Рефетека.ру / Эк.-мат. моделирование

Контрольная работа: Корреляционный и регрессионный анализ

Содержание


1. Исходные данные

2. Решение задачи 1

3. Решение задачи 2

Вывод:

Список использованных источников


1. Исходные данные


Задание 1


1. Построить линейное уравнение парной регрессии;

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации;

3. Оценить статистическую зависимость параметров регрессии и корреляции (с помощью F-критерия Фишера и Т-статистики Стьюдента).


Задание 2


1. Построить уравнение парной регрессии в виде нелинейной функции: степенной у = ахb, экспоненты у = аеbх, показательной у = abx, любой на выбор;

2. Для оценки параметров модель линеаризируется путем логарифмирования или потенцирования;

3. Определяется коэффициент эластичности и индекс корреляции;

4. Значимость определяется по критерию Фишера.

Исходные данные для решения задач приведены в таблице 1.


Таблица 1 - Исходные данные

N X Y
1 23 110
2 45 125
3 34 111
4 51 121
5 28 109
6 62 127
7 71 143
8 63 121
9 70 154
10 45 108
11 51 136
12 27 109
13 62 125
14 57 110
15 63 120
16 69 134
17 74 131
18 35 105
19 21 74
20 60 120

2. Решение задачи 1


Определим линейное уравнение парной регрессии.

Для этого составим и решим следующую систему уравнений:


Корреляционный и регрессионный анализКорреляционный и регрессионный анализ;

Корреляционный и регрессионный анализКорреляционный и регрессионный анализ.

Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ.


Решая данную систему уравнений получаем:


а=81,232;

b=0,76.


Итого получаем: Корреляционный и регрессионный анализ

Рассчитаем линейные коэффициенты парной корреляции и среднюю ошибку аппроксимации

Расчет будем вести табличным способом, и представим в таблице 2.


Таблица 2 - Расчет линейных коэффициентов парной корреляции и средняя ошибка аппроксимации

N X Y X∙Y X2 Y2

Корреляционный и регрессионный анализ

Y-Корреляционный и регрессионный анализ

Корреляционный и регрессионный анализ

Корреляционный и регрессионный анализ

1 23 110 2530 529 12100 98,71 11,29 127,42 10,26
2 45 125 5625 2025 15625 115,43 9,57 91,55 7,65
3 34 111 3774 1156 12321 107,07 3,93 15,43 3,54
4 51 121 6171 2601 14641 119,99 1,01 1,02 0,83
5 28 109 3052 784 11881 102,51 6,49 42,09 5,95
6 62 127 7874 3844 16129 128,35 -1,35 1,83 1,06
7 71 143 10153 5041 20449 135,19 7,81 60,96 5,46
8 63 121 7623 3969 14641 129,11 -8,11 65,80 6,70
9 70 154 10780 4900 23716 134,43 19,57 382,91 12,71
10 45 108 4860 2025 11664 115,43 -7,43 55,23 6,88
11 51 136 6936 2601 18496 119,99 16,01 256,26 11,77
13 27 109 2943 729 11881 101,75 7,25 52,53 6,65
13 62 125 7750 3844 15625 128,35 -3,35 11,24 2,68
14 57 110 6270 3249 12100 124,55 -14,55 211,76 13,23
15 63 120 7560 3969 14400 129,11 -9,11 83,03 7,59
16 69 134 9246 4761 17956 133,67 0,33 0,11 0,24
17 74 131 9694 5476 17161 137,47 -6,47 41,89 4,94
18 35 105 3675 1225 11025 107,83 -2,83 8,02 2,70
19 21 74 1554 441 5476 97,19 -23,19 537,87 31,34
20 60 120 7200 3600 14400 126,83 -6,83 46,68 5,69
1011 2393 125270 56769 291687 2393 0 2093,62 147,90
Ср. 50,55 119,65 6263,5 2838,45 14584,35 119,65 0 104,68 7,39

На рисунке 1 представим поле корреляции.

Корреляционный и регрессионный анализ

Рисунок 1 - Поле корреляции

Оценим статистическую зависимость параметров регрессии и корреляции (с помощью F-критерия Фишера и Т-статистики Стьюдента).

Определение коэффициента корреляции

Для определения коэффициента корреляции, определим дисперсию:


Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ.


Определим коэффициент корреляции:


Корреляционный и регрессионный анализ.


Данный коэффициент корреляции характеризует высокую тесноту связи

Определим коэффициент детерминации:


Корреляционный и регрессионный анализ


Это значит, что 61% вариации "у" объясняется вариацией фактор "х".

Определение статистической значимости уравнения регрессии с помощью F-критерия Фишера

Определим F- критерий Фишера:


Корреляционный и регрессионный анализ.


Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы 1 и (20-2)=18 составляет Fтаб = 4,45.

Имеем F> Fтаб, следовательно уравнение регрессии признается статистическим значимым.

Оценка статистической значимости параметров регрессии с помощью t-статистики Стьюдента

Табличное значение t-критерия для числа степеней свободы df=n-2=20-2=18 и уровня значимости α=0,05 составит tтабл=1,743.

Определим стандартные ошибки:


Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ.


Тогда


Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ.


Фактические значения t-статистики превосходят табличное значение:

Корреляционный и регрессионный анализ, поэтому параметры а, b, и rxy не случайно отличаются от нуля, а статистически значимы.

Рассчитаем доверительные интервалы для параметров регрессии а и b. Для этого определим предельную ошибку для каждого показателя:


Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ.


Получаем доверительные интервалы:


Корреляционный и регрессионный анализ и Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ и Корреляционный и регрессионный анализ.


Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью р=1-α=1-0,05=0,95 параметры а и b, находятся в указанных границах, не принимают нулевых значений, т.е. являются статистически значимыми и существенно отличны от нуля.


3. Решение задачи 2


В качестве уравнения нелинейной функции примем показательную, т.е.


у = a∙bx.


Определим экспоненциальное уравнение парной регрессии

Для определения параметров а и b прологарифмируем данное уравнение:


ln(у) =ln(а)+ x∙ln(b),


Произведем следующую замену: А= ln(а), B= ln(b).

Составим и решим систему уравнений:

Корреляционный и регрессионный анализ;

Корреляционный и регрессионный анализКорреляционный и регрессионный анализ.

Корреляционный и регрессионный анализКорреляционный и регрессионный анализ;

Корреляционный и регрессионный анализ.


Решая данную систему уравнений получаем:

А=4,436 следовательно a=84,452;

B= 0,0067 следовательно b=1,0067.

Итого получаем


Корреляционный и регрессионный анализ.


Рассчитаем линейные коэффициенты парной корреляции и среднюю ошибку аппроксимации

Расчет будем вести табличным способом, и представим в таблице 3.


Таблица 3 - Расчет линейных коэффициентов парной корреляции и средняя ошибка аппроксимации

N X Y X∙Y X2 Y2

Корреляционный и регрессионный анализ

Y-Корреляционный и регрессионный анализ

Корреляционный и регрессионный анализ

Корреляционный и регрессионный анализ

Корреляционный и регрессионный анализ

1 23 110 2530 529,00 12100 98,47 11,53 132,90 201,64 10,48
2 45 125 5625 2025,00 15625 114,05 10,95 119,80 0,64 8,76
3 34 111 3774 1156,00 12321 105,98 5,02 25,23 174,24 4,53
4 51 121 6171 2601,00 14641 118,72 2,28 5,21 10,24 1,89
5 28 109 3052 784,00 11881 101,82 7,18 51,62 231,04 6,59
6 62 127 7874 3844,00 16129 127,77 -0,77 0,59 7,84 0,60
7 71 143 10153 5041,00 20449 135,68 7,32 53,59 353,44 5,12
8 63 121 7623 3969,00 14641 128,62 -7,62 58,09 10,24 6,30
9 70 154 10780 4900,00 23716 134,78 19,22 369,54 888,04 12,48
10 45 108 4860 2025,00 11664 114,05 -6,05 36,66 262,44 5,61
11 51 136 6936 2601,00 18496 118,72 17,28 298,70 139,24 12,71
12 27 109 2943 729,00 11881 101,14 7,86 61,82 231,04 7,21
13 62 125 7750 3844,00 15625 127,77 -2,77 7,65 0,64 2,21
14 57 110 6270 3249,00 12100 123,57 -13,57 184,15 201,64 12,34
15 63 120 7560 3969,00 14400 128,62 -8,62 74,33 17,64 7,18
16 69 134 9246 4761,00 17956 133,88 0,12 0,01 96,04 0,09
17 74 131 9694 5476,00 17161 138,43 -7,43 55,13 46,24 5,67
18 35 105 3675 1225,00 11025 106,69 -1,69 2,85 368,64 1,61
19 21 74 1554 441,00 5476 97,17 -23,17 536,63 2520,04 31,30
20 60 120 7200 3600,00 14400 126,07 -6,07 36,85 17,64 5,06
1011 2393 125270 56769,00 291687 2381,97 11,03 2111,36 5778,60 147,73
Ср. 50,55 119,65 6263,50 2838,45 14584,35 119,10 0,55 105,57 288,93 7,39

На рисунке 3 представим поле корреляции.

Корреляционный и регрессионный анализ

Рисунок 2 - Поле корреляции


Определяется коэффициент эластичности и индекс корреляции

Определим коэффициент эластичности


Корреляционный и регрессионный анализ,


где Корреляционный и регрессионный анализ


Корреляционный и регрессионный анализ,


следовательно при изменении фактора"х" на 1% от своего среднего значения, "у" изменится на 0,334 % от своей средней величины.

Определение индекс корреляции


Корреляционный и регрессионный анализ.


Данный коэффициент корреляции характеризует высокую тесноту связи

Определим индекс детерминации:


Корреляционный и регрессионный анализ


Это значит, что 63,5% вариации "у" объясняется вариацией фактор "х".

Определение статистической значимости уравнения регрессии с помощью F-критерия Фишера

Определим F- критерий Фишера:


Корреляционный и регрессионный анализ.


Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы 1 и (20-2)=18 составляет Fтаб = 4,45.

Имеем F> Fтаб, следовательно уравнение регрессии признается статистическим значимым.


Вывод


В результате проведенного корреляционного анализа исходных данных была выявлена функциональная зависимость между значениями "х" и "у", то есть: Корреляционный и регрессионный анализ. Данная зависимость обладает максимальным значением индекса корреляции и детерминации, а так же F-критерия Фишера.


Список использованных источников


1. Учебно-методическое пособие к изучению курса "Статистика". Н.Н. Щуренко, Г.В. Девликамиова: Уфа, 2004.- 55с.

2. Эконометрика для начинающих. Основные понятия, элементарные методы, границы применимости, интерпретация результатов В.П. Носко: Москва, 2000. - 249с.

3. Эконометрика. И.И. Елисеева: Москва "Финансы и статистика", 2003.- 338с.

4. Общая теория статистики. Н.М. Виноградова, В.Т. Евдокимов, Е.М. Хитарова, Н.И. Яковлева: Москва,1968.- 381с.

Похожие работы:

  1. • Корреляционно-регрессионный анализ
  2. • Использование корреляционно-регрессионного анализа для ...
  3. • Корреляционный и регрессионный анализ в ...
  4. • Методы корреляционного и регрессионного анализа в ...
  5. • Регрессионный анализ
  6. • Экономико-статистическое моделирование ...
  7. • Анализ предприятия с использованием регрессивного ...
  8. • Анализ рентабельности с помощью программы Олимп
  9. • Многомерный регрессионный анализ
  10. • Статистические методы, применяемые в экономическом анализе ...
  11. • Корреляционно-регрессионный анализ взаимосвязей ...
  12. • Статистическое изучение взаимосвязи социально ...
  13. • Методы маркетинговых исследований в регионе
  14. • Регрессионный анализ в моделировании систем. Исследование ...
  15. • Исследование посещаемости WEB сайта
  16. • Исследование взаимосвязи социального капитала и экономико ...
  17. • Математическое моделирование в управлении
  18. • Расчет коэффициента корреляции между притоком прямых ...
  19. • Использование корреляционных связей в комплексе с ядерно ...
Рефетека ру refoteka@gmail.com