МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГОУ ВПО "Башкирский государственный аграрный
университет"
Факультет: Энергетический
Кафедра: АТД и Т
Специальность: Электрификация и автоматизация с/х
КУРСОВАЯ РАБОТА
"Проектирование отопительно-производственной котельной сельскохозяйственного назначения"
Мухамедьяров Ильнур Равилович
Форма обучения: очная
Курс, группа: АХ 301/1
"К защите допускаю"
Руководитель:
Динисламов М. Г..
Уфа 2009
РЕФЕРАТ
Курсовой работа включает в себя 24 страницы расчётно-пояснительной записки, 1 лист графического материала формата А1.
Объектом работы является проектирование отопительно-производственной котельной сельскохозяйственного назначения.
Расчётно-пояснительная записка включает в себя: расчет тепловых нагрузок, выбор источника теплоснабжения, определение годовых расходов теплоты и топлива, регулирование отпуска теплоты, подбор питательных устройств и сетевых насосов, расчёт водоподготовки, тепловую схему котельной, компоновку котельной и расчёт технико-экономических показателей производства теплоты.
Графическая часть курсовой работы, содержит тепловую схему с указанием всего оборудования, участвующего в тепловом процессе, графики годовой тепловой нагрузки и температур воды в тепловой сети.
ОГЛАВЛЕНИЕ
1. Задание
2. Расчет тепловой нагрузки
2.1 Определение расчетной тепловой мощности на отопление и вентиляцию
2.2 Расход теплоты на горячее водоснабжение и технологические нужды
3. Выбор теплоносителя
4. Подбор котлов
5. Годовой расход топлива
6. Регулирование отпуска теплоты котельной
7. Подбор питательных устройств и сетевых насосов
8. Расчет тепловой схемы котельной
9. Технико-экономические показатели производства тепловой энергии
Библиографический список
1. Задание
1. Рассчитать по удельным показателям расход теплоты на отопление, вентиляцию и горячее водоснабжение для объектов, указанных в таблицах 1 и 2 и годовой расход теплоты. При расчете принять: расчетно-климатические условия по последней цифре номера зачетной книжки по таблице 4; высоту помещений ремонтной мастерской -5 м, школы, клуба и гаража - 4 м, остальных объектов - 3 м; давление и температуру пара по предпоследней цифре номера зачетной книжки.
2. Выбрать тип и количество котлов в котельной, определить максимальный часовой расход топлива. Вид топлива принять по таблице 3.
3. Рассчитать внутренний диаметр трубопроводов теплотрассы для отопления объекта, указанного в таблице 3.
Таблица 1 Характеристика потребителей теплоты жилого сектора
Название | Последняя цифра № зач.книжки |
7 | |
Жилые
дома,
|
|
Школа,
|
|
Клуб,
|
|
Баня,
|
|
Таблица 2 Характеристика потребителей теплоты производственного сектора
Наименование | Предпосл. цифра № зач.книжки |
9 | |
Ремонтная мастерская, тыс. м2 | 1,8 |
Давление пара, МПа | 0,2 |
- расход пара, кг/с | 0,15 |
- расход гор. воды, кг/с | 0,16 |
температура пара, °С | - |
Степень сухости пара, х | 0,95 |
Гараж, тыс. м2 | 0,2 |
Число автомобилей: - грузовых - легковых |
20 4 |
Коровники: число голов | 70 |
Таблица 3 Вид топлива и объект для расчета трубопроводов
3-я цифра № зач.книжки | |
5 | |
Топливо | Каменный уголь |
Теплота сгорания | Qdi=21МДж/нм3 |
Объект | Жилые дома |
Таблица 4 Расчётно-климатические условия
Населён-ный пункт | Последняя цифра № зач.книжки | Темп. воздуха наиболее холодной пятидневки, tн.в, °С. | Темп. Вентиляци-онная, tн.в, °С | Продолжительность отно-сительного периода со средне суточная темп., °С | Средняя скорость ветра | |
h, сут. | tср.о | |||||
Уфа | 7 | -35 | -20 | 213 | -5,9 | 3,5 |
2. Расчёт тепловой нагрузки
2.1 Определение расчетной тепловой мощности на отопление и вентиляцию
Определение расчётной тепловой мощности на отопление и вентиляцию, в Вт:
Ф0 = qотЧVнЧ(tв - tн.о) Ча; | (1) |
Фв = qвЧVнЧ(tв. - tн.в), | (2) |
где qот и qв - удельная отопительная и удельная вентиляционная характеристики здания, Вт/(м3ЧК); применяется в зависимости от назначения и размеров здания.
Vн - объем здания, м3;
tв - средняя расчетная температура воздуха, характерная для большинства помещений зданий, 0С;
tн.о. и t н.в. - расчётная температура наружного воздуха для системы отопления и вентиляции, 0С;
а - поправка на разность температур, 0С.
a=0,54+22/(tВ- tНО) (3)
Тепловая мощность на отопление жилых домов:
принимаем площадь одного жилого дома S=100 м2, тогда количество домов равно 190;
VН=100Ч3=300 м3 —объем одного дома;
q0Т=0,87 Вт/(м3ЧК) (приложение11 /2/);
tВ=20°C (приложение 1 /1/);
tН.О.= -35 0С (по заданию);
а=0,54+22/(20-(-35))=0,94;
Фо=0,87Ч300Ч190Ч(20-(-35))Ч0,94=2563803 Вт.
Тепловая мощность на отопление общественных зданий:
Тепловая мощность на отопление и вентиляцию школы:
qoт=0,41 Вт/(м3ЧК) (приложение11 /2/);
tВ = 16°C(приложение 1 /1/);
tН.О.= -35 С (по заданию);
а=0,54+22/(16-(-35))=0,971;
VН=3000Ч4=12000 м3;
Ф0=0,41Ч12000Ч(16-(-35))Ч0,971=243643,32 Вт;
qВ=0,09 Вт/(м3ЧК) (приложение11 /2/);
tH.B.=-20 0С (по заданию);
Фв=0,09Ч12000Ч( 16-(-20))=38880 Вт.
Тепловая мощность на отопление и вентиляцию клуба:
qoт=0,43 Вт/(м3ЧК) (приложение11 /2/);
tB=16°C (приложение 1 /1/);
tH.О.= -35°C (по заданию);
а=0,54+22/(16-(-35))=0,971;
VН= 300Ч4=1200 м3;
Фот=0,43Ч1200Ч(16-(-35))Ч0,98 =25552,8 Вт;
qВ=0,29 Вт/(м3ЧК) (приложение11 /2/);
tH.B=-20°C (по заданию);
Фв=0,29Ч5600Ч(16-(-20))=12528 Вт.
Тепловая мощность на отопление и вентиляцию бани:
qoт=0,33 Вт/(м3ЧК) (приложение11 /2/);
tB=25 °C (приложение 1 /1/);
tH.О.= -35°C (по заданию);
a=0,54+22/(25-(-35))=0,907;
VН=35Ч3=105 м3;
Фо=0,33Ч105Ч(25-(-35))Ч0,907=271081,77Вт;
qв= 1,16 Вт/(м3ЧК) (приложение11 /2/);
tн.в. =-20 0С (по заданию);
Фв=1,16Ч105Ч(25-(-20))=5781 Вт
Тепловая мощность на отопление производственных зданий:
Тепловая мощность на отопление и вентиляцию ремонтной мастерской:
qo=0,61 Вт/(м3ЧК) (приложение 12 /2/);
tВ = 18°C (приложение 1 /1/);
tH.0.= -35 0С (по заданию);
а=0,54+22/(18-(-35))=0,955;
VН =1800Ч5=9000 м3;
ФОТ=0,61Ч9000Ч(18-(-35))Ч0,955=277876,35 Вт;
qB=0,17 Вт/(м3ЧК) (таблица 1, /2/);
tН.В.=-20 0С (по заданию);
Фв=0,17Ч9000Ч(18-(-21))=58140 Вт.
Тепловая мощность на отопление гаража:
qoт=0,64 Вт/(м3ЧК) (таблица 1, /2/);
tВ= 10 °C (страница 157, /1/);
tН.О.= -35 С (по заданию);
а=0,54+22/(10-(-35))=1,03;
VH=200Ч4=800 м3;
ФОТ=0,64Ч800Ч(10-(-35))Ч1,03=23731,2 Вт.
Суммарная тепловая мощность на отопление:
∑Ф0Т= 2563803+243643,32 +25552,8 +271081,77+277876,35 +23731,2 =3405688,44 Вт
Суммарная тепловая мощность на вентиляцию:
∑Фв=38880+1252+5781+58140=104053 Вт.
2.2 Расход теплоты на горячее водоснабжение и технологические нужды
Определение расходов теплоты на горячее водоснабжение и технологические нужды
2.2.1 Расход теплоты на горячее водоснабжение:
Средний тепловой поток на горячее водоснабжение Фг.в.ср (в Вт), жилых и общественных зданий в отопительный период определяется:
(4)
m - расчётное количество населения обслуживаемого системой горячего водоснабжения;
qг.в. - укрупненный показатель среднего теплового потока, Вт, на горячее водоснабжение на одного человека. Принимается в зависимости от среднесуточной за отопит. период нормы расхода воды при температуре 60 0С
на одного человека g,л/сут;
По формуле (4) найдём Фсрг.в для жилых зданий:
qг.в=320 Вт для g= 85л/сут (рекомендация на стр.124/2/)
Вт.
По формуле (4) найдём Фсрг.в для школ:
qг.в=146 Вт для g= 40л/сут (рекомендация на стр.124/2/)
Вт
Тепловая мощность на горячее водоснабжение клуба:
При среднем за отопительный период норме расхода, воды при температуре 60 0С на горячее водоснабжение одного душа в час g=110 л/час с горячим водоснабжением (рекомендация на стр.124/2/);
Фг.в =0,278ЧVtЧρвЧсвЧ(tг.в.-tх.в.), (5)
где Vt – часовой расход горячей воды, м3/ч;
rв – плотность воды (983 кг/м3), (124/1/);
Cв – удельная массовая теплоемкость воды, уравненная 4,19 кДж/(кгЧ К).
Для душевых помещений из расчета одновременной работы всех душевых сеток в течение 1 часа в сутки:
G=nЧgЧ10-3 , (6)
где n – число душевых сеток;
g – расход воды на 1 душевую сетку, л/сут.
Фг.в. =0,278Ч10Ч110Ч0,001Ч983Ч4,19Ч(65-5)=75571,2 Вт.
Тепловая мощность на горячее водоснабжение бани.
При среднем за отопительный период норме расхода воды при температуре 600С на горячее водоснабжение одного посетителя g=120 л/сутки с горячим водоснабжением (рекомендация на стр.124/2/);
Для бань и предприятий общественного питания:
G=mЧgЧ10-3 (7)
m- число посетителей равное числу мест в раздевальной;
m=50
По формуле (5) найдем Фсрг.в:
Фсрг.в.= 0,278Ч50Ч120Ч0,001Ч983Ч4,19Ч(65-5)= 412206,5 Вт.
Максимальный поток теплоты (в Вт), расходуемый на горячее водоснабжение жилых и общественных зданий
|
(8) |
Фг.в.max =(2…2,4)Ч(672000+27740+75571,2 +412206,5)=2612538,9 Вт.
В животноводческих помещениях максимальный поток теплоты (Вт), расходуемый на горячее водоснабжение (tг=40…60 0С), для санитарно-гигиенических нужд.
(9)
где b - коэффициент неравномерности потребления горячей воды в течение суток; b= 2,5;
-
массовая теплоемкость
воды, равная
4,19 кДж/кг, 0С
m - число животных данного вида в помещении;
g - норма среднесуточного расхода горячей воды на одно животное, кг (принимают для коров молочных пород 15 кг.)
Фг.в.=
Вт
Максимальный поток на горячее водоснабжение ремонтных мастерских:
(10)
G- расход горячей воды м3 /ч
-плотность
воды
-расчетная
температура
холодной воды
принимаемая
зимой -5 0С
-
расчетная
температура
горячей воды
равная 60 0С
Вт
Поток теплоты, Вт, расходуемый на горячее водоснабжение в летний период по отношению к отопительному снижается и определяется по следующим формулам:
для жилых и общественных зданий:
|
(11) |
=0,65Ч2612538,9
=1698150,3Вт
для производственных зданий:
|
(12) |
=0,82Ч(6726,8+36903,9)=35777,2
Вт.
2.2.2 Тепловая мощность на технологические нужды.
Фт.н = 0,278ЧyЧDЧ (h-pЧhвоз), |
Тепловую мощность системы теплоснабжения, Вт, на технологические нужды определяем по формуле:
где y- коэффициент спроса на теплоту, равный 0,6...0,7;
D - расход теплоносителя, кг/ч;
р - коэффициент возврата конденсатора или обратной воды, принимаемый равным 0,7;
h и hвоз. - энтальпия теплоносителя и возвращаемого конденсатора или обратной воды, кДж/кг.
hвоз.=cBЧtK (13)
где: tK - температура конденсата, принимаем равной температуре в обратном трубопроводе 70 0С;
сВ- теплоёмкость воды, сВ=4,19 кДж/(кгЧК);
hвоз.=4,19Ч70=293,3 кДж/кг.
Тепловая мощность на технологические нужды ремонтной мастерской:
Энтальпия пара при р=0,2 МПа и при степени сухости пара 0,95 (по h,s - диаграмме)
h=2600 кДж/кг;
По формуле (12) найдём Фт.н.рм:
Фт.н.рм=0,278Ч0,65Ч540Ч(2600-0,7Ч293,3)=161828,4 Вт.
Тепловая мощность на технологические нужды гаража
Расход смешанной воды для автогаражей:
где n - число автомобилей, подвергающихся мойке в течении суток; g - среднегодовой расход воды на мойку одного автомобиля, кг/сут. Для легковых автомобилей g = 160 кг/сут, для грузовых - g = 230 кг/сут. Dсм.л=4Ч160/24=26,67 кг/ч. Dсм.г.=20Ч230/24=191,67кг/ч. По формуле (12) определяем Фт.н.г: Фт.н.г.=0,278Ч0,65Ч(26,67 +191,67)Ч( 2800-0,7Ч293,3)=150410,4 Вт. Фт.н= Фт.н.г+ Фт.н.рм=150410,4+161828,4=312238,8 Вт |
(14) () |
Расчетная суммарная мощность котельной:
Расчётную тепловую нагрузку на котельную, Вт, подсчитывают отдельно для зимнего и летнего периода годов по расчётным расходам тепловой мощности каждым объектом, включенным в систему централизованного теплоснабжения: для зимнего периода:
Фрзим= 1,2Ч(∑ФОТ+∑Фвен+∑Фг.в.max+∑Фт.н.), (15)
для летнего периода
Фрлет=1,2Ч(Фг.в.летmax+∑Фт.н), (16)
где: ∑Фот,∑Фвен,∑Фг.в.max+∑Фт.н -максимальные потоки теплоты на отопление, вентиляцию, горячего водоснабжение и технологические нужды, (в Вт);
1,2 - коэффициент запаса, учитывающий расход теплоты на собственные нужды котельной, теплопотери в тепловых сетях;
ζ - коэффициент, учитывающий снижение расхода теплоты на горячее водоснабжение в летний период по отношению к зимнему (ζ=0,82 для производственных зданий и ζ=0,65 для жилых и общественных зданий).
Вт.
Вт.
3. Выбор теплоносителя
Согласно СНиП 2.04.07-86 "Тепловые сети" при теплоснабжении для отопления, вентиляции, горячего водоснабжения, и если возможно, для технологических нужд в качестве теплоносителя используется вода.
Температура воды в падающей магистрали принимается равной 150 0С, в обратном трубопроводе - 70 0С. Если расчетная тепловая нагрузка Фр<5,8 МВт допускается применение в падающий магистрали воды с температурой 95... 1100С в соответствии с расчетной температурой в местных системах отопления.
Если для технологических нужд необходим пар, то в производственных зданиях и сооружениях при соответствующем технико-экономическом обосновании его можно использовать в качестве единого теплоносителя. В отопительно-производственных котельных допускается применение двух теплоносителей: воды и пара.
Подбор котлов
Фуст=Фр=
Вт
Учитывая величину Фуст и необходимость в технологическом паре, выбираем для котельной котлы ДКВР. Зная что тепловая мощность котла ДКВР-2,5-13 при работе на угле состовляет 1,75 МВт(см. таблица 9 /2/), принимаем котельную с четырьмя котлами ДКВР-2,5-13 с общей тепловой мощностью 1,75Ч4=7 МВт
Так как в
летний период
максимальная
тепловая нагрузка,
равна
Вт
Что как раз соответствует тепловой мощности одного котла ДКВР-2,5-13, работающего с допустимой перегрузкой до 25
Характеристики котла ДКВР-2,5-13:
5. Годовой расход топлива
Годовой расход тепла на отопление:
;
(17)
Где
-
суммарный
максимальный
расход тепла
на отопление,Вт
tв- средняя расчетная по всем потребителям температура внутреннего воздуха (16…180 С);
tн- расчетная отопительная температура наружного воздуха, 0С;
tо.п- средняя температура наружного воздуха за отопительный период, сут.
nот- продолжительность отопительного периода, сут.
Годовой расход тепла на вентиляцию:
(18)
tн.в- расчетная зимняя вентиляционная температура
zв- усредненное за отопительный период среднесуточное число работы системы вентиляции; при отсутствии данных принимают zв=16ч.
Годовой расход тепла на горячее водоснабжение:
(19)
-коэффициент,
учитывающий
снижение часового
расхода воды
на горячее
водоснабжение
в летний период
по отношению
к зимнему. Для
жилых и общественных
зданий
=0,65,
для производственных
=0,82;350-
число суток
в году работы системы горячего водоснабжения.
Годовой расход тепла на технологические нужды:
(20)
Общий годовой расход тепла:
Годовой расход топлива подсчитываем по формуле:
(21)
-низшая
теплота сгорания
рабочего
топлива(кДж/кг-
для твердого
и жидкого топлива
кДж/м3- для
газообразного
топлива )
Для каменного
угля
;
-
средний КПД
котельной(при
работе на твердом
топливе
=0,6,на
жидком и газообразном-
=0,8);
6 Регулирование отпуска теплоты котельной
В системах теплоснабжения сельскохозяйственных объектов основной является тепловая нагрузка систем отопления. Поэтому при применении водяных тепловых сетей применяют качественное регулирование подачи теплоты на основании температурных графиков, с помощью которых определяют зависимость температуры воды в трубопроводах тепловых сетей от температуры наружного воздуха при постоянном расходе.
При наличии систем горячего водоснабжения температур воды в подающем трубопроводе открытых систем теплоснабжения принимают не ниже 60 0С, закрытых - не ниже 70 0С. Поэтому температурный график для падающий линии имеет точку излома С, левее которой tп=const.
Минимальная температура обработанной воды определяется, если через точку С провести вертикальную линию до пересечение с графиком обратной воды. Масштаб построения mt=0,23 0С/мм.
7. Подбор питательных устройств и сетевых насосов
Для паровых котлов с избыточным давлением пара свыше 68,7 кПа устанавливают конденсатные и питательные баки. Конденсат конденсатными насосами перекачивается из конденсатных в питательные баки, расположенные на высоте 3...5 м от чистого пола. В эти баки подается также химически может выполнить резервуар термического деаэратора, объем которого должен быть равен 2/3Ч Vп.б
Вместимость питательных баков (м3) из расчета часового запаса воды
Vп..б. =
,
(22)
- расход питательной
воды при расчетной
нагрузке котельной,
кг/ч.
Вместимость конденсатных баков:
Vк.б. =
,
(23)
где
-
коэффициент
возвращаемого
конденсата,
=0,7
(стр.131/1/);
- расход питательной
воды при расчетной
нагрузке котельной,
кг/ч.
Расход питательной воды найдем по формуле:
(24)
D- расчетная паропроизводительность всех котлов, кг/ч;
П- продувка котлов, %(при питании котлов химически очищенных водой П=0,5…3,0%);
Вместимость питательных баков:
Вместимость конденсатных баков:
Vк.б. =
,
Подача конденсатного насоса (м3/ч) должна быть равна часовому объему конденсата Vк.б а напор создаваемый насосом принимают 150…200кПа.
Выбираю центробежный насос 1,5К-6 (приложение 21/1/): подача 6 м3/ч; развиваемое давление 199 кПа; КПД=50%.
Для принудительной циркуляции воды в тепловых сетях устанавливают два сетевых насоса с электроприводом (один из них резервный). Производительность насоса, м3/ч, равная часовому расходу сетевой воды в подающей магистрали:
|
(25) |
где
-
расчетная
тепловая нагрузка,
покрываемая
водой, (в Вт);
- плотность
обратной воды,
кг/м3,
=977,8
кг/м3 (132/1/),
и
-
расчетный
температуры
прямой и обратной
воды, °С.
Тепловая
нагрузка ,
покрываемая
паром, Вт
Вт
-
тепловая мощность,
потребляемая
котельной на
собственные
нужды(подогрев
и диарация
воды, отопление
вспомогательных
помещений и
др.)
(26)
Вт
Ориентировочно принимаем напор развиваемый сетевым насосом:
;
Выбираем два центробежных насоса 4КМ-12 (приложение 21/1/): подача 65 м3/ч; развиваемое давление 370 кПа; КПД=75%.
Подпиточные насосы компенсируют разбор воды из открытых тепловых сетей на горячее водоснабжение и технологические нужды, а также восполняют утечки сетевой воды, состовляющие 1…2% ее часового расхода.
Количество подпиточных насосов должно быть не менее двух. Устанавливают подпиточные насосы перед сетевыми насосами во всасывающую линию для обеспечения давления в обратной магистрали.
Подача подпиточного насоса(м /ч)
(27)
-
расчетная
тепловая нагрузка
горячего
водоснабжения,
Вт
-
часть расчетной
технологической
нагрузки, покрываемой
теплоносителем,
Вт
и
- расчетные
температуры
горячей и холодной
воды, 0С
-
плотность
подпиточной
воды, можно
принять равной
кг/м3,
Ориентировочно принимаем напор развиваемый подпиточными насосами:
Выбираем насос 3КМ-6 (приложение 21/1/): подача 45 м3/ч; развиваемое давление 358 кПа; КПД=70%. Устанавливают подпиточные насосы перед сетевыми насосами во всасывающую линию для обеспечения давления в обратной магистрали
Мощность, кВт, на привод центробежного насоса с электродвигателем,
N =
|
(28) |
где Vt - производительность
насоса, м3/ч;
Рн - давление,
создаваемое
насосом, кПа;
-
к.п.д. насоса.
Для насоса 1,5К-6:
N=
кВт,
Для насоса 4КМ-12:
N=
кВт,
Для насоса 3КМ-6:
N=кВт
Расчет водоподготовки
В производственно- отопительных котельных получила распространение докотловая обработка воды в натрий-катионитовых фильтрах с целью ее умягчения. Объем катионита (м3), требующийся для фильтров,
;
(29)
-расчетный
расход исходной
вод, м3/ч
-
период между
регенерациями
катионита(принимаем
равной 8…24ч)
-
общая жескость
исходной воды,
мг∙экв/ м3 (
рекомендация
на стр. 133/1/)
-
обменная способность
катионита, г∙
экв/ м3 (для
сульфоугля
Е=280…300, г∙ экв/ м3);
(30)
-расход
исходной воды,
м3/ч(для паровой
котельной
)
Расчетная площадь поперечного сечения одного фильтра:
(31)
h- высота загрузки катиона в фильтре, равная 2…3м
n- число рабочих фильтров(1…3)
По таблице 4.3 стр.134/1/подбираем фильтры с площадью поперечного сечения с запасом в сторону увеличенияА=0,39 м2
Далее определяем
фактический
межрегенерационный
период
(ч)
и число регенераций
каждого фильтра
в сутки
:
Число регенераций в сутки по всем фильтрам:
Для регенерации натрий- катионитовых фильтров используют раствор поваренной соли NaCl(6…8%).
Расход соли (кг) на одну регенерацию фильтра:
(32)
а- уднельный расход поваренной соли равный 200г/(г∙экв.).
Суточный расход соли по всем фильтрам:
8. Расчет тепловой схемы паровой котельной
Один из возможных вариантов принципиальной тепловой схемы котельной, работающей на открытые тепловые сети, представлен на рис. 4.
Вырабатываемый
в котле К пар
используется
для подогрева
сетевой воды
в подогревателе
ПС (Дпс). Конденсат
этого пара
через охладитель
конденсата
ОК подается
в деаэратор
питательной
воды ДР 1. В этот
же деаэратор
поступает
конденсат
греющего пара
подогревателя
сырой воды ПСВ
и подогревателя
химочищенной
воды ПХВ, а также
добавка химочищенной
воды mхов и
отсепарировавшийся
пар из расширителя
непрерывной
продувки СНП.
Небольшой
расход пара
необходимый
для подогрева
этих потоков
до 102...104 °С,
подается в
деаэратор Др1
через редукционную
установку РУ.
Подпитка тепловой
сети осуществляется
деаэрированной
водой, подаваемой
насосом сырой
воды НСВ через
ПСВ, химводочистку
ХВО, охладитель
деаэрированной
воды ОДВ в деаэратор
ДР2 и оттуда
подпиточным
насосом НПод
подпиточным
насосом в обратную
магистраль
перед сетевым
насосом НС.
Некоторое
количество
редуцированного
пара используется
на нагрев подпиточной
воды в деаэраторе
ДР2 (
),
на технологические
нужды (Dт), на
паровое отопление
(
)и на собственные
нужды (Dсн).
В задачу расчета тепловой схемы паровой котельной входит определение расходов, температур и давлений теплоносителей (пара и воды) по их потокам в пределах установки, а также суммарной паропроизводительности котельной.
Do
= Dт +
Dсн +
+
+
Dпсв + Dпхв
+ Dсп. (33)
Расход пара на технологические нужды:
Dт =
|
(34) |
где
- тепловая мощность,
отпускаемая
технологическим
потребителям,
кВт;
- энтальпия
пара, кДж/кг
(определяется
по давлению
и по температуре
для перегретого
пара или же по
давлению
(температуре)
насыщения и
по степени
сухости пара).
Dт =
Расход пара на отопление производственных помещений, если отопление паровое:
|
(35) |
где
- тепловая мощность,
идущая на отопление
производственных
помещений, кВт;
-
тепловая мощность,
идущая на вентиляцию
производственных
помещений, кВт;
- энтальпия
возвращаемого
конденсата
(
=
4,19Чtк, где
tк=70 °С).
Расход пара на собственные нужды принимается
Dсн=0,050Ч Dотп |
(36) |
Расход пара
на деаэрацию
потока подпиточной
воды
определяется
из уравнения
теплового
баланса деаэратора
ДР2:
(mпод.
-
|
(25) |
где
-
температура
воды на входе
в деаэратор
ДР2, (
=80...85
°С);
tд - температура деаэрированной воды, равная температуре насыщенного пара в деаэраторе при рд=0,12 МПа, определяем tд=105 0С;
ho - энтальпия пара, вырабатываемого котлом, кДж/кг, при р=0,2 МПа h0=2600 кДж/кг (по h, d - диаграмме).
|
(26) |
Определяем тепловую мощность, передаваемой по тепловой сети:
Фсет=∑Фкр-∑Фс.н., (27)
где: ∑ Фкр - расчетная тепловая мощность котельной, (Вт);
∑Фс.н - тепловая
мощность,
потребляемая
на собственные
нужды, Вт. Предварительно
принимается
до 3% от общей
тепловой мощности
котельной
установки.
Фс.н.=0,03ЧФкр =0,03Ч6478149,8=194344,5 Вт;
Фсет =6478149,8-194344,5 =6283805,3 Вт.
Расход воды в подающей сети:
,
(28)
где: tп - температура прямой сетевой воды на выходе из котла, °С;
t0 - температура обратной сетевой воды на входе в котел, 0С;
Температуры tп и t0 определяем по температурному графику (лист А1).
mп=6283805,3 /4,19Ч(150-70)=18,74 кг/с.
Расход подпиточной воды при закрытом режиме тепловой сети:
mпод=(0,01...0,03)Чmп (29)
mпод =(0,01 ...0,03)Ч18,74 =0,1874...0,5622 кг/с, принимаем mпод=0,3 кг/с.
Расход воды в обратной тепловой сети:
mо= mп- mпод, (30)
mо=18,74-0,3=18,44 кг/с.
По формуле
(26) определяем
:
Расход пара для подогрева сырой воды Dпсв. до температуры 25...30 °С перед химводочисткой определяется из уравнения теплового баланса ПСВ:
Dпсв.
=
|
(31) |
где tх - температура исходной воды (зимой 5 °С, летом 15 °С);
hк - энтальпия конденсата при рк=0,12 МПа, hк=tдЧс=105Ч4,19=439,95 кДж/кг;
hп - к.п.д. подогревателя (0,95...0,98).
Dп.с.в. =0,3Ч4,19Ч(30-5)/(2600-439,95)Ч0,96=0,015 кг/с. Температура подпиточной воды определяется из уравнения теплового баланса охладителя деаэрированной воды ОДВ: mпод.
Чс
Ч(tд-
tпод.) Ч
hп
= (mпод. -
2.50 Отсюда: tпод.
= 2.51
Температуру сетевой воды перед сетевыми насосами tсм определяем из уравнения теплового баланса точки смешения подпиточной и сетевой воды: mпод. Чс Ч tпод. + mо Чс Ч tо = mп Чс Ч tсм, (34) 2.52 Преобразуя формулу (34) получим: tсм =
|
(32) (33) |
tсм =(0,3Ч49,8+18,44Ч70)/18,74=69,68 0С.
Расход пара на сетевые подогреватели Dс.п. определяется из уравнения теплового баланса вместе с охладителями конденсата ОК:
Dсп. Ч
(ho -
|
(36) |
где
- энтальпия
конденсата
после охладителей
ОК,
=
tохЧс=30Ч4,19=125,7
кДж/кг.
Давление греющего пара принимается в ПС исходя из того, что температура насыщения его на 10...15 °С выше, чем tп.
Из уравнения (36) находим:
Dс.п. =
|
(37) |
Расход химочищенной воды на подпитку тепловой схемы котельной, mх.в.о рассчитывается на компенсацию потерь пара и воды в схеме котельной:
mх.в.о = Dсн.+(1-mв) Ч Dт + Dпр + Dсеп, | (38) |
где mв - коэффициент возврата конденсата, отдаваемого потребителям технологического пара (mв=0,5...0,7), если же технологические процессы потребляют пар без возврата конденсата, например, кормоцех, то mв=0;
Dпр - расход воды на продувку котла, Dпр = (0,03...0,05) Ч Dс.п., кг/с;
Dсеп - количество пара, отсепарированного в расширителе СНП непрерывной продувки, направляемый в деаэратор ДР 1,
Dсеп = (0,2...0,3) Ч Dпр.
Dпр.=0,04Ч2,66=0,11 кг/с;
Dсеп.=0,25Ч0,11=0,028 кг/с;
По формуле (38) определяем mх.в.о:
mх.в.о=0,0078 +(1-0,6)Ч0,062+0,11+0,028=0,17 кг/с.
Расход греющего
пара на деаэратор
питательной
воды
определяется
из уравнения
теплового
баланса деаэратора:
|
(39) |
где
-
температура
возвращенного
конденсата
технологического
пара (
=
40...70 °С);
mп.в - расход питательной воды в котле, рассчитанный на выработку пара Dок с учетом продувки котла:
mп.в = Dсп + Dпр, | (40) |
mп.в=2,66+0,11=2,77 кг/с.
- энтальпия
конденсата
после отопительных
приборов
|
(41) |
( tк можно принять равной 70 °С),
=
4,19Ч70=293,3 кДж/кг,
После преобразования уравнения (38) находим:
|
(42) |
Определяем
паропроизводительность
котельной из
уравнения (21):
Do =
Dт +
Dсн +
+
+
Dпсв + Dпхв
+ Dсп.
Do= 0,062+0,156+0,0078+0,011+0,29+0,015 +0+2,66=2,97 кг/с.
N=
9. Технико-экономические показатели производства тепловой энергии
Работа котельной оценивается ее технико-экономическими показателями.
1. Часовой расход топлива (кг/ч):
(43)
q- удельная
теплота сгорания
топлива, по
заданию для
каменного
угля:=21000
кДж/кг;
-
к.п.д. котельного
агрегата,
—
при работе на
твердом топливе
(приложение
14/1/);
2. Часовой расход условного топлива (кг/ч):
(44)
3. Годовой расход топлива (т или тыс. м3):
,
(45)
где Qгод — годовой расход теплоты, ГДж/год.
т.
4. Годовой расход условного топлива (т или тыс. м3):
(46)
т.
5. Удельный расход топлива (т/ГДж или тыс. м3/ГДж):
т/ГДж. (46)
6. Удельный расход условного топлива (т/ГДж или тыс. м3/ГДж):
т/ГДж.
7. Коэффициент использования установленной мощности котельной:
,
(47)
где Фуст — суммарная тепловая мощность котлов, установленных в котельной, МВт;
8760 — число часов в году.
Библиографический список
А.А.Захаров "Практикум по применению и теплоснабжению в с/х" - М.: Колос, 1995.- 176с.:ил.
А.А. Захаров "Применение тепла в с/х" - 2-е изд., перераб. и доп. –М.: Колос, 1980.- 311с.
Д.Х. Мигранов "Методические указания к выполнению расчетно-графических работ" - Уфа: БГАУ, 2003.
Драганов Б.Х. и др. "Теплотехника и применение теплоты в сельском хозяйстве".- М.: Агропромиздат, 1990.- 463с.: ил.