Рефетека.ру / Промышленность и пр-во

Курсовая работа: Тепловая обработка сырья

Содержание


Введение

1. Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий

1.1 Материалы для бетона

1.2 Подбор состава бетона

1.3 Габаритные размеры изделий

2. Описание технологического процесса изготовления изделий

3. Выбор и обоснование режима ТВО

4. Определение габаритных размеров и требуемого количества тепловых агрегатов

5. Описание конструкции установки и порядок ее работы

6. Теплотехнический расчет

6.1 Расчет теплоты для нагрева изделий определяем по формуле

6.2 Расчет теплоты для нагрева форм

6.3 Расчет потерь теплоты через ограждающие конструкции установки

6.4 Теплота экзотермических реакций гидратации цемента

7. Определение удельных часовых расходов теплоты и теплоносителя

8. Расчет системы теплоснабжения

9. Методы контроля расхода пара дифманометром

10. Охрана труда и техника безопасности

Литература


Введение


Тепловую обработку строительных материалов и изделий целесообразно рассматривать в двух аспектах. С одной стороны следует проанализировать пути превращения сырьевых материалов и готовую продукцию или полуфабрикат в процессе тепловой обработки. Эта задача сугубо технологическая. С другой стороны необходимо рассмотреть работу тепловых установок (пропарочных, сушильных, обжиговых), которая определяется законами теплотехники.

При тепловой обработке в материалах и изделиях происходят физико-химические превращения, формируется структура, идут процессы тепло и массопереноса, возникает напряженное состояние. Взаимозависимость и сложность этих явлений предопределили на начальных этапах эмпирический характер развития данной отрасли науки. Постепенно накапливались экспериментальные данные об этих явлениях, причем из-за их сложности в основном изучалась динамика качественных изменений отдельных процессов.

Результаты исследований с использованием законов физики, химии и прикладных наук позволили создать предпосылки для математического описания процессов с целью создания теоретических основ, без которых невозможно определить пути оптимизации тепловой обработки. Создание прогрессивных технологий с минимальными затратами материальных и энергетических средств — одна из главных задач всех отраслей народного хозяйства, в том числе и строительной индустрии, к которой относится и производство строительных материалов и изделий. Одной из основных составных частей технологии строительной индустрии является тепловая обработка, на которую затрачивается около 30 % стоимости производства строительных материалов и изделии. Кроме того, тепловая обработка потребляет около 80 % от расходуемых на весь производственный цикл топливно-энергетических ресурсов. Таким образом, создание экономичных тепловых процессов, позволяющих получать изделия отличного качества с минимальными затратами топлива и электроэнергии, даст возможность существенно уменьшить капиталовложения в сферу строительства. Для создания таких тепловых процессов необходимы глубокие знания в области тепловой обработки строительных материалов и изделии, устройства тепловых установок, их конструирования и эксплуатации.

Рассматривая в целом процессы, проходящие в материалах и изделиях при тепловой обработке, необходимо помнить, что они являются следствием процессов, проходящих в тепловых установках. Изучение этой достаточно сложной взаимосвязи, порой еще мало исследованной, является главной задачей, которую приходится решать нашим ученым.

Первые попытки проанализировать работу тепловых установок были сделаны еще М. В. Ломоносовым и успешно продолжены В.Е. Грум-Гржимайло, который создал научную теорию, объясняющую работу печей и сушил. Д.И. Менделеев предложил формулу для определения теплотворной способности топлива.

Наука о процессах, проходящих в материалах при тепловой обработке, начала развиваться значительно позднее. Например, положения о кинетике процесса сушки были выдвинуты в 20-х годах П.С. Косовичем и А.В. Лебедевым применительно к испарению влаги из почвы. Представления о формах свели влагу с материалом, определяющие сушку, были впервые сформулированы акад. П.А. Ре-Линдером. Проф. Л.К. Рамзнн также впервые и 1918 г. предложил 1 – d – диаграмму влажного воздуха и создал методику расчета сушильных установок.

Большое значение для развития науки о сушильных процессах имели работы А.П. Ворошилова, М.И. Лурье, М.Ф. Казанского, П.Г. Ромапкова и А.В. Лыкова. Процессы, проходящие в материалах при обжиге, описаны в трудах Д.С. Беляпкина, П.П. Будникова, К.А. Нохратяна, О.П. Мчедлова-Петросяна н ряда других ученых. Эта область науки является пока еще наименее изученной.

Большое значение для производства сборного бетона и железобетона имеют исследования, связанные с тспловлажностной его обработкой, получившие широкое развитие в 50-е годы. Ряд основных положений об этих процессах сформулированы были несколько ранее А.В. Волженским и П.И. Боженовым, первым применительно к тепловой обработке силикатного, а вторым — автоклавного бетонов. С дальнейшим развитием представлений о процессах, проходящих при тепловлажностной обработке связаны труды С.А. Миронова, Л.А. Малининой, А.Д. Дмитровнча, И.Б. Заседателева, Н.Б. Марьямова и других ученых.

Накопленные знания о взаимосвязи тепловых процессов, проходящих в установках, с развивающимися в материалах, обширный экспериментальный материал, обобщенный на основе законов физики, химии и математики, создают основу для перехода к созданию моделей этих взаимосвязанных процессов и, следовательно, к решению конкретных задач по оптимизации тепловой обработки.

При производстве строительных изделий, деталей и материалов почти во всех случаях для перевода сырья в новое качество — готовую продукцию — применяют тепловую обработку. В большинстве случаев тепловая обработка дает возможность придать сырью новые, качественно отличные свойства, необходимые в строительстве. Такой процесс происходит за счет физических и физико-химических превращений в обрабатываемом материале, течение которых зависит от воздействия тепла.

Для теплового воздействия материал помещают в установку, которую в общем случае называют тепловой установкой. Различные физические и физико-химические превращения в материале требуют различного теплового воздействия. Поэтому в каждой тепловой установке создают свой необходимый для обработки продукции тепловой режим. Под тепловым режимом понимают совокупность условий теплового и массообменного воздействия на материал, как-то: изменение температуры среды, скорость течения газов или жидкости, омывающих материал, концентрацию газов, их давление. Следовательно, тепловые режимы представляют собой совокупность тепловых, массообменных и гидродинамических процессов, происходящих в тепловой установке.

Тепловой режим установки будет воздействовать на сырье и за счет физических и физико-химических превращений в нем оно превратится в готовую продукцию. Очевидно, изучая данную дисциплину, необходимо выяснить, как различные тепловые режимы воздействуют на разные материалы, какие процессы происходят в материалах при тепловой обработке, а также научиться определять наиболее эффективные режимы.


1. Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий


1.1 Материалы для бетона


Керамзит - это экологически чистый утеплитель. В переводе с греческого языка на русский "керамзит" переводится как "обожженная глина". Он представляет собой легкий пористый материал, получаемый при ускоренном обжиге легкоплавких глин.

По внешнему виду керамзит напоминает гравий, то есть представляет собой гранулы преимущественно округлой или овальной формы различного размера, поэтому часто его называют керамзитовый гравий. В технологическом процессе изготовления керамзита наблюдаются два явления: при резком тепловом ударе, подготовленной специальным образом глины, она вспучивается, чем достигается высокая пористость материала, а внешняя поверхность быстро оплавляется, что придает материалу достаточно высокую прочность и устойчивость к внешним воздействиям и создает почти герметичную оболочку. Поэтому качество керамзита во многом определяется точностью исполнения технологического процесса.

В зависимости от режима обработки глины можно получить керамзит различной насыпной плотности (объемным весом) - от 200 до 400 кг/куб. м. и выше. Чем ниже плотность вещества, тем он более пористый, а значит, обладает более высокими теплоизоляционными свойствами. Но тем сложнее при производстве получить необходимую прочность. Материал также характеризуется величиной керамзитовых гранул, которая колеблется от 2 до 40 мм, и в зависимости от их размера подразделяется на фракции, например 5-10 мм или 10-20 мм. Основываясь на размерах, продукцию делят на керамзитовые гравий, щебень и песок.

Гравий - это частицы округлой формы диаметром 5 - 40 мм, получаемые вспучиванием легкоплавких глин. Он морозоустойчив, огнестоек, не впитывает воду и не содержит вредных примесей. Керамзитовый щебень - это наполнитель произвольной формы (преимущественно угловатой) с размерами частиц 5 - 40 мм. Он получается путем дробления кусков вспученной массы керамзита.

Таким образом, керамзит - это уникальный керамический пористый гравий, который обладает следующими свойствами:

- легкость и высокая прочность;

- отличная тепло и звукоизоляция;

- огнеупорность, влаго- и морозоустойчивость;

- кислотоустойчивость, химическая инертность;

- долговечность;

- экологически чистый натуральный материал;

- высокое отношение качество/цена.

Анализ теплоизоляционных и механических свойств керамзита позволяет использовать этот материал на российском и зарубежном рынке для теплоизоляции крыш, полов и стен, фундаментов и подвалов. Установлено, что рациональное использование керамзита в качестве теплоизолирующего материала при строительстве обеспечивает сокращение теплопотерь более чем на 75 %.

Необходимо особенно отметить такое важное свойство керамзита как экологическая чистота материала. Ведь состав керамзита - это только глина и ничего более. Таким образом, керамзит - абсолютно безопасный, природный материал.


Таблица 1.1

Технические характеристики

Показатели Гравий керамзитовый


Технические требования Достигнутые показатели



8/20 мм 4/10 мм
1 Марка по насыпной плотности (насыпная плотность), кг/мі

M350

М400

320 – 340

360 – 370

330 – 350

360 – 370

2 Марка по прочности (прочность), МПа

П50 (М350)

П50 (М400)

1,2-1,3 П50

1,6-1,7 П75

1,3-1,4 П50

1,6-1,7 П75

3 Зерновой состав, % по массе

85 < d < 100

D < 10

2D не допускается

D от 8 до 10
4 Морозостойкость 15 циклов (F15), потеря массы гравия, % 8 1,35 1,6
5 Содержание водорастворимых сернистых и серно- кислых соединений в пересчете на SO3, % 1 0,04 0,04
6 Потеря массы гравия при кипячении, % 5 1-3 0,3-0,7
7 Радиационное качество, Аэфф., Бк/кг I класс материала


< 370 281 241
8 Коэффициент теплопроводности, Вт/м °С От 0,10 до 0,12

Вода для затворения бетонной смеси должна соответствовать требованиям ГОСТ 23732-79 «Вода для бетонов и растворов. Технические условия».

Рекомендуется применять питьевую воду. Можно использовать технические оборотные и природные минерализованные воды с допустимым содержанием примесей.

Количество солей, ионов Тепловая обработка сырья,Тепловая обработка сырья, взвешенных частиц не должно превышать значений, приведенных в табл. 1.2.


Таблица 1.2

Допустимое содержание примесей в воде

Назначение бетонов Растворимые соли Ионы Взвешенные частицы


Тепловая обработка сырья

Тепловая обработка сырья


Для напряженных железобетонных конструкций, а также бетоны на глиноземистом цементе 2000 600 350 200
Для конструкций с напрягаемой арматурой, в том числе для водосбросных сооружений и зоны переменного уровня воды массивных сооружений 5000 2700 1200 200
Для неармированных конструкций, к которым не предъявляются требования по ограничению образования высолов 10000 2700 3500 300

Водородный показатель рН воды должен быть не менее 4 и не более 12,5.

Допускается не более 10 мг/л органических поверхностноактивных веществ, сахаров, фенолов.

Для улучшения свойств бетонной смеси, затвердевшего бетона, ускорения твердения бетона, замедления или ускорения сроков схватывания вводятся химические добавки, применение которых регламентируется.


1.2 Подбор состава бетона


Различают номинальный лабораторный состав бетона, рассчитанный для сухих материалов, и производственно-полевой — для материалов в естественно-влажном состоянии. Лабораторный состав бетона определяют расчетно-экспериментальным методом, для чего вначале рассчитывают ориентировочный состав бетона, а затем уточняют его по результатам пробных замесов и испытаний контрольных образцов.


Исходные данные:

Керамзитовый бетон М250;

Фракция 10-20мм;

ОК=1-4 см;

Песок: сН=1450 кг/м3; сИ=2450 кг/м3;

Цемент: сН=1100 кг/м3; сИ=3100 кг/м3;

Керамзит: сН=600 кг/м3; сИ=1100 кг/м3;

Rц=40 МПа; Rb=19,3 МПа; Мк=2 мм.

Расчет состава керамзитобетона выполняют в такой последовательности:

вычисляют водоцементное отношение, расход воды, расход цемента, определяют расходы крупного и мелкого заполнителя на 1м3 бетонной смеси

1. Определим водоцементное отношение В/Ц – отношение массы воды к массе цемента из условий получения требуемого класса бетона в зависимости от активности цемента и качества материалов по формуле:


Тепловая обработка сырья (1)


где А1 и А2 – коэффициенты, учитывающие качество материалов, которые принимаются по таблице 4;

Rb – предел прочности бетона на сжатие, МПа (кгс/см2);

Rц – активность цемента, МПа (кгс/см2).


Таблица 1.3

Значения коэффициентов, учитывающих качество материалов

Характеристика материалов для бетона А1 А2

Высококачественные

Рядовые Пониженного качества

0,650,60 0,55 0,430,40 0,37

Примечания

а) К высококачественным материалам относят: портландцемент высокой активности с минимально допустимым количеством гидравлической добавки, щебень из плотных пород, песок плотный повышенной крупности, крупный и средней крупности. Заполнители должны быть не загрязненными, оптимального зернового состава.

б) К рядовым материалам относят: портландцемент средней активности или высокомарочный шлакопортландцемент, заполнители среднего качества, в том числе гравий.

в) К материалам пониженного качества относят: цементы низкой активности, непрочные крупные заполнители, мелкие пески


Рассчитаем водоцементное отношение по формуле (1).


Тепловая обработка сырья


2 Определим расход воды В, кг/м3, в зависимости от удобоукладываемости бетонной смеси, вида и крупности заполнителя ориентировочно по таблице 2.4.


Таблица 1.4

Водопотребность бетоннойсмеси

Марки по удобоукла-дываемости

Подви-

жность

ОК, см

Жест-кость, Ж

с.

Расход воды, кг/м3,при крупности, мм



гравия щебня



10 20 40 70 10 20 40 70
Ж4 31 и 150 135 125 120 160 150 135 130


более







Ж3 21-30 160 145 130 125 170 160 145 140
Ж2 11-20 165 150 135 130 175 165 150 145
Ж1
5-10 175 160 145 140 185 175 160 155
П1 1-4 4 и ме- 190 175 160 155 200 190 175 170
П2 5-9 нее 200 185 170 165 210 200 185 180
ПЗ 10-15 215 205 190 180 225 215 200 190
П4 16 и 225 220 205 195 235 230 215 205

более








Примечания

а Значения водопотребности приведены для бетонной смеси на портландцементе с нормальной густотой цементного теста 26-28 % и песке с Мк = 2.

б На каждый процент повышения нормальной густоты цементного теста расход воды увеличивается на 3-5 кг/м3 при уменьшении НГЦТ - уменьшается на 3-5 кг/м3.

в Увеличение модуля крупности песка на каждые 0,5 вызывает необходимость уменьшения расхода воды на 3-5 кг/м3, уменьшение - повышения расхода воды на 3-5 кг/м3


Согласно таблице 1.4, водопотребность для бетонной смеси с нормальной густотой цементного теста 26-28%, песком с модулем крупности Мк=2 и щебнем фракцией 10 – 20 составит В = 175+5=180 л.

3 Определим расход цемента Ц ,кг/м3, по известному В/Ц и водопотребности бетонной смеси:


Ц = В/(В/Ц)=180/0,77=234 кг


где В – расход воды, кг/м3;

В/Ц - отношение массы воды к массе цемента.

4 Определим расход крупного заполнителя Щ, кг/м3, по формуле


Тепловая обработка сырья446 кг,


где а – коэффициент раздвижки зерен щебня, который принимается по таблице 2.5;

Vпуст – пустотность щебня в рыхлонасыпанном состоянии, подставляется в формулу в виде коэффициента;


Тепловая обработка сырья


Тепловая обработка сырья– насыпная плотность щебня, кг/м3;

Тепловая обработка сырья– средняя плотность зерен щебня, кг/м3;


Таблица 1.5

Коэффициенты раздвижки зерен Тепловая обработка сырья для пластичных бетонных смесей на песке с Вп = 7 %

Расход цемента, кг/м3 Водоцементное отношение

0,3 0,4 0,5 0,6 0,7 0,8
250 - - - 1,26 1,32 1.38
300 - - 1,30 1,36 1,42 -
350 - 1,32 1,38 1,44 - -
400 1,31 1,40 1,46 - - -
500 144 1,52 1,56 - - -
600 1,52 1,56 - - - -

Примечания

а При других значениях В/Ц коэффициент а находят интерполяцией.

б При применении крупного песка с Вп < 7 % коэффициент а увеличивается на 0,03 на каждый процент увеличения Вп. При использовании мелкого песка с Вп > 7 % коэффициент а уменьшают на 0,03 на каждый процент увеличения Вп.

в Для жестких бетонных смесей при расходе цемента менее 400 кг/м3 коэффициент а принимают 1,05-1,15, в среднем 1,1.

5 Определим расход песка П, кг/м3, по формуле


Тепловая обработка сырья кг


где Ц, В, Щ – расход цемента, воды щебня в килограммах на 1м3 бетонной смеси;

сц, св, сп – истинная плотность цемента, воды, песка, кг/м3;

Тепловая обработка сырья– средняя плотность зерен щебня, кг/м3.

6 Определим теоретическую среднюю плотность бетонной смеси.

Определив расход всех компонентов (воды, цемента, крупного и мелкого заполнителя) на 1м3 бетонной смеси, вычисляем её расчетную среднюю плотность по формуле.


Тепловая обработка сырья кг/м3.


1.3 Габаритные размеры изделий


Тепловая обработка сырья

Рисунок 1 – Внутренняя стеновая панель


Vбет=Тепловая обработка сырья1,82 м3,

mбет=Тепловая обработка сырья3076кг.



2. Описание технологического процесса изготовления изделий


При формовании на кассетной установке с применением вибрации арматурного каркаса или виброгребенки, бетонную смесь следует равномерно распределить по всей длине формовочного отсека. При этом обеспечиваются лучшие условия для выхода защемленного в ней воздуха. Бетонную смесь необходимо подавать в формовочные отсеки небольшими порциями, в результате чего достигается минимальное вовлечение воздуха в формуемое изделие.

Под действием вибрации бетонная смесь ведет себя как вязкая жидкость и создает давление, передающееся на стенки. Чем интенсивнее вибрация, тем больше это давление.

Если же бетонная смесь подвергается слабой вибрации или вибрируется не весь ее объем (как это происходит при вибрации через арматурный каркас), то боковое давление бетонных смесей будет значительно меньше.

Увеличение времени вибрации вызвано необходимостью равномерного распределения смеси по формовочному отсеку.

После укладки и уплотнения бетонной смеси верхнюю поверхность изделий заглаживают и покрывают пленкой или брезентом, чтобы предотвратить интенсивное испарение влаги с поверхности бетона, уменьшить усадку, термические напряжения из-за неравномерности прогрева бетона и снизить охлаждение бетона. Получить дополнительный прирост прочности бетона можно, применяя выдержку бетонной смеси в формовочных отсеках, включая подачу пара в паровые рубашки через 2-6 ч. после окончания формования. При этом прирост прочности колеблется от 5 до 20%, существенно удлиняется время оборачиваемости установки и снижается ее производительность.

Повторное вибрирование свежеуложенной бетонной смеси, не подвергающейся тепловой обработке, приводит, в конечном счете, к улучшению свойств бетона. Прочность бетона на сжатие увеличивается на 20-70%, уменьшается усадка, в большинстве случаев улучшается или не изменяется сцепление арматуры с бетоном, повышается морозостойкость.

После тепловой обработки производят распалубку изделия при достижении им распалубочной прочности. Существенно улучшаются условия распалубки за счет применения вибрации. В этом случае механизм перемещения небольшим усилием, приложенным к разделительной стенке, отрывает ее от изделия. Примерно на 5 сек. включают вибратор, установленный на отодвигаемой стенке. После отвода первой стенки изделие слегка приподнимают мостовым краном, тележку мостового крана откатывают на небольшое расстояние. При этом возникает незначительное усилие отрыва. Затем включают на короткое время вибратор, если изделие не отделилось от стенки, вибрацию повторяют. Длительную вибрацию при распалубке применять не рекомендуется, т.к. некоторые панели могут подвергнуться большим резонансным колебаниям, приводящим к трещинам.

Затем происходит чистка и смазка форм. От состояния поверхности разделительных стенок формовочного отсека, бортовой оснастки и вида смазки зависит качество изделия. Наличие на стенках даже тонкого слоя цементного раствора приводит к увеличению количества пузырьков защемленного воздуха и их размеров на поверхности изделия. Чистка ведется щеткой, тельфером чистка ведется снизу вверх.

Для смазки на предприятиях применяют прямую эмульсию следующего состава: 20% продукта ЭКС-А (эмульсол кислый синтетический с кислотным числом 8-10), 79,5% воды мягкой или конденсата, 0,5% кальцинированной соды. При ее применении поверхность получается хорошего качества. Также применяют обратные эмульсии.

После чистки и смазки установка готова к укладке и формованию бетонной смеси. Цикл повторяется.

3. Выбор и обоснование режима ТВО


При назначении режима ТВО изделий из легких бетонов существенное влияние оказывают не только особенности применяемого цемента, класса бетона, удобоукладываемость бетонной смеси, но и структура бетона, наличие в его составе вовлеченного воздуха и его объем, прочность и объемная концентрация крупного заполнителя, гидравлическая активность мелкого заполнителя.

Для обеспечения минимальной отпускной прочности следует правильно выбирать режим тепловой обработки бетона.

Такой режим может, осуществляется в тепловых установках периодического и непрерывного действия (в камерах ямного, туннельного и щелевого типов), оборудованных регистрами, ТЭНами, колориферами или теплогенераторами для сжигания природного газа. Максимальная температура среды в камерах сухого прогрева может быть повышена в зависимости от необходимой длительности тепловой обработки до 150°С. С целью обеспечения заданной влажности изделий камеры рекомендуется оборудовать системой вентиляции.

При тепловой обработке в термоформах не следует укрывать открытую поверхность изделий.

В целях экономичного использования тепловой энергии при назначении режимов ТВО следует учитывать последующее нарастание прочности бетона изделий вследствие его остывания в цехе в течение 12 ч.

В зависимости от способа тепловой обработки выбираем температуру и продолжительность изотермического прогрева. Для пропаривания в камерах паром температура tИЗ=85°С. При этом продолжительность изотермического прогрева t2=10ч. продолжительность изотермического прогрева должна определятся временем, необходимым для достижения в центре изделий температуры больше 80°С.

Скорость остывания поверхности изделий после изотермического прогрева не должна быть больше 40°С/ч. При выгрузке изделий из камеры температурный перепад между поверхностью изделий и температурой окружающей среды не должен превышать 40°С.

Температуру окружающей среды принимаем равной t0=20°C. Так как толщина изделия d=140 мм, следовательно длительность охлаждения в камере t3=4 ч.

Выбранный режим проверяем расчетом средних температур по сечению изделий к концу основных периодов ТВО:

подъема температуры;

изотермической выдержки.

Расчет производим, используя критериальные зависимости теплопроводности при нестационарных условиях. Определяем критерий Фурье:


Тепловая обработка сырья,


где:

ф – продолжительность расчетного периода ТВО, ч;

R –определяющий размер изделия, м;

Тепловая обработка сырья,

б – коэффициент температуропроводности бетонной смеси, м2/с. Определяем по формуле:


Тепловая обработка сырья,


где:

л – коэффициент теплопроводности твердого бетона (л=1,95), Вт/мМєС;

Тепловая обработка сырья – удельная теплоемкость бетона (Тепловая обработка сырья=0,84),к Дж/кгМєС;

Тепловая обработка сырья – средняя плотность бетона, кг/м3.

Для первого периода ТВО:


Тепловая обработка сырья ,м2/с,

Тепловая обработка сырья.


Определяем критерий Био:


Тепловая обработка сырья,


где:

б=150 – коэффициент теплопроводности от паровоздушной среды к поверхности изделия, Вт/м2·С.

Для первого периода ТВО:


Тепловая обработка сырья.


С помощью критериев и монограмм находим безразмерные температуры на поверхности и в центре изделия:


Тепловая обработка сырья,

Тепловая обработка сырья,


где:

Тепловая обработка сырья– температура паровоздушной среды;

Тепловая обработка сырья– температура поверхности изделия;

Тепловая обработка сырья– температура бетона в начале расчетного периода;

Тепловая обработка сырья– температура в центре изделия.

Из графика для определения температуры на поверхности изделия:


Тепловая обработка сырья.


Температура паровоздушной среды в первый период ТВО Тепловая обработка сырья=90°С, а температура бетона в начале расчетного периода Тепловая обработка сырья=20°С, следовательно:


Тепловая обработка сырья,

Тепловая обработка сырья °С.


Определим температуру в центре изделия в I-й период ТВО аналогичным образом, т.е. из графика для определения температуры в центре изделия известно, что:


Тепловая обработка сырья,

Тепловая обработка сырья,

Тепловая обработка сырья °С.


Режим ТВО выбран правильно, если к концу I периода температура поверхности изделия равна температуре среды (допускается +10 –10 °С). Проверка:


Тепловая обработка сырья °С


условие выполняется. Следовательно, режим ТВО выбран верно.

Произведем аналогичный расчет для второго периода ТВО. Критерии Фурье и Био:


Тепловая обработка сырья,

Тепловая обработка сырья.


Находим безразмерные температуры на поверхности и в центре изделия:


Тепловая обработка сырья, Тепловая обработка сырья,


Следовательно:


Тепловая обработка сырья; Тепловая обработка сырья;

Тепловая обработка сырья°С.

Тепловая обработка сырья °С.


Вывод: режим ТВО выбран правильно, так как к концу второго периода


Тепловая обработка сырья-Тепловая обработка сырья=84–78=6 °С, что в пределах допустимого, т.е. (Тепловая обработка сырья-Тепловая обработка сырья) и

(Тепловая обработка сырья-Тепловая обработка сырья) Тепловая обработка сырья °С.


В результате получаем:


Тепловая обработка сырья, ч.


Рассчитаем средние температура бетона за соответствующие периоды ТВО:


Тепловая обработка сырья


4. Определение габаритных размеров и требуемого количества тепловых агрегатов


Габариты кассетной установки выбираем по габаритам пропариваемых изделий из таблицы 11.8 (ТКП 45-5.03-13-2005):

Габариты панели внутренней стеновой :

- длина—5200 мм;

- ширина—2500 мм;

- толщина—140 мм.

Следовательно выберем кассетную установку типа СМЖ-3212:

- габаритные размеры - Тепловая обработка сырьям;

- количество изделий – 10;

-Тепловая обработка сырьят/мі

Определяем число установок:


Тепловая обработка сырья


где:

Тепловая обработка сырья – годовая производительность цеха (Тепловая обработка сырья), м3;

Тепловая обработка сырья – продолжительность цикла работы установки;


Тепловая обработка сырья


Тепловая обработка сырьявремя загрузки и выгрузки изделия (Тепловая обработка сырья);

Тепловая обработка сырья– суммарный объем бетона одновременно обрабатываемого в одной установке, м3; Тепловая обработка сырьям3

м – число рабочих дней в году (м=253), дн;

z – продолжительность рабочей смены (z=8), ч;

к – число смен (к=2);

Если D>5, то резерв 1-2шт.


Тепловая обработка сырья.


Требуемое количество кассетных установок составляет 4 камеры. Т.к. число установок Д<5, то резерв не предусматривается.


5. Описание конструкции установки и порядок ее работы


Тепловая обработка сырья

Рисунок 2 – Схема кассетной установки


1 – станина; 2 – паровые отсеки (рубашки); 3 – разделительная стенка;

4 – отсек для формования изделия; 5 – теплоизолирующая стенка;

6 – фиксирующие упоры; 7 – механизм сжатия; 8 – механизм привода.


Кассетные установки применяются для формования и тепловлажностной обработки панелей, лестничных маршей, ребристых плит и ряда других изделий, применяемых в строительстве. Как формование, так и тепловлажностная обработка осуществляются в кассетах в вертикальном положении. Масса сформованного бетона находится в кассете в замкнутом пространстве, что способствует более интенсивной тепловлажностной обработке. Форма-кассета (рис. 2) состоит из ряда отсеков, образованных стальными вертикальными стенками, причем отсеки, используемые для формования бетона, чередуются с отсеками для пара (паровая рубашка). Крайние отсеки теплоизолируют. Бетон подают в отсеки 4 и после уплотнения подвергают тепловой обработке. Для тепловой обработки пар подают в отсеки 2 и прогревают с двух сторон сразу два изделия, разделенные стальной перегородкой 3.

Тепловлажностная обработка складывается из двух периодов: первый — прогрев, второй — изотермическая выдержка, после чего кассету разбирают, а изделия распалубливают. В кассетах изделия не охлаждают. Время тепловой обработки бетона в кассетах, составляет 6—8 ч, поэтому выгружают изделия с прочностью 50-60% проектной. Отправлять такие изделия на стройку невозможно, однако дальнейшая выдержка в кассетах приводит к снижению их оборачиваемости. Поэтому распалубленные изделия ставят в специальную яму-камеру вертикально, вплотную друг к другу. При этом изделия охлаждаются очень медленно и продолжают в течение 15—18 ч набирать прочность. К концу такого добора прочности они набирают так же, как и изделия, выгружаемые из камер, прочность, равную 0,7—0,75 марочной, и, согласно принятым нормам, могут быть отправлены на строительные площадки.

Прогрев изделий через стенку в кассетах паром из-за большого расслоения температур по высоте 30—40°С затруднен, поэтому применяют эжекторное пароснабжение кассет. Схема такого пароснабжения показана на рис. 3. Пар из паропровода 1 подается в эжектор 2 и эжектирует паровоздушную смесь, отбираемую из паровых отсеков по трубопроводу 13. Смесь подается в паровые отсеки, отдает теплоту, а сама через трубопроводы 11 отбирается за счет разрежения, создаваемого эжектором. Часть отработанной смеси через трубопровод 12 выбрасывается в атмосферу. Такое пароснабжение кассетных установок дает возможность снизить неравномерность температур между верхом и низом кассет до 5—7°С, что вполне приемлемо для тепловлажностной обработки.

Обогревают изделия в кассетах через металлическую разделительную стенку, верх изделия на время тепловой обработки изолируют. Таким образом, массообмена между теплоносителем и материалом и материалом и окружающей средой практически не происходит. Наиболее выгоден и прост в исполнении электрообогрев. В этом случае в паровые отсеки вместо подачи пара монтируют ТЭНы или любые другие электронагреватели и уже ими через стенку нагревают бетон. При любом способе изделия из бетона нагревают до 80—90 °С в течение 1,5—2 ч и далее выдерживают при этой температуре 4—6 ч. Расход в кассетах пара или любого другого источника теплоты в пересчете на теплоту, выделяемую паром, составляет 150—250 кг на 1 м3 бетона.


Тепловая обработка сырья

Рисунок 3 – Схема эжекторного пароснабжения кассетной установки


1 - подача свежего пара в эжектор; 2 - эжектор; 3 - диффузор; 4 - подача смеси пара и рециркулята в паровые отсеки; 5 - отбор конденсата; 7 - конденсатопровод; 8 - паровые отсеки; 9 - нагреваемые изделия; 10 - прокладка; 11 - отбор паровоздушной смеси из паровых отсеков; 12 - трубопровод с вентилем для выпуска части отработанного теплоносителя в атмосферу; 13 - подача паровоздушной смеси (рециркулята) в эжектор.


6. Теплотехнический расчет


В ходе теплотехнического расчета составляются уравнения теплового баланса для каждого периода ТВО или для каждой из зон ТВО. Уравнение составляется для одного теплового агрегата, работающего в неблагоприятных условиях.

Количество теплоты, расходуемое за каждый период или в каждой зоне ТВО, определяется по следующей формуле:


Тепловая обработка сырья,


где:

Тепловая обработка сырья – суммарный расход теплоты за период или в соотвествующей зоне ТВО, кДж/ч;

Тепловая обработка сырья– количество теплоты, необходимое соответственно для нагрева бетона, формы, ограждений, на потери в окружающую среду, на испарение воды затворения, на нагрев среды установки;

Тепловая обработка сырья – количество теплоты, выделяющееся в процессе реакции гидратации цемента;

в – коэффициент запаса на нерасчитываемые затраты теплоты

(в=0,5-1,2), принимаем в=1,1.

Проведем теплотехнический расчет для установки периодического действия.



6.1 Расчет теплоты для нагрева изделий определяем по формуле:


Тепловая обработка сырья, кДж,

где:

Тепловая обработка сырья– средневзвешенная теплоемкость бетонной смеси

(Тепловая обработка сырья=0,84), кДж/кг∙К;

Тепловая обработка сырья – масса бетонных изделий, кг.


Тепловая обработка сырьясбVб=18,2·1690=30758 кг,


Vб – суммарный объем бетона изделий в зоне;

Тепловая обработка сырья – средние значения температур в начале и конце соответствующего периода или зоны, єС.

Расчет теплоты для нагрева изделий производится по периодам:

Для первого периода:


Тепловая обработка сырья; Тепловая обработка сырья°С,


следовательно, для первого периода теплота для нагрева изделия равна:


Тепловая обработка сырья, кДж.


Для второго периода:


Тепловая обработка сырья; Тепловая обработка сырья °С,


Следовательно, для второго периода теплота для нагрева изделий равна:


Тепловая обработка сырья, кДж.


6.2 Расчет теплоты для нагрева форм


Определяется по формуле:


Тепловая обработка сырья, кДж,


где:

Тепловая обработка сырья – теплоемкость материала формы (СФ=См=0,46), кДж/кг·К;

Тепловая обработка сырья – масса форм, кг.

Тепловая обработка сырья, кг,


где:

Тепловая обработка сырья– объем бетона одного изделия, м3;

Тепловая обработка сырья – удельная металлоемкость форм. Для балок принимаем

Тепловая обработка сырья=1,4 т/м3.

Тепловая обработка сырья – конечные и начальные температуры форм, °С; (принимаются равным температуре поверхности изделий в конце и начале периода).


Тепловая обработка сырья кг;


Для первого периода:


Тепловая обработка сырья кДж.

Для второго периода:


Тепловая обработка сырья, кДж.


6.3 Расчет потерь теплоты через ограждающие конструкции установки.


Тепловая обработка сырья


где К=Тепловая обработка сырья;

Ri - термическое сопротивление слоя ограждения Тепловая обработка сырья;

Fi – площадь поверхности ограждения;

tср – температура среды установки, С;

tн - температура наружного воздуха, С.


Тепловая обработка сырья


Тепловая обработка сырья - коэффициенты теплоотдачи внутренней и наружной поверхности ограждения,

Тепловая обработка сырья и Тепловая обработка сырья=10 Вт / м2 С

Тепловая обработка сырья и Тепловая обработка сырья - толщины слоев ограждения и коэффициент теплопроводности материалов.

Т.к. утепляем минераловатными плитами, тоТепловая обработка сырья=0,05 Тепловая обработка сырья=0,05

Рассчитаем R1


R1 =Тепловая обработка сырьяТепловая обработка сырья

Тепловая обработка сырья


Для первого периода


QIпот=Тепловая обработка сырьякДж/ч


Для второго периода


Q11пот= Тепловая обработка сырьякДж/ч


6.4 Теплота экзотермических реакций гидратации цемента


Тепловая обработка сырья, кДж/ч,


где:

Тепловая обработка сырья=250 – теплота гидротации цемента при его твердении в нормальных условиях в течении 28 суток (принимается равной марке цемента), кДж/кг;

Тепловая обработка сырья– расход воды и цемента в бетоне, кг/м3;

Тепловая обработка сырья – средняя температура бетона за период обработки,°С;

Тепловая обработка сырья – объем бетона в соответствующий период обработки, м3.

Для первого периода:


Тепловая обработка сырья кДж.


Для второго периода:


Тепловая обработка сырья кДж.


Следовательно, суммарный расход теплоты:


Тепловая обработка сырья кДж.

Тепловая обработка сырья кДж.



7. Определение удельных часовых расходов теплоты и теплоносителя


1. Часовые расходы теплоты, кДж/ч:


Тепловая обработка сырьякДж/ч,

Тепловая обработка сырья кДж/ч,


где:

Тепловая обработка сырья и Тепловая обработка сырья– расходы тепла в соответствующий период обработки, кДж/ч.

2. Часовые расходы теплоносителя (пара), кг/ч:


Тепловая обработка сырьякг/ч,

Тепловая обработка сырьякг/ч,


где:

Dh – используемое теплосодержание единицы теплоносителя, кДж/кг;


Тепловая обработка сырьякДж/кг,


где:


Тепловая обработка сырьякДж/кг;

Тепловая обработка сырья, кДж/кг;


Тепловая обработка сырья=640 кДж/кг – теплосодержание теплоносителя при заданном Рц=0,58 МПа;

Тепловая обработка сырья=2109 – теплота парообразования при заданном Рц;

Тепловая обработка сырья – степень сухости пара в соответствии с заданием (Тепловая обработка сырья=0,86).

3. Удельный расход тепла и теплоносителя (пара) определяем по формулам:


Тепловая обработка сырья, кДж/м3,

Тепловая обработка сырья, кг/м3.



8. Расчет системы теплоснабжения


В ходе расчета определяются диаметры магистральных и подводящих паропроводов.

Площадь поперечного сечения паропровода определяется по формуле:


Тепловая обработка сырья, м2


где GП – расход пара на расчетном участке паропровода, кг/ч;


Тепловая обработка сырья кг/ч;


rСР=3,169 – средняя плотность пара на участке, кг/м3 (принимается по заданному давлению PЦ);

u - скорость пара, м/с (u=35 м/с – магистральный паропровод; u=30 м/с - подводящий).

Расчет диаметров производим из условия обеспечения принятой скорости движения пара.


Тепловая обработка сырья м2;

Тепловая обработка сырья м;


по ГОСТ 3262-75 принимаем диаметр трубы 101,3 мм.


Тепловая обработка сырья м2;


Тепловая обработка сырья м;


по ГОСТ 3262-75 принимаем диаметр трубы 114 мм.


9. Методы контроля расхода пара дифманометром


Давление — наиболее распространенный измеряемый параметр. Без измерения давления сжигаемого газа невозможна безопасная работа газотопливного хозяйства. В котельных установках измеряют давление пара в барабане, по которому контролируют эффективность сжигания топлива и теплоотдачи к трубам в топке, а также безопасность работы котельного оборудования, давление перегретого первичного и вторичного пара для определения экономичности работы энергоблока, отложений солей на внутренней поверхности трубопроводов. Для оценки работоспособности насосов и вентиляторов измеряют давление питательной воды, пара для эжекторов и продувки форсунок, воздуха после воздухоподогревателя, т. е. во всех напорных линиях трубопроводов, и разрежение дымовых газов в верхней части топки, вакуум в конденсаторе турбины.

Давление как физическая величина определяется в виде энергии вещества (жидкость или газ), отнесенной к единице объема, и является наряду с температурой основным параметром его физического состояния. Воздействие давления вещества на внешний объект проявляется в виде силы F, действующей на единицу площади S, т. е. Р=F/S.

В СИ за единицу давления принят Паскаль (Па). Паскаль давление силы в один Ньютон на площадь в один квадратный метр (Па= 1 Н/м2). Широко применяют кратные единицы кПа и МПа.

При измерениях различают абсолютное, вакуумметрическое и избыточное давления. Под абсолютным давлением понимается полное давление, которое равно сумме атмосферного и избыточного Рабс=Р + Ратм. Вакуумметрическое давление ниже атмосферного РВ=Ратм — Рабс

Приборы давления в зависимости от измеряемой величины разделяют на манометры (для измерения избыточного или абсолютного давления), барометры (для измерения атмосферного давления), вакуумметры (для измерения вакуумметрического давления).

Манометры, предназначенные для измерения малых избыточных давлений (до 40 кПа), называют напоромероми, а предназначенные для измерения малых вакуумметрических давлений (до 40 кПа) — тягомерами. Приборы давления, которые имеют двустороннюю шкалу с пределами измерения ±20 кПа, называют тягонапоромерами (значение нуль на шкале соответствует атмосферному давлению). Для измерения разности давлений используют дифференциальные манометры (дифманометры).

Дифманометр - дифференциальный манометр, прибор для измерения разности (перепада) давлений; применяется также для измерений уровня жидкостей и расхода жидкости, пара или газа по методу перепада давлений. По принципу действия различают дифманометры: жидкостные, в которых измеряемое давление или разрежение уравновешивается столбом жидкости, и механические, в которых давление уравновешивается силами упругости различных чувствительных элементов — мембраны, пружины, сильфона. Упругая деформация чувствительного элемента — величина, пропорциональная измеряемому давлению.

Жидкостные дифманометры разделяются на трубные, поплавковые, кольцевые и колокольные. Трубные дифманометры бывают двухтрубные (U-образные) и однотрубные (с сосудом и вертикальной трубкой и с сосудом и наклонной трубкой, служащей для увеличения точности отсчёта при измерении малых величин). Действие двухтрубного дифманометра (рисунок 4) основано на использовании сообщающихся сосудов, заполненных жидкостью, столб которой одновременно является гидравлическим затвором и создаёт гидростатическое давление, противодействующее измеряемому. Один конец U-образной трубки, заполненной жидкостью, соединяют с замкнутым пространством, в котором надо измерить избыточное давление, а второй остаётся открытым (под барометрическим давлением). Разность уровней жидкости в трубках показывает избыточное давление ризб = рабс — рбар = р; р = hсg, где h — разность уровней жидкости, с — плотность заполняющей жидкости, g — ускорение свободного падения. Уравнение для однотрубного дифманометра с сосудом и вертикальной трубкой (рисунок 5) аналогично уравнению для двухтрубного дифманометра. Величина перемещения жидкости в трубке однотрубного дифманометра прямо пропорциональна измеряемому перепаду давлений и зависит от соотношения квадратов диаметров или площадей сечения трубки и сосуда: f/F = d2/D2. Чтобы упростить измерения, обычно принимают соотношение, при котором h2 будет отличаться от h1 не более чем на 1%; поэтому величиной h1 пренебрегают и отсчёт производят только по уровню жидкости в трубке. Для исключения погрешности шкала изготовляется с делениями, равными не 1 мм, а меньше (0,9 мм). Диапазон измерений U-образных дифманометров до 93 кн/м2 (700 мм рт. ст.) при давлении среды до 15 Мн/м2 (150 кгс/см2). Точность отсчёта в двух трубках ± 1 мм.

Поплавковый дифманометр по принципу действия аналогичен однотрубному дифманометру с сосудом и вертикальной трубкой, только для измерения служит поплавок, передающий изменение уровня жидкости в сосуде на стрелку прибора. Диапазон измерения перепадов давления от 0 до 133 кн/м2 (от 0 до 1000 мм рт. ст.), при давлении среды до 16 Мн/м2 (160 кгс/см2). Основная приведённая погрешность ± 1,5—2%.

Кольцевой дифманометр, или «кольцевые весы», имеет чувствительный элемент в виде полого кольца с перегородкой (рисунок 6). В нижней части кольца, заполненного жидкостью (вода, масло, ртуть), укреплён компенсационный груз. При p1 = p2 уровень жидкости в обеих частях кольца одинаков, а центр тяжести груза находится на вертикальной оси, проходящей через центр кольца. При p1 > p2 жидкость в левой части опустится, а в правой поднимется. Усилие, создаваемое действием разности давлений на перегородку, вызывает момент, стремящийся повернуть кольцо по часовой стрелке. Диапазон измерения перепадов давлений: для низкого давления (с водяным заполнением) до 1,6 кн/м2 (160 кгс/м2) при давлении среды до 150 кн/м2 (15000 кгс/м2); для среднего (с ртутным заполнением) — до 33 кн/м2 (250 мм рт. cт.) при давлении среды 3,2 Мн/м2 (32 кгс/см2). Основная приведённая погрешность ± 0,5—1,5%.

Колокольный дифманометр (рисунок 7) представляет собой колокол, погружённый в жидкость и перемещающийся под влиянием разности давлений внутри (большее) и снаружи (меньшее) колокола. Противодействующая измеряемому давлению сила создаётся утяжелением колокола (гидростатическое уравновешивание) или деформацией пружины, на которой подвешивается колокол (механическое уравновешивание). Диапазон измерения перепада давлений от 40 н/м2 до 4 кн/м2 (от 4 до 400 кгс/м2) при давлении среды от 10 кн/м2 до 0,3 Мн/м2 (от 1000 кгс/м2 до 3 кгс/см2).

Механические дифманометры разделяются на мембранные с плоской упругой металлической мембраной (рисунок 8) и с неметаллической мембраной и сильфонные. В мембранных дифманометрах упругая металлическая мембрана прогибается под влиянием измеряемого давления, по величине прогиба определяют давление. В некоторых конструкциях дифманометров мембрана служит только для разделения камер. Противодействующую силу при деформации создаёт тарированная цилиндрическая спиральная пружина, которая разгружает мембрану. Некоторые мембранные дифманометры имеют защиту от односторонней перегрузки и могут применяться для измерения не только перепадов, но и избыточных давлений. Диапазон измерения давления от 0 до 6,3 кн/м2 (0—630 кгс/м2) и от 0,16 до 0,63 Мн/м2 (1,6—6,3 кгс/см2); диапазон перепада давлений до 133 кн/м2 (1000 мм рт. cт.) при максимальном давлении среды до 60 Мн/м2 (600 кгс/см2). Основная приведённая погрешность ± 1,5%. Д. с неметаллическими мембранами (из резины и т.п. материалов) имеют только цилиндрическую спиральную пружину, не воспринимают изгибающих моментов и сжимающих усилий и работают только на растяжение. Для увеличения перемещения они изготовляются гофрированными и имеют жёсткий центр, образованный двумя металлическими дисками. Диапазон измерений перепада давлений до 133 кн/м2 (1000 мм рт. cт.) при давлении среды до 6,4 Мн/м2 (64 кгс/см2). Основная приведённая погрешность ± 1—2%.

Сильфонные дифманометры имеют чувствительный элемент — гофрированную металлическую коробку (сильфон) с тарированной цилиндрической спиральной пружиной. Сильфон разделяет полость дифманометра на две камеры. Большее давление подводится в полость над сильфоном, а меньшее — внутрь. Под действием разности давлений сильфон прогибается на величину, пропорциональную измеряемому давлению. Диапазон измерений до 25 кн/м2 (2500 кгс/м2) при давлении среды до 32 Мн/м2 (320 кгс/см2). Основная приведённая погрешность ± 0,5—1%.

Поплавковые, кольцевые, колокольные и механические дифманометры изготовляются показывающими, самопишущими и бесшкальными (с электрической или пневматической дистанционной передачей показаний), с электрическим контактным устройством. Дифманометры для измерения расхода по методу переменного перепада выпускаются с интегрирующими и суммирующими устройствами. Дальнейшее развитие конструирования дифманометров идёт по пути усовершенствования механического дифманометра.


Тепловая обработка сырья

Рисунок 4 - Двухтрубный U-oбразный дифманометр


Тепловая обработка сырья

Рисунок 5 - Дифманометр с сосудом и вертикальной трубкой


Тепловая обработка сырья

Рисунок 6 - Схема кольцевого дифманометра


Тепловая обработка сырья

Рисунок 7 - Схема колокольного дифманометра


Тепловая обработка сырья

Рисунок 8 - Дифманометр с упругой мембраной и электрической передачей показаний

10. Охрана труда и техника безопасности


Тепловые установки на заводах строительных материалов и изделий являются агрегатами повышенной опасности, так как их работа связана с выделением теплоты, влаги, пыли, дымовых газов. Поэтому условия труда при эксплуатации таких установок строго регламентируются соответствующими правилами и инструкциями. Контроль за соблюдением правил и инструкций по охране труда и технике безопасности осуществляется органами государственного надзора и общественными организациями, которые и разрабатывают эти нормы.

Согласно действующим нормативам, в цехах, где размещаются тепловые установки, необходимо иметь: паспорт установленной формы с протоколами и актами испытаний, осмотров и ремонтов на каждую установку; рабочие чертежи находящегося оборудования и схемы размещения КИП; исполнительные схемы всех трубопроводов с нумерацией арматуры и электрооборудования; инструкции по эксплуатации и ремонту. В таких инструкциях должно быть краткое описание установок, порядок их пуска, условия безопасной работы, порядок остановки, указаны меры предотвращения аварии. Кроме того, инструкции должны содержать четкие указания о порядке допуска к ремонту установок, о мерах безопасного обслуживания и противопожарных мероприятиях.

На стадии проектирования предусматриваются нормы безопасной работы и эксплуатации тепловых установок. Каждая тепловая установка разрабатывается с таким расчетом, чтобы она создавала оптимальные условия ведения технологического процесса и безопасные условия труда. Для этого необходимо, чтобы поверхности установок были теплоизолированы и имели температуру не выше 40 °С.

Проектировать топки, сушила, печи, в которых используются продукты горения топлива, разрешается только на давление менее атмосферного (разрежение). Установки для тепловлажностной обработки проектируют с обязательной герметизацией. Эти установки оборудуют вентиляцией рабочего пространства, которая включается перед выгрузкой изделий и тем самым позволяет удалять пар из установки.

Оборудование тепловых установок проектируют с ограждением, а его включение в работу должно сопровождаться звуковой и световой сигнализацией. Площадки для обслуживания, находящиеся выше уровня пола, оборудуют прочным ограждением и сплошной обшивкой по нижнему контуру.

Отопление и вентиляция цехов, в которых устанавливают тепловые установки, необходимо рассчитывать с учетом выделения теплоты, испарения влаги и выделения пыли. Электрооборудование тепловых установок проектируют с заземлением. Все переносное освещение делают низковольтным.

Электрооборудование тепловых установок должно быть запроектировано с ограждением и заземлением.

Особое внимание при проектировании тепловых установок следует уделять очистке работающих теплоносителей от уносов пыли и мелких частиц материала. Согласно нормативным указаниям, для тепловых установок следует проектировать специальные очистные устройства.

При эксплуатации тепловых установок в цехах, где они расположены, кроме соблюдения требований, упомянутых в общих положениях, обязательно должны быть вывешены на видном месте инструкции по правилам эксплуатации установок и охране труда. Весь обслуживающий персонал тепловых установок допускается к работе только после изучения, а также после обязательного документального оформления проверки его знаний.

Требования к охране труда при эксплуатации ямных пропарочных камер, пакетов, термоформ и кассет

Крышки ямных пропарочных камер должны быть достаточно герметичны и оборудованы водяными затворами. На стенах ямных камер предусматривают скобы для спуска рабочих при ремонте и чистке. Каждую такую камеру оборудуют вентиляцией.

Туннельные и щелевые камеры снабжают блокировкой снижателей и подъемников для загрузки форм-вагонеток. Все камеры, пакеты и кассеты должны иметь герметичные системы подвода пара, оборудованные надежными вентилями. В цехах, где расположены камеры, кассеты, пакеты и другие установки, обязательно устраивают приточно-вытяжную вентиляцию.

Электрооборудование и электроприборы, размещенные в цехах, где производят тепловлажностную обработку, должны быть рассчитаны на работу во влажной среде. Электродвигатели должны иметь обязательное заземление.

В цехах, где расположены установки для тепловлажностной обработки, вывешивают инструкции по охране труда при обслуживании данных тепловых установок.


Литература


1. В.В. Перегудов, М.И. Роговой «Тепловые процессы и установки в технологии строительных изделий и деталей». М., Стройиздат, 1983.

2. В.Н. Чубуков, В.Н. Основин, Л.В. Шуляков «Строительные материалы и изделия» Мн., Дизайн ПРО, 2000.

3. Справочник по технологии сборного железобетона. Под общ. ред. Стефанова Б.В., Киев, Вища школа, 1978.

4. Общесоюзные нормы технологического проектирования предприятий сборного железобетона (ОНТП-7-80). М., Стройиздат, 1983.

5. Рекомендации по снижению расхода тепловой энергии в камерах для тепловой обработки железобетонных изделий. ВНИИЖБ., М., Стройиздат, 1984.

6. Пособие по тепловой обработке сборных железобетонных конструкций и изделий (к СНиП 3.09.01-85). ВНИИЖБ., М., 1989.

Рефетека ру refoteka@gmail.com