Рефетека.ру / Физика

Курсовая работа: Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Национальный исследовательский Томский политехнический университет

Факультет - Энергетический институт

Направление (специальность) - Оптимизация развивающихся систем электроснабжения

Кафедра - Электроснабжения промышленных предприятий


Курсовой проект по курсу

Специальные вопросы электроснабжения


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Студент гр. 9М300

Мельничук И.М.

Принял профессор

Кабышев А.В.


Томск - 2010


Содержание


Введение

Исходные данные

1. Технико-экономическое обоснование выбора напряжения питающей линии ГПП предприятия

1.1 Выбор напряжения питающей линии ГПП предприятия

1.2 Расчет по суточному графику нагрузки

1.3 Выбор номинальной мощности трансформаторов ГПП по графику нагрузки

1.4 Проверка возможности перегрузки выбранных трансформаторов работать с перегрузкой по заданному графику нагрузки

1.5 Составление схемы внешнего электроснабжения и приемной подстанции

1.6 Экономический режим работы трансформаторов

1.7 Распределение нагрузок между параллельно работающими трансформаторами

1.8 Выбор сечения проводов ВЛЭП 35 и 110 кВ

1.9 Определение суммарных приведенных затрат на сооружение воздушной ЛЭП

1.10 Определение суммарных приведенных затрат на установку оборудования

1.11 Выбор оптимального варианта питающего напряжения ГПП

2. Технико-экономическое обоснование выбора устройств компенсации реактивной мощности в системе электроснабжения предприятия

2.1 Расчет реактивной мощности, поставляемой энергосистемой предприятию, определение вариантов суммарной мощности компенсирующих устройств на стороне 0,4 кВ

2.2 Технико-экономическое сравнение вариантов компенсации реактивной мощности

2.3 Распределение мощности батарей конденсаторов по узлам нагрузки сети напряжением 0,4 кВ

Заключение

Список литературы


Введение


При проектировании, оптимизации, реконструкции и техническом перевооружении электроснабжения предприятия помимо выбора основного оборудования и выбора схемы электроснабжения важным является также технико-экономическое обоснование выбора той или иной схемы электроснабжения, питающего напряжения, а следовательно и выбора основного оборудования.

Как правило, для технико-экономического сопоставления намечают два и более вариантов электроснабжения (питающего напряжения, схемы электроснабжения, трансформаторов подстанций, устройств и схем компенсации реактивной мощности). Такое сравнение позволяет выбрать наиболее эффективный вариант.

Техническое сопоставление основано на сравнении режимов работы, показателей и характеристик оборудования. Выбирается вариант с наиболее эффективными и наилучшими показателями работы оборудования.

Экономическое сравнение основано на расчете стоимости реализации варианта (по приведенным затратам) и выбирается вариант с минимумом приведенных затрат. Оценка базируется на двух основных показателях: капитальных вложениях для создания производства и издержек производства продукции.

Варианты системы электроснабжения, подлежащие сопоставлению, должны соответствовать требованиям нормативных документов и руководящих указаний по проектированию. Рассматриваемые варианты должны обеспечивать одинаковый энергетический эффект у потребителей: полезный отпуск электроэнергии и мощности в течении каждого года всего рассматриваемого периода.

Главные технические показатели, которым должны соответствовать рассматриваемые варианты, - бесперебойность электроснабжения, качество электроэнергии, устойчивость работы системы электроснабжения.

Исходные данные


Суточный график активной и реактивной мощности предприятия


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис.1.Суточные графики активной и реактивной мощности


2. Данные нагрузок по предприятию и по инструментальному цеху:


Таблица 1.

Данные нагрузок по предприятию и по инструментальному цеху

Наименование величины Значение величины
Суммарная активная нагрузка 6036,33 кВт
Суммарная реактивная нагрузка 4580кВАр
Расчетная активная нагрузка завода 5234.83кВт
Расчетная реактивная нагрузка завода 3445,71 кВАр
Длина питающей линии 9 км
Синхронная нагрузка на ВН 1400 кВт
Номинальная нагрузка цеховых трансформаторов, кВА 630 кВА

Расчетная нагрузка цеха:

Активная нагрузка

Реактивная нагрузка



379,76кВт

191,58 ВАр

Часть 1. Технико-экономическое обоснование выбора напряжения питающей линии ГПП предприятия


1.1 Выбор напряжения питающей линии ГПП предприятия


Экономически целесообразное напряжение питающей линии ГПП можно оценить по формуле Илларионова:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.1.1)


Подставив исходные значения, получаем:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Тогда в качестве напряжения питающей линии намечаем два варианта:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода35 кВ

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода110 кВ


Окончательный вариант напряжения питающей линии получаем в результате технико-экономического сравнения вариантов.


1.2 Расчет по суточному графику нагрузки


Мощность каждой ступени:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.2.1)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.2.2)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,где: (1.2.2)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода и Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-


расчетные активная и реактивная мощности предприятия со стороны высшего напряжения трансформаторов ГПП.

Таким образом, для суточного графика, представленного на рис.1. получим:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Аналогично для других ступеней. Значения активной , реактивной и полной мощности для последующих ступеней приведем в таблице 2.


Таблица 2.

Значения активной, реактивной и полной мощности по графику нагрузки

Ступень Р, % Р, кВт Q, % Q, кВАр S, кВА
1 13,33 894 30 1718 1937
2 20 1341 50 2862 3161
3 30 2012 80 4580 3498
4 40 2683 40 2290 3923
5 50 3354 10 572,5 4409
6 60 4024

4938
7 70 4695

5499
8 90 6036

6680
9 60 4024

7577
10 90 1341

6456
11



4630
12



4065
13



1458

Таким образом, получаем суточный график:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис.1.2.1 Суточные графики полной, активной и реактивной мощности


Потребляемая активная и реактивная суточная энергия:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где: (1.2.4)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-мощность Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-ой ступени,Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-время Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-ой ступени.


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где: (1.2.5)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-мощность Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-ой ступени,Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-время Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-ой ступени.

Средняя полная мощность предприятия за сутки:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.2.6)


Определяем число часов использования максимальной нагрузки:

Число часов использования максимальной нагрузки (Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода)- это такое время, в течение которого через электрическую сеть, работающую с максимальной нагрузкой, передавалось бы такое же количество электроэнергии, которое передается через нее в течение года по действительному графику нагрузки:

Перестраиваем суточный график активной мощности предприятия в годовой по продолжительности.


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.2.7)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.2.8)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис.1.2.2. Годовой график нагрузки по продолжительности


1.3 Выбор номинальной мощности трансформаторов ГПП по графику нагрузки


Совокупность допустимых нагрузок, систематических и аварийных перегрузок определяет нагрузочную способность трансформаторов, в основу которой положен тепловой износ изоляции трансформатора. Выбор трансформатора без учета нагрузочной способности может привести к необоснованному завышению их установленной мощности, что экономически нецелесообразно.


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис.1.3.1 Суточные графики нагрузки завода


Так как мощность трансформатора неизвестна, то пользуемся следующим подходом:

на исходном графике проводят линию средней нагрузки Sср;

выделяется пиковая часть – участок наибольшей перегрузки с продолжительностью Н’( пересечение графика полной мощности и прямой Sср);

Продолжительность наибольшей перегрузки составляет Н’=12 часов

Определяем начальную загрузку графика К1:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.3.1)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


4. Предварительно определяем перегрузку К’2:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.3.2)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Полученное значение К’2 меньше чем


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


поэтому принимаем:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


а продолжительность перегрузки Н скорректируем по формуле:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.3.3)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


По полученным значениям К1 и Н определяем допустимый коэффициент систематической перегрузки К2доп.

При температуре 20Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального заводаС определяем К2доп =1,1 [2, табл.1.36]

Определяем номинальную мощность трансформатора


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.3.4)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Исходя из полученной мощности намечаем 2 варианта ближайшей номинальной мощности трансформатора:

Sном.тр.1=4 МВА

Sном.тр.2= 6,3МВА

Выполняем расчет коэффициентов К1 и К2 для каждого из вариантов номинальной мощности трансформаторов:

1 вариант: Sном.тр=4МВА

на исходном графике проводят линию средней нагрузки Sном.тр;

выделяется пиковая часть – участок наибольшей перегрузки с продолжительностью Н’( пересечение графика полной мощности и прямой Sном.тр);

Продолжительность перегрузки составляет Н’=14 часов.

Определяем начальную загрузку графика К1:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.3.5)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


4. Предварительно определяем перегрузку К’2:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.3.6)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


5. Полученное значение К’2 меньше чем


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


поэтому принимаем:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


а продолжительность перегрузки Н скорректируем по формуле:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


По полученным значениям К1 и Н определяем допустимый коэффициент систематической перегрузки К2доп.

При температуре 20Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального заводаС определяем К2доп =1,105 [2, табл.1.36]

Сравнивая полученное значение К2 с К2доп можно сделать вывод, что

К2=1,705> К2доп следовательно трансформатор не может систематически перегружаться по данному графику нагрузки, следовательно, данный вариант мощности трансформатора отпадает.

2 вариант: S ном. тр = 6,3 МВА

на исходном графике проводят линию средней нагрузки Sном.тр;

выделяется пиковая часть – участок наибольшей перегрузки с продолжительностью Н’( пересечение графика полной мощности и прямой Sном.тр);

Продолжительность перегрузки составляет Н’=9 часов.

Определяем начальную загрузку графика К1:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


4. Предварительно определяем перегрузку К’2:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


5.Полученное значение К’2 больше чем


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


поэтому принимаем:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


а продолжительность перегрузки Н =Н’=9 час

По полученным значениям К1 и Н определяем допустимый коэффициент систематической перегрузки К2доп.

При температуре 20Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального заводаС определяем К2доп =1,155 [2, табл.1.36]

Сравнивая полученное значение К2 с К2доп можно сделать вывод, что

К2доп=1,155> К2 следовательно трансформатор может систематически перегружаться по данному графику нагрузки, следовательно, данный вариант мощности трансформатора проходит по данной проверке.


1.4 Проверка возможности перегрузки выбранных трансформаторов работать с перегрузкой по заданному графику нагрузки


Нормальный режим

Коэффициент загрузки трансформатора составит:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.4.1)


Трансформаторы в часы максимума нагрузки также смогут пропустить всю мощность, так как их суммарный коэффициент перегрузочной способности составит:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где (1.4.2)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-допустимая систематическая перегрузка за счет неравномерности суточного графика нагрузки;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- допустимая систематическая перегрузка за счет неравномерности годового графика нагрузки, не должна превышать 15%.


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.4.3)


Следовательно, трансформаторы будут обеспечивать электрической энергией вех потребителей II и III категории с допустимой систематической перегрузкой в 130,5%.

Послеаварийный режим работы

Проверяем установленную мощность трансформатора в аварийном режиме при отключении одного из трансформаторов и необходимости обеспечить электроснабжение потребителей 1-й и 2-й категорий в период максимума:

1,3 Sном.тр =1,3 Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода6,3 =8,19 МВА> 0,1738 Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода7,577=1,317 МВА, где 17,38% Smax – потребители II категории, где 1,3- коэффициент аварийной перегрузки .[2, табл.1.36]

Следовательно, в послеаварийном режиме трансформатор будет обеспечивать потребителей II и III категории


1.5 Составление схемы внешнего электроснабжения и приемной подстанции


Схемы подстанций должны обеспечивать следующие требования:

Схема должна обеспечить необходимую степень надежности электроснабжения потребителей

Схема должна быть простой и удобной в эксплуатации

Схема должна учитывать возможности развития предприятия с учетом роста нагрузок без коренной реконструкции сети

Схема должна обеспечивать надежную защиту всего электрооборудования в аварийных режимах и автоматическое восстановление питания.

Схема должна обеспечивать электроснабжение потребителей при аварийном выходе из строя одного из основных элементов ( трансформатора или линии электропередач), при этом оставшиеся в работе элементы должны принять на себя полную или частичную нагрузку отключившегося элемента с учетом допустимой перегрузки в послеаварийном режиме

Схема должна обеспечить резервирование отдельных элементов позволяющих проводить ремонтные и противоаварийные работы.

Внешнее электроснабжение завода осуществляется от подстанции энергосистемы по двум ВЛЭП на стальных опорах. На ГПП установлены два двухобмоточных трансформатора. В качестве схемы внешнего электроснабжения принята схема два блока с отделителями и неавтоматической перемычкой со стороны линии. Данная схема является менее надежной, чем схема на выключателях, но более дешевой.

Стальных двухцепных опорах (110 кВ)

Стальных двухцепных опорах (35 кВ)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис. 1.5.1 – Схема внешнего электроснабжения


1.6 Экономический режим работы трансформаторов


При эксплуатации и проектировании необходимо предусматривать экономически целесообразный режим работы трансформаторов, который определяется их параметрами и нагрузкой подстанции. Нагрузка подстанции изменяется в течение суток, а суточные графики - в течении года. Значительные снижения нагрузки приходятся на весенне-летний период.

В такие периоды трансформаторы оказываются длительное время недогруженными. Это вызывает в них относительное увеличение потерь электроэнергии. При снижении нагрузки в работе целесообразно оставлять только часть трансформаторов. При этом нагрузку подстанции недостаточно просто принять на трансформаторы, ее необходимо покрыть наиболее экономичным способом, обеспечив минимум потерь активной мощности в сети.

Суммарные потери трансформатора можно показать с помощью данной формулы:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, (1.6.1)


Где


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-


приведенные потери холостого хода трансформатора; (1.6.2)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-


приведенные потери короткого замыкания трансформатора; (1.6.3)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- экономический эквивалент реактивной мощности, учитывает потери активной мощности, связанные с производством и распределением реактивной мощности;


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-


коэффициент загрузки трансформатора (1.6.4)

Расчет экономического режима работы трансформатора проведем для двух вариантов:

1. Sном.тр = 6,3 МВА Uном=35 кВ

2. Sном.тр =

1) Sном.тр = 6,3 МВА Uном=35 кВ

Определяем исходные данные трансформаторов: ТМН- 6300/35 [2, табл.3.4]


Sном. тр = 6,3 МВА

Uкз = 7,5 %

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода = 46,5 кВт

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода = 9,2 кВт

I xx = 0,9 %


Приведенные потери:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода(при Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода) ;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.6.5)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.6.6)


Приведенные потери для одного трансформатора:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Приведенные потери для двух раздельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Определяем нагрузку, при которой целесообразно переходить на работу с двумя трансформаторами:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода кВА. (1.6.7)


Полученные результаты сведем в таблицу 1.6.1:


Таблица 6.1.1

Годовые потери мощности и электроэнергии

S, кВА

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Продолжительность

ступени нагрузки, ч/год

Потери мощности в трансформаторах, кВТ Потери э/э в трансформаторах, кВтч/год
1458 0,231
1825 21,527 45991,96
1937 0,307
730 25,755 41317,78
3161 0,501
365 41,980 25572,19
3498 0,555
365 47,815 30003,84
3926 0,623
365 56,077 36278,76
4065
0,322 365 53,482 76944,57
4409
0,349 365 57,272 88457,96
4630
0,367 365 59,869 96347,82
4938
0,391 365 63,700 107987,2
5499
0,436 365 71,312 131112,9
6456
0,512 365 86,187 176300,3
6680
0,530 2190 90,012 246322
7577
0,601 730 106,638 250111,9
Всего за год ΔW=1352749кВтч/год

Выполним построение полученных данных:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис.1.6.1.График зависимости приведенных потерь в одном и двух трансформаторах ТМН- 6300/35


2) Sном.тр= 6,3 МВА Uном=110 кВ

Определяем исходные данные трансформаторов: ТМН- 6300/110 [2, абл.3.6]


Sном.тр= 6,3 МВА

Uкз=10,5 %

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода= 44 кВт

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода= 11,5 кВт

Ixx= 0,8 %


Приведенные потери:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


где


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода(при Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Приведенные потери для одного трансформатора:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Приведенные потери для двух раздельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Определяем нагрузку, при которой целесообразно переходить на работу с двумя трансформаторами:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода кВА.


Таблица 1.6.2

Годовые потери мощности и электроэнергии

S, кВА

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Продолжительность

ступени нагрузки, ч/год

Потери мощности в трансформаторах, кВТ Потери э/э в трансформаторах, кВтч/год
1458 0,231
1825 22,458 48165,26
1937 0,307
730 26,985 43808,45
3161 0,501
365 23,494 27165,08
3498 0,555
365 25,056 31910,21
3926 0,623
365 27,268 38628,99
4065
0,322 365 55,041 78793,31
4409
0,349 365 58,915 9056,3
4630
0,367 365 61,570 98628,99
4938
0,391 365 65,487 110527,7
5499
0,436 365 73,269 134168,8
6456
0,512 365 88,474 180363,4
6680
0,530 2190 92,385 252615
7577
0,601 730 109,382 255953,9
Всего за год ΔW=1391292 кВтч/год

Выполним построение полученных данных:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис.1.6.2. График зависимости приведенных потерь в одном и двух трансформаторах ТМН- 6300/35


1.7 Распределение нагрузок между параллельно работающими трансформаторами


Нагрузка между параллельно работающими трансформаторами распределяется пропорционально их мощностям и обратно пропорционально напряжениям короткого замыкания.

Для определения нагрузки трансформаторов напряжения короткого замыкания всех параллельно работающих трансформаторов должны быть приведены к одной мощности, например, к мощности первого трансформатора:

1) Sном.тр = 6,3 МВА Uном=35 кВ


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Коэффициент загрузки каждого параллельно работающего трансформатора:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.7.1)


Нагрузка каждого параллельно работающего трансформатора:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.7.2)


Стоимость потерь для параллельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.7.3)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Стоимость потерь для раздельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.7.4)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


2) Sном.тр= 6,3 МВА Uном=110 кВ

Приведенные потери для параллельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Коэффициент загрузки каждого параллельно работающего трансформатора:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Нагрузка каждого параллельно работающего трансформатора:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Стоимость потерь для параллельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Стоимость потерь для раздельно работающих трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


1.8 Выбор сечения проводов ВЛЭП 35 и 110 кВ


1) U=35 кВ, т.к. линия двухцепная


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.8.1)


При Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода [5, табл.3.12]

Выбираем сечение из стандартного ряда – сечение 70Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, [5, табл.3.5]

Выполним проверку:

В послеаварийном режиме

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.8.2)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального заводаА


По условию механической прочности

Применяем сечение Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, что больше установленного Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода => проверка выполняется

3. По допустимой потере U:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.8.3)


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- длина линии при полной нагрузке на 1% потери напряжения [6, табл. П.2.7];


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Следовательно, данное сечение удовлетворяет проверке по допустимой потере напряжения

2) U=110 кВ, т.к. линия двухцепная


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


При Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода [5, табл.3.12]

Выбираем сечение из стандартного ряда – сечение 70Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода из условия возможности коронирования


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, d=9,6мм [5, табл.3.5]


Выполним проверку:

В послеаварийном режиме:

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


2. По условию механической прочности

Применяем сечение Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, что больше установленного для сталеалюминевых проводов Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода => проверка выполняется3. По допустимой потере U:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Следовательно, данное сечение удовлетворяет проверке по допустимой потере напряжения

Проверка по условию коронирования

Условие выполнения проверки:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.8.4)


для двухцепной стальной опоры с подвеской проводов шестиугольником находим среднегеометрическое расстояние между фазами:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.8.5)


Начальная напряженность возникновения коронного разряда (для провода марки АС-70, r = 0,57 см) :


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.8.6)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Напряженность электрического поля около поверхности нерасщепленного провода:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, тогда (1.8.7)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Следовательно, данное сечение удовлетворяет проверке по условию коронирования.


1.9 Определение суммарных приведенных затрат на сооружение воздушной ЛЭП


Время использования максимальных потерь находится из формулы:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.9.5)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


S=6,3 МВА Uном= 35 кВ

ЕнЛЭП= 0,152 – нормативный коэффициент капиталовложений для ЛЭП;

Енобор= 0,193 – нормативный коэффициент капиталовложений для силового оборудования;

Определяем капитальные затраты на сооружение ВЛЭП:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, где: (1.9.6)


А- стоимость сооружения 1 км ЛЭП, Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода.[2, табл.10.14] ;

Определяем капитальные затраты на установку блока с отделителем и короткозамыкателем на ОРУ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


где: (1.9.7)

В=4,13 тыс. руб. – стоимость блока с отделителем и короткозамыкателем на ОРУ [2, табл.10.25];

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- удельные потери в линии при номинальной нагрузке, кВт/км [1, табл. П.2.7];


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - стоимость 1кВТч электрической энергии;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - коэффициент загрузки линии.


Cтоимость потерь ЛЭП:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.9.8)


Определяем амортизационные отчисления:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,где: (1.9.9)


Еам=2,8% – коэффициент амортизационных отчислений [1; стр.77].

Определяем отчисления на обслуживание ВЛЭП:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,где: (1.9.10)


Еобсл=0,4% – коэффициент, учитывающий затраты на обслуживание [1; стр.77]. Определяем суммарные приведенные затраты:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.9.11)


S=6,3 МВА Uном = 110 кВ

Определяем капитальные затраты на сооружение ВЛЭП:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,где:


А=24,6 тыс. руб./км – стоимость сооружения одного километра линии выбранного сечения на соответствующих опорах (принимаем II район по гололеду) [2; табл. 10.14];

Определяем капитальные затраты на установку блока с отделителем и короткозамыкателем на ОРУ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


В=12 тыс. руб. – стоимость блока с отделителем и короткозамыкателем на ОРУ [2, табл.10.25];

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- удельные потери в линии при номинальной нагрузке, кВт/км [1, табл. П.2.7];

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - коэффициент загрузки линии.

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - стоимость 1кВТч электрической энергии;

Cтоимость потерь ЛЭП:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Определяем амортизационные отчисления:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


Определяем отчисления на обслуживание ВЛЭП:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


Определяем суммарные приведенные затраты:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


1.10 Определение суммарных приведенных затрат на установку оборудования


1) S=6,3 МВА Uном= 35 кВ

Определяем капитальные затраты на установку трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, (1.10.1)


где: А=21,2 тыс. руб./км – цена трансформатора [2; табл. 10.14];

Определяем амортизационные отчисления:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, (1.10.2)


Определяем отчисления на обслуживание:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, (1.10.3)


Определяем суммарные приведенные затраты:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.10.4)


S=6,3 МВА Uном= 110 кВ 0.067

Определяем капитальные затраты на установку трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


где: А=32 тыс. руб./км – цена трансформатора [4; табл. 10.14];

Определяем амортизационные отчисления:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


Определяем отчисления на обслуживание:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


Определяем суммарные приведенные затраты:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


1.11 Выбор оптимального варианта питающего напряжения ГПП


Выбор оптимального варианта электроснабжения осуществляется по минимуму приведенных затрат:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (1.11.1)


Вариант 1:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Вариант 2:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Следовательно, по условию минимума приведенных затрат выбираем первый вариант, т.е. напряжение питающей сети принимаем равным 35 кВ.


Часть 2. Технико-экономическое обоснование выбора устройств компенсации реактивной мощности в системе электроснабжения предприятия


2.1 Расчет реактивной мощности, поставляемой энергосистемой предприятию, определение вариантов суммарной мощности компенсирующих устройств на стороне 0,4 кВ


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис. 2.1.1 Схема компенсации реактивной мощности


Суммарная расчетная мощность БК определяется по минимуму приведенных затрат двумя последовательными расчетными этапами:

Этап I – выбор экономически оптимального числа трансформаторов цеховых трансформаторных подстанций.

Этап II – определение дополнительной мощности батарей, в целях оптимального снижения потерь в трансформаторах и в сети 6/10 кВ предприятия, питающей эти трансформаторы.

Наибольшая реактивная мощность, которая может быть передана со стороны сети 6-10 кВ в сеть до 1000 В без увеличения заданного числа трансформаторов:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.1.1)


Определяем наибольшее значение реактивной мощности Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, передаваемой из сети ЭС в сеть промышленного предприятия в режиме наибольших активных нагрузок энергосистемы:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,где: (2.1.2)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


суммарная расчетная активная мощность, отнесенная к шинам ГПП 10 кВ;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода– для предприятий, расположенных в Сибири при напряжении питающей линии 35 кВ [6,стр.35].

Реактивную мощность, вырабатываемую (в режиме перевозбуждения) и потребляемую (в режиме недовозбуждения) синхронным двигателем, можно принять равной:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода ,где: (2.1.3)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


номинальная активная мощность синхронного двигателя.

Баланс на стороне 10 кВ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода; (2.1.4)


По результатам расчетов видно, что заданное число трансформаторов пропускает реактивную мощность, передаваемую из сети и вырабатываемую синхронным двигателем в режиме перевозбуждения.

В соответствии с этим рассмотрим два варианта компенсации реактивной мощности: с СД, работающим в режиме перевозбуждения и недовозбуждения.

1 вариант (СД работает в режиме перевозбуждения)

Баланс на стороне 10 кВ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Так как Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода>Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, то баланс на низкой стороне 0,4 кВ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.1.5)


Принимаем конденсаторные установки 9ЧУКТ-0,38-150У3 напряжением 0,38 кВ мощностью по 150 кВАр каждая [1, табл. П6.2].

2 вариант (СД работает в режиме недовозбуждения)

Баланс на стороне 10 кВ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Так как Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода>Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, то баланс на низкой стороне 0,4 кВ:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Принимаем конденсаторные установки 18ЧУКТ-0,38-150У3 напряжением 0,38 кВ мощностью по 150 кВАр [1, табл. П6.2].


2.2 Технико-экономическое обоснование выбора устройств компенсации реактивной мощности


1 вариант (СД работает в режиме перевозбуждения):

Полная реактивная мощность, генерируемая батареями:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода; (2.2.1)


Удельные затраты на установку конденсаторных батарей:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.2.2)


где: Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - величина суммарных отчислений от удельной стоимости БК [1, табл. П6.2];


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - удельная стоимость БК [1, табл. П6.2];

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода - стоимость потерь [2, табл. 9.14];

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


- удельные потери активной мощности в конденсаторах.

Определим величину удельных затрат для используемых в качестве источников реактивной мощности СД.

Удельные затраты на 1 кВАр реактивной мощности:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


где: (2.2.3)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- справочный коэффициент для двигателя СТД-1600-2 [1, табл.П7.3].

Удельные затраты на 1 кВАр2 реактивной мощности:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода ,где: (2.2.4)

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода -


справочный коэффициент для двигателя СТД-1250-2 [1, табл.П7.3];

N – количество СД.

Определим суммарные затраты на компенсацию:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.2.5)


2 вариант (СД работает в режиме недовозбуждения):

Полная реактивная мощность, генерируемая батареями:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода;


Удельные затраты на установку конденсаторных батарей:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Определим суммарные затраты на компенсацию:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.2.6)


При сравнении двух вариантов, полученных в результате технико-экономического расчета видно, что наиболее выгодным является вариант 2: СД работает в режиме недовозбуждения, 18ЧУКТ-0,38-150У3.


2.3 Распределение мощности батарей конденсаторов по узлам нагрузки цеховой сети напряжением 0,4 кВ


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Рис. 2.3.1 Схема распределения ЭП по распределительным шкафам


Для рассматриваемого деревообрабатывающего цеха с расчетными мощностями Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода и Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, определяем количество реактивной мощности, которую необходимо скомпенсировать. Цех питается от одного трансформатора двухтрансформаторной подстанции ТП-6.

Суммарная мощность КБ на стороне 0,4 кВ, приходящаяся на цех:

- расчетная реактивная нагрузка 0,4 кВ завода: Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

- расчетная реактивная нагрузка 0,4 кВ цеха: Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

- доля потребления реактивной нагрузки 0,4 кВ цеха по отношению ко всему заводу:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.3.1)


- общая мощность КБ на стороне 0,4 кВ завода: Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

- тогда суммарная мощность КБ на стороне 0,4 кВ, приходящаяся на цех:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.3.2)


Мощность, передаваемая со стороны 10 кВ на сторону 0,4 кВ для всего завода: Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Мощность, передаваемая со стороны 10 кВ на сторону 0,4 кВ цеха:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Реактивная мощность, которую способен пропустить цеховой трансформатор:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Т.к. Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода, тогда распределение КБ для радиальной сети производится по формуле:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода,


где:

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- искомая мощность i-ой линии, передаваемая в сеть 0,4 кВ со стороны 10 кВ;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- суммарная распределяемая мощность;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- эквивалентное сопротивление сети, напряжением до 1000 В;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- сопротивление радиальной i-ой линии.

Эквивалентное сопротивление сети:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода (2.3.3)


Расчетная мощность

Тогда:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Расчетная мощность батарей конденсаторов, устанавливаемых у ПР:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Учитывая шкалу номинальных мощностей, принимаем:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- 1 БК типа МКК-400-D-25-01;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- 1 БК типа МКК-400-D-07,5-01;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- 3 БК типа МКК-400-D-25-01;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода-1 БК типа МКК-400-D-25-01;

Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода- 1 БК типа МКК-400-D-25-01;


Суммарная мощность БК:


Технико-экономическое обоснование выбора устройств компенсации реактивной мощности и напряжения питающей линии ГПП инструментального завода


Заключение


В данной курсовой работе было осуществлено технико-экономическое обоснование варианта питающего напряжения, а также варианта по компенсации реактивной мощности на предприятии.

Выбор питающего напряжения зависит от значения нагрузки предприятия, от величины приведенных затрат при использовании данного напряжения, от длины питающей линии. В результате проведенных расчетов наиболее эффективным с точки зрения минимума приведенных затрат оказался вариант с напряжением питающей сети 110 кВ и трансформаторов мощностью 6,3 МВА.

При выборе варианта компенсации реактивной мощности также руководствуются минимумом затрат по каждому варианту, в данном случае наиболее эффективным оказался вариант при использовании размещения на предприятии 8КУ мощностью 150 кВАр при использовании исходного числа цеховых ТП.

Помимо этого, в курсовой работе было осуществлен выбор мощностей трансформаторов на основе расчета по суточному графику нагрузки и проверка данных трансформаторов на возможность работы с перегрузкой по заданному графику, был произведен расчет экономических режимов работы трансформатора, выбор сечения проводов ВЛЭП для каждого из вариантов.

В результате можно сделать вывод, что выбор наиболее эффективного варианта электроснабжения, компенсации реактивной мощности можно выполнить на основе технико-экономического сопоставления нескольких вариантов. Технико-экономическое сравнение базируется на сравнении показателей работы оборудования, режимов их работы, и на сравнении затрат по реализации данного варианта.


Список используемой литературы


Г.Н. Климова, А.В. Кабышев. Элементы энергосбережения в электроснабжении промышленных предприятий: учебное пособие.- Томск: Изд-во Томского политехнического университета,2008.-187 с.

Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования: Учеб. Пособие для вузов.- М.: Энергоатомиздат, 1989.-608 с.

Справочник по электроснабжению промышленных предприятий. Промышленные электрические сети.2-е изд./ Под общ. ред. А.А. Федорова и Г.В. Сербинского.- М.: Энергия, 1980.- 576 с.

Справочник по проектированию элекроэнергетических систем / Под ред. С.С. Рокотяна и И.М. Шапиро.- 3-е изд., перераб. и доп.- М.:Энергоатомиздат, 1985.-352 с.

Справочник по проектированию электрических сетей/ Под.ред. Д.Л. Файбисовича.-2-е изд.- М.: Изд-во НЦ ЭНАС, 2006.-352 с.

А.И. Гаврилин, С.Г. Обухов, А.И. Озга. Электроснабжение промышленных предприятий. Методические указания к выполнению курсового проекта для студентов специальности 100400 «Электроснабжение» (по отраслям) ИДО: Изд-во Томского политехнического университета.- Томск, 2004. - 112 с.

49


Похожие работы:

  1. • Компенсирующие устройства и напряжение питающей линии ...
  2. • Экономическое обоснование решения по ...
  3. • Компенсация реактивной мощности
  4. • Проектирование систем электроснабжения промышленных ...
  5. • Компенсация реактивной мощности в системах ...
  6. • Электроснабжение механического цеха ...
  7. • Электроснабжение нефтеперерабатывающего завода
  8. • Проектирование системы электроснабжения ...
  9. • Проектирование системы электроснабжения завода ...
  10. • Электроснабжение компрессорной станции
  11. • Проектирование районной электрической сети
  12. • Электроснабжение завода механоконструкций
  13. • Проектирование электрической сети
  14. • Проектирование завода железнодорожного машиностроения
  15. • Компенсация реактивной мощности в сетях общего назначения
  16. • Электроснабжение завода продольно-строгальных ...
  17. • Проектирование системы электроснабжения завода
  18. • Электроснабжение и электрооборудование цеха ...
  19. • Электроснабжение железнодорожного предприятия ...
Рефетека ру refoteka@gmail.com