 Определяем падение напряжения в анодных спусках
Удельное сопротивление анодных спусков при t = 150 ° С
ρt Cu = 1,82 · (1 + 0,004 · 150) · 10-6 = 2,9 · 10-6 Ом · см
Сечение анодных спусков
При длине анодных спусков 210 см определяем падение напряжения
Определяем количество медных шинок приходящихся на 1 штырь, если сечение одной шинки 1см2
3.1.4 Определяем падение напряжения в самообжигающемся аноде
Определяется по формуле
Где:
ВА - ширина анода, см
SА - площадь анода, см2
К - количество штырей, шт
lСР - среднее расстояние от токоведущих штырей до подошвы анода - 45см
ρt - удельное электро сопротивление анода 0,007 Ом · см
dА - анодная плотность тока - 0,78 А/см2
D - длина забитой части штыря - 85 см
3.1.5 Определяем падение напряжения в контактах анодного узла
Принимается по практическим данным:
Анодная шина - анодный стояк
Анодный стояк - катодная шина
Анодная шина - анодный спуск
Принимаем по 0,005 в на каждом участке, тогда
ΔUКОНТ = 0,005 · 3 = 0,015 в
В контакте шинка - штырь 0,007 в, тогда общее падение напряжения в контактах составляет ΔUКОНТ АН. = 0,022 в
3.1.6 Падение напряжений в анодном устройстве определяется суммой всех падений напряжения в аноде
ΔUАН УСТР = ΔUСТ + ΔUА.Ш. + ΔUА. СП. + ΔUА + ΔUКОНТ АН =
= 0,036 + 0,1 + 0,0426 + 0,254 + 0,022 = 0,4546 в
3.2 Падение напряжения в электролите
Рассчитывается по формуле
,
где:
I - сила тока 70000 А
ρt - удельное сопротивление электролита 0,5 Ом · см
l - межполюсное расстояние 4-5 см
SА - площадь анода, см2
LА - длина анода 427,4 см
ВА - ширина анода 210 см
3.3 Падение напряжения в катодном устройстве
3.3.1 Падение напряжения в подине
где lПР - приведенная длина пути тока по блоку
,
где:
Н - высота катодного блока 40 см
h - высота катодного стержня с учетом чугунной заливки 13 см
в - ширина катодного стержня с учетом чугунной заливки 26см
ρt - удельное электро сопротивление угольного блока 0,005 Ом · см
А - половина ширины шахты 320: 2 = 160 см
а - ширина бортовой настыли в шахте ванны 40-60 см
В - ширина блока с учетом шва 59 см
SСТ - площадь поперечного сечения катодного стержня с учетом чугунной заливки 338 см2
dА - 0,78 А/мм2
3.3.2 Падение напряжения в стержнях не заделанных в подину
где:
L - длина стержня 50 см
S - суммарная площадь поперечных сечений катодных стержней
S = 23 · 11,5 · 16 = 4232 см2
ρFe - удельное сопротивление стержней при t = 150 ° С
ρt = 13 · (1 + 0,004 · 150) · 10-6 = 2,08 · 10-5 Ом · см
3.3.3 Падение напряжения в катодных спусках
где:
L - длина спусков 60 см
ρСu - удельное сопротивление катодных спусков при t = 150 ° С
ρt = 1,82 · (1 + 0,004 · 150) · 10-6 = 2,912 · 10-6 Ом · см
SЭ.В. - экономически выгодная площадь поперечного сечения спусков
Число лент в пакете катодных спусков приходящихся на 1 штырь
Площадь поперечного сечения лент
Падение напряжения
3.3.4 Падение напряжения в катодных шинах
где:
ρAI - удельное сопротивление АI шин при t = 150 ° С
ρt AI = 2,8 (1 + 0,0038 · 150) · 10-6 = 4,396 · 10-6 Ом · см
L - длина катодных шин
L = LK + 100 см = 583,4 + 100 = 683,4 см
SК.Ш. - площадь сечения катодных шин
Площадь сечения 1-ой шины 43 · 6,5 = 279,5 см2
Количество шин
S - экономически выгодная площадь сечения катодных шин
S = 279,5 · 6 = 1677 см2, падение напряжения.
3.3.5 Падение напряжения в контактах
1) Катодный стержень - спуск.
2) Спуск - катодная шина.
Составляют по 0,005 в на каждом участке, поэтому в сумме 0,01 в.
3.3.6 Падение напряжения в катодном устройстве.
Определяется как сумма всех потерь
3.4 Падение напряжения за счет анодных эффектов
где: /UА.Э. - напряжение анодного эффекта до 40 в, К - количество анодных эффектов в сутки 1 шт, UРАБ - принимаем 4,25 в, τ - продолжительность анодного эффекта, принимаем 2 мин.
3.5 Греющее напряжение
ΔUГР = ΔUА + ΔUПОД + ΔUЭЛ + ΔUА.Э. + UРАЗЛ=
= 0,254 + 0,32 + 1,6 + 0,0496 + 1,65 = 3,8736 в
3.6 Рабочее напряжение
ΔUРАБ = ΔUЭЛ + UРАЗЛ + ΔUКАТ. УСТР. + ΔUАН. УСТР. + ΔUОБЩЕСЕР. =
= 1,6 + 1,65 + 0,4839 + 0,4546 + 0,05 = 4,2385 в
3.7 Среднее напряжение
ΔUСР = ΔUРАБ + ΔUА.Э.
где ΔUОБЩЕСЕР - падение напряжения в общесерийной ошиновке, принимаем 0,05в
ΔUРАБ = 4,2385 + 0,0496 = 4,2881 в
Данные из расчета сводим в таблицу
3.8 Определяем основные показатели
Выход по энергии
где:
ηi - выход по току, принимаем 0,9
с - электрохимический эквивалент 0,336 г/А·ч
Удельный расход электроэнергии
4) Тепловой расчет
Данный расчет составляется для t = 25 ° С. При выполнении данного расчета учитывается уравнение теплового баланса.
QЭЛ + QСГОР. АНОДА = QРАЗЛ + QМЕТ + QГАЗ + QПОТ
4.1 Приход
4.1.1 Тепло от электроэнергии
I - сила тока 70 кА
UГР - напряжение греющее 3,87 в
QЭЛ = 3,6 · 103 · I · UГР = 3,6 · 103 · 70 · 3,87 =975240 кДж/ч
4.1.2 Тепло от сгорания анода
QСГОР. АНОДА = PCO · ΔНCO + PCO2 · ΔНCO2
где: ΔНСО2 и ΔНСО - тепловой эффект образования реакции СО2 и СО.
По справочнику:
ΔНсо2 = 394070 кДж. /кМоль
ΔНсо = 110616 кДж. кМоль
PCO и PCO2 количества СО иСО2 в кило молях
,
где: m - объемная доля СО2 в анодных газах, принимаем 0,6 или 60%
QСГОР. АНОДА = 0,294 · 110616 + 0,440 · 394070 =
= 32521,1 + 173390,8 = 205911,9 кДж/ч
4.1.3 Суммарный приход тепла
QПРИХ = QСГОР. АНОДА + QЭЛ = 205911,9 + 975240 = 1181151,9 кДж/ч
4.2 Расход тепла
4.2.1 На разложение глинозема
QРАЗЛ = РАI2О3 · НТАL2О3
где: НТАI2О3 - тепловой эффект образования реакции глинозема при температуре 25 ˚С.
По справочнику:
НТАI2О3 = 1676000 кДж. /кМоль
РАI2О3 - расход глинозема на электрическое разложение
где: F - число Фарадея 26,8 А·ч
QРАЗЛ = 0,39 · 1676000 = 653640 кДж/ч
4.2.2 С выливкой металла
Определяется из условия равенства вылитого AI и наработанного за то же время
QМЕТ = РAI · (ΔН960 - ΔН25)
где:
27 - атомная масса алюминия
ΔН960 - теплосодержание алюминия при температуре 960 ˚С - 43982 кДж/моль
ΔН25 - теплосодержание алюминия при температуре 20 ˚С - 6716 кДж/моль
QМЕТ = 0,78 · (43982 - 6716) = 29067,5 кДж/ч
4.2.3 Унос тепла с газами
QГАЗ = V · C · (t2 - t1)
где:
V - объем газов, принимаем 7600 м3/ч
С - теплоемкость анодных газов 1,4 кДж/м3·°С
t1, t2 - температура газов 25 °С, 50 °С
QГАЗ = 7600 · 1,4 · (50 - 25) = 266000 кДж/ч
4.2.4 Потери тепла с поверхности электролизера
QПОТ = QПРИХ - (QРАЗЛ + QМЕТ + QГАЗ) =
= 1181151,9 - (653640 + 29067,5 + 266000) = 232444,4 кДж/ч
5) Расчет числа электролизеров в серии
Число работающих электролизеров определяется UСР и UПРЕОБРАЗОВАТЕЛЯ. Для серии электролизеров выпрямительный агрегат имеет U = 850 в. Учитываются потери напряжения в шинопроводах подстанции, принимаем 1%. Резерв напряжения при снижении I при анодном эффекте принимаем 40 в. Резерв напряжения для компенсации колебаний напряжения во внешней электросети 1%. При этом напряжение серии составит:
UСЕРИИ = 850 - (8,5 + 40 + 8,5) = 793 в
Число работающих электролизеров
Число резервных электролизеров
Производительность серии в год
Р = I · 8760 · 0,336 · nРАБ · ηi · 10-6 =
= 70000 · 8760 · 0,336 · 185 · 0,9 · 10-6 = 34305 т/год