Рефетека.ру / Промышленность и пр-во

Реферат: Конструкционные материалы

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ


Кафедра инженерной графики


РЕФЕРАТ

На тему:


«Конструкционные материалы»


МИНСК, 2008

Требования к конструкционным материалам


Качество детали и механизма зависит в значительной мере от правильного выбора материала. При выборе материала прежде всего учитывают эксплуатационные, технологические и экономические требования, предъявляемые к детали. Эксплуатационные требования к материалу определяются условиями работы детали в механизме. Для выполнения этих требований учитываются следующие свойства материала: прочность – способность материала сопротивляться разрушению или появлению остаточных деформаций, характеризуется пределом прочности σu, пределом текучести σy, условным пределом текучести σ0,2, пределом выносливости σR, твердостью по Бринеллю НВ или Роквеллу HRCэ; износостойкость – способность материала сопротивляться износу, характеризуется твердостью НВ, HRCэ или допустимым удельным давлением qadm; жесткость – способность материала сопротивляться упругим деформациям, характеризуется при растяжении (сжатии) и изгибе модулем упругости Е, при кручении – модулем упругости G; упругость характеризуется пределом упругости σe и модулем упругости Е; антифрикционность характеризуется коэффициентом трения скольжения f; плотность; удельные характеристики – характеристики, приходящиеся на единицу массы; электропроводность, теплопроводность, коррозионнаястойкость, жаропрочность и др.

Технологическиетребования к материалу определяют возможность изготовления деталей с минимальными трудозатратами. При изготовлении деталей методами обработки давлением (штамповка, прессование и т.д.) учитывают пластичность – свойство материала получать без разрушения значительные остаточные деформации; при изготовлении литьем учитывают легкоплавкость и жидкотекучесть – заполняемость без пустот узких полостей различных форм; при изготовлении методами механической обработки учитывают обрабатываемостьрезанием. К технологическим требованиям относят также термообрабатываемость – способность материала изменять механические свойства при термической (закалка, отпуск, отжиг) и термохимической (цементация, азотирование и т.д.) обработках и свариваемость – способность материала образовывать прочные соединения при сварке.

Экономическиетребования к материалу определяются его стоимостью и дефицитностью. Более веским экономическим требованием является себестоимость детали, которая включает как стоимость материала, так и производственные затраты на ее изготовление. Производственные затраты в значительной мере зависят от технологического процесса изготовления детали. Например, при массовом и крупносерийном производствах дешевле изготавливать детали штамповкой, прессованием, с помощью литья, а при единичном или мелкосерийном производстве эти технологии из-за большой стоимости оснастки (штампы, пресс-формы, литейные формы) очень дороги, здесь выгоднее применять детали, полученные с помощью механической обработки. Выбор технологии изготовления детали влияет и на выбор материала.

При изготовлении конструктивных элементов механизмов используют черные металлы (стали и чугуны), цветные металлы и сплавы и неметаллические материалы.

Черные металлы

К черным металлам относят железоуглеродистые сплавы на основе железа, которые в зависимости от содержания углерода делят на стали – до 2,14% углерода и чугуны – свыше 2,14% углерода.

Чугуны

Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.

В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Чугуны также классифицируют в зависимости от назначения – на конструкционные и со специальными свойствами; и от химсостава – на легированные и нелегированные.

Как конструкционный материал наиболее широко применяются серые чугуны, в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), мало чувствительны к концентрации переменных напряжений, антифрикционны.

В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости, плохой обрабатываемости резанием – белые чугуны не применяются в качестве конструкционных материалов.

Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям. Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоят на 30 … 100% дороже.

Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами.

Для улучшения прочностных характеристик и получения особых эксплуатационных свойств: износостойкости, немагнитности, коррозионной стойкости и т.д., в состав чугунов вводят легирующие элементы (никель, хром, медь, алюминий, титан и др.). Легирующими элементами могут служить также марганец (при содержании более 2%) и кремний (более 4%).

Марки чугуна обозначаются буквами, показывающими назначение чугуна: СЧ – серый чугун, ВЧ – высокопрочный, КЧ – ковкий чугун; для антифрикционных чугунов в начале марки указывается буква А (АСЧ, АВЧ, АКЧ). Цифры в обозначении марки нелегированного чугуна указывают на его механические свойства. Для серых чугунов цифры указывают величину предела прочности (кгс/мм2) при растяжении. Например, марка СЧ18 показывает, что чугун имеет σut = 18 кгс/мм2 = 180 МПа. Для высокопрочного и ковкого чугуна цифры определяют предел прочности (кгс/мм2) и относительное удлинение при растяжении в процентах, например ВЧ60-2 – высокопрочный чугун с σut = = 600МПа и δ = 2%.


Стали


Стали – это деформируемые сплавы железа с углеродом и другими элементами.

Похимсоставу стали делят на углеродистые и легированные. Углеродистые стали содержат кроме железа и углерода также марганец (до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей: сера увеличивает хрупкость в горячем состоянии (красноломкость), а фосфор – при пониженных температурах (хладноломкость). В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне- (0,25 < С ≤ 0,6%) и высокоуглеродистые (C > 0,6%) стали.

В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром, никель, молибден, вольфрам, ванадий, титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний – более 0,8%.

Поназначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми (С ≤ 0,7%), так и легированными. Инструментальные стали служат для изготовления режущего, ударно-штампового и мерительного инструментов. Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем, кремнием и другими элементами. К сталям с особыми свойствами относят нержавеющие, немагнитные, электротехнические стали, стали постоянных магнитов и др.

Покачеству стали делят на обыкновенные, качественные, высоко и особо высококачественные. Различие между ними заключается в количестве вредных (сера и фосфор) примесей. Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных – каждого элемента не более 0,035%; а в высококачественных – не более 0,025%.

Похарактерузастывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»). Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки.

Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства.

Степень раскисления обозначается индексами, стоящим справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А, кипящая; БСт3пс – сталь группы Б, полуспокойная; ВСт5сп – сталь группы В, спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70), показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью. Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50 благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием. Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью, износостойкостью и упругостью, используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки.

Углеродистые инструментальные стали маркируют буквой У и цифрами, которые соответствуют содержанию углерода в десятых долях процента, например, сталь марки У9 содержит в среднем 0,9% углерода.

Легированными называют стали, в состав которых для придания им специальных свойств вводят легирующие элементы. Они по-разному влияют на свойства стали: марганец повышает прочность и износостойкость; кремний увеличивает упругие характеристики стали; хром повышает коррозионную стойкость, твердость, прочность, жаропрочность; никель снижает коэффициент линейного расширения, повышает прочность и износостойкость; вольфрам и молибден повышают прочность и твердость, улучшают режущие свойства при повышенной температуре. Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах. Цифры за буквой не ставятся при содержании легирующего элемента менее 1,5%. Легирующие элементы обозначаются следующими буквами: Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. Например, нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля и до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого. В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%. Обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали. Например, буква Ш –шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и т.д. Обладая хорошими механическими характеристиками, стали являются наиболее распространенным конструкционным материалом. Существенный их недостаток – большая плотность и, как следствие, небольшая удельная прочность и удельная жесткость. Стали обладают также малой коррозийной стойкостью, а применение нержавеющих сталей для подобных целей дорого.Стали поставляются как листовой и сортовой прокат в виде листов, полос, лент, проволоки, прутков круглого, прямоугольного и квадратного сечений, труб, равно- (рис. 1, а) и неравнобоких уголков (рис. 1, б), двутавров (рис. 1, в), швеллеров (рис. 1, г) и других видов профилей разных размеров, оговоренных стандартами.Конструкционные материалы

а б в г

Цветные металлы и сплавы


Цветные металлы (медь, алюминий, титан, магний) и их сплавы широко применяются в виде прутков, листов и лент для изготовления деталей механизмов. Но их применение должно быть обосновано, так как стоимость деталей из цветных металлов и сплавов значительно выше, чем из стали и пластмасс.


Медь и ее сплавы


Медь в чистом виде характеризуется высокой электро- и теплопроводностью, хорошей обрабатываемостью давлением, небольшой прочностью и применяется для изготовления токопроводящих деталей. Более широкое применение получили медные сплавы: латунь и бронза. В латунях основным легирующим элементом является цинк, в бронзах – иные элементы.

Легирующие элементы в марках медных сплавов обозначают следующими буквами: А – алюминий, Н – никель, О – олово, Ц – цинк, С – свинец, Ж – железо, Мц – марганец, К – кремний, Ф – фосфор, Т – титан.

Латуни делят на двойные и многокомпонентные сплавы. В двойных содержание цинка может доходить до 50%. Марки таких латуней обозначают буквой Л и цифрой, показывающей содержание меди в процентах, например Л59. Для улучшения механических, технологических и коррозийных свойств в латуни вводят кроме цинка в небольших количествах различные легирующие элементы (алюминий, кремний, марганец, олово, железо, свинец). В марках многокомпонентных латуней первые цифры указывают среднее содержание меди, а последующие – легирующих элементов. Например, латунь ЛКС80-3-3 содержит 80% меди, по 3% кремния и свинца, а остальное – цинк.

Марки бронз и медно-никелевых сплавов начинаются соответственно с букв Бр и М, а следующие буквы и цифры указывают на наличие легирующих элементов и соответственно их содержание в процентах. Например, бронза БрОЦС 5-5-5 содержит олова, цинка и свинца по 5% или медно-никелевый сплав мельхиор МН19 содержит 19% никеля.

Бронзы называют по основным легирующим элементам: оловянистые, алюминиевые, бериллиевые, кремнистые и т.д. Широко используются оловянистые бронзы, они характеризуются высокой стойкостью против истирания, низким коэффициентом трения скольжения. Все медные сплавы отличаются хорошей стойкостью против атмосферной коррозии.

Латуни и бронзы используют в качестве конструкционных материалов. В частности, латунь Л63, отличающуюся высокой пластичностью, используют для изготовления токопроводящих и конструктивных деталей типа наконечники, втулки, шайбы, а латунь ЛК80-3Л – для изготовления литых деталей. Безоловянистые бронзы БрАЖ9-4, БРАМц9-2 обладают высокими механическими и антифрикционными свойствами, хорошо обрабатываются, поэтому используются при изготовлении небольших зубчатых и червячных колес, втулок подшипников скольжения, ходовых гаек в винтовых механизмах. Наилучшие антифрикционные свойства имеют оловянистые бронзы.

Особое место занимает при изготовлении упругих элементов из-за высокой прочности и упругости бериллиевая бронза марки БрБ2. Она немагнитна, стойка к морозу, действию пресной и соленой воды, хорошо сваривается и обрабатывается резанием. Применяют ее для изготовления ответственных деталей типа токоведущих пружинящих контактов, пружин, мембран.

Прочность медных сплавов, особенно латуней, ниже, чем сталей, а коррозионная стойкость много больше. Все латуни и большинство бронз, за исключением алюминиевых, хорошо паяются.

Алюминий и его сплавы


Чистый алюминий применяется редко, так как имеет низкую прочность. Чаще при изготовлении деталей применяют сплавы на основе алюминия. Они обладают малой плотностью, высокой электро- и теплопроводностью, коррозийной стойкостью и удельной прочностью. Алюминиевые сплавы в зависимости от технологических свойств делят на деформируемые и литейные.

Наибольшее распространение из деформируемых сплавов получили термически упрочняемые с помощью закалки и старения алюминиево-медно-магниевые и алюминиево-магниевые сплавы. Первые называют дуралюминами (марки Д1, Д16), из вторых наиболее часто применяется сплав марки АМг6. Они обладают высокими механическими свойствами, выпускаются в виде прутков, листов, труб, фасонных профилей. Их применяют для средненагруженных деталей типа стоек, крышек, втулок и т.д. К деформируемым относится высокопрочный алюминиево-магниево-цинковый сплав В95, который применяют для деталей с повышенными статическими нагрузками (валы, зубчатые колеса).

Деформируемыми являются так называемые спеченные алюминиевые сплавы, отличающиеся очень высокими прочностными свойствами (модуль упругости, пределы прочности σut и текучести σу). Они бывают двух видов: САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). САП упрочняется дисперсными частицами окиси алюминия Al2O3, образуемой в процессе помола алюминиевой пудры в атмосфере азота с регулируемой подачей кислорода. Пудру брикетируют, спекают и подвергают деформации – прессованию, прокатке, ковке. В зависимости от содержания Al2O3 (прочность сплава возрастает при увеличении окиси алюминия до 20 – 22%) различают 4 марки САП (САП-1, САП-2, САП-3 и САП-4). Сплавы САС содержат до 25% кремния и 5% железа. Их получают распылением жидкого сплава, брикетированием полученных гранул и последующей деформацией. Спеченные алюминиевые сплавы применяют для изготовления высоконагруженных деталей и различных профилей.

Из литейных алюминиевых сплавов наибольше распространение получили сплавы алюминия с кремнием – силумины. Они обладают хорошими литейными и средними механическими свойствами. Силумины марок АЛ-2, АЛ-4, АЛ-9 применяют для изготовления литьем корпусов, крышек, кронштейнов и других сложных средненагруженных деталей.

Алюминий и его сплавы трудно паяются.


Пластмассы


Из неметаллических материалов широко используют пластмассы. Пластмассами называют материалы, получаемые на основе природных или синтетических смол (полимеров), которые при определенных температуре и давлении приобретают пластичность, а затем затвердевают, сохраняя форму при эксплуатации. Кроме связующего вещества (полимера) в состав пластмасс входят наполнители, пластификаторы, отвердители, красители.

Полимером служат различные смолы, которые в период формирования деталей находятся в вязкотекучем (жидком) или высокоэластичном состоянии, а при эксплуатации – в стеклообразном или кристаллическом состоянии.

Наполнители вводят в смолы для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости пластмассы. Наполнители могут быть в газовой (пенопласты) и твердой фазе, иметь органическое (древесная мука, хлопковые очесы, целлюлоза, бумага, хлопчатобумажная ткань) и неорганическое (графитная, асбестовая и кварцевая мука; углеродное и стекловолокно; стеклоткань) происхождение. Механическая прочность пластмасс существенно зависит от наполнителя. Пластмассы с порошкообразными, коротковолокнистыми, длиной 2 … 4 мм, наполнителями по прочности приближаются к дуралюмину и некоторым сортам стали. Для деталей, работающих в узлах трения, широко применяют теплопроводящие наполнители, например графит.

Пластификаторы увеличивают текучесть, эластичность и уменьшают хрупкость пластмасс. Отвердители ускоряют процесс затвердевания пластмасс, красители придают пластмассам нужный цвет.

По поведению при нагреве полимеров пластмассы делят на термопластичные (термопласты) и термореактивные (реактопласты). Термопласты (полиэтилен, фторопласт, полистирол, полиамиды и др.) имеют свойства обратимости: при повторных нагреваниях они переходят в пластическое или вязкотекучее состояние и им можно придать необходимую форму, а затем они вновь затвердевают при охлаждении. Переход термопластов из одного физического состояния в другое может осуществляться неоднократно без изменения химического состава. Термопласты легко формуются и надежно свариваются в изделия сложных форм, устойчивы к ударным и вибрационным нагрузкам, обладают хорошими антифрикционными свойствами. Свойства термопластов сильно зависят от температуры.

Термореактивныепластмассы не переходят в пластическое состояние при повторном нагревании. Они имеют более высокие, чем термопласты, показатели по твердости, модулю упругости, теплостойкости, сопротивлению усталостной прочности. Их свойства не так резко зависят от температуры. В зависимости от наполнителя различают монолитные (карболит), слоистые (текстолит, гетинакс) и композиционные пластмассы, где наполнителем используются волокна. В термореактивных пластмассах связующими являются эпоксидные, кремнийорганические и другие смолы.

Пластмассы являются хорошими электроизоляционными материалами. Для них характерна высокая химическая и коррозионная стойкость, малая плотность и теплостойкость. Они отличаются достаточной прочностью и упругостью. Детали, изготовленные из пластмасс, имеют блестящую гладкую поверхность разных цветов. Пластмассы значительно хуже, чем металлы, сопротивляются переменным нагрузкам; они подвержены тепловому, световому и атмосферному старению – процессу самопроизвольного необратимого изменения свойств; многие из пластмасс гигроскопичны.

Большим достоинством пластмасс является их высокая технологичность, обеспечивающая значительное сокращение производственного цикла. Изготовление металлических деталей осуществляется за десятки операций механической обработки, а пластмассовых – часто за одну технологическую операцию по формообразованию (прессование, выдавливание, литье под давлением и др.). Поэтому трудоемкость изготовления пластмассовых деталей уменьшается в 5 … 6 раз и более, а себестоимость продукции снижается в 2 … 3 раза, при этом получают очень высокий коэффициент использования материала, равный 0,9 … 0,95. Это приводит к значительному снижению материалоемкости и из-за малой плотности пластмасс (1,2 … 1,9 Мг/м3), к уменьшению массы конструкции в 4 ... 5 раз.

Из пластмасс изготавливают зубчатые и червячные колеса, шкивы, подшипники, ролики, корпуса, зубчатые ремни, ручки управления и другие детали. Производство пластмасс развивается интенсивнее, чем таких традиционных материалов, как металлы. Это объясняется удешевлением изготовления, улучшением ряда основных параметров механизмов: уменьшением веса и инерционности звеньев, потерь на трение, повышением быстродействия.


Виды термической и химико-термической обработки стали

Термической обработкой называется процесс изменения в заданном направлении структуры и свойств деталей из металлов и сплавов путем теплового воздействия. Тепловое воздействие может сочетаться с деформационным и химическим.

При термической обработке (рис. 2) проводят нагрев детали до определенной температуры, выдержку при этой температуре и охлаждение с определенной скоростью. Наиболее широко применяются следующие виды термической и химико-термической обработки: отжиг, нормализация, закалка, отпуск, старение и насыщение поверхностного слоя детали различными элементами.

При изготовлении деталей с использованием литья, сварки и горячей обработки давлением из-за разной скорости охлаждения элементов детали возникают значительные остаточные напряжения. Они могут вызвать искажение формы и размеров детали при последующей механической обработке, эксплуатации или хранении на складе.


Конструкционные материалы

Рис. 2

Отжиг заключается в нагреве выше критических температур, выдержке при данной температуре и последующем медленном охлаждении, обычно вместе с печью. Цели отжига – снизить твердость материала для повышения обрабатываемости, измельчить зерно, снять внутренние напряжения. При нагреве детали предел текучести σ0,2 снижается и когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путем пластического течения металла.

Нормализацию (упорядочение) применяют к металлам и сплавам для измельчения зерна, смягчения и улучшения обрабатываемости резанием, выравнивания механических свойств, снятия внутренних напряжений. Основные параметры: температуру нагрева, время выдержки и скорость охлаждения – выбирают так, чтобы обеспечить необходимое фазовое превращение в металле. Для сталей это нагрев до температуры фазовых превращений и охлаждение на воздухе. Твердость и прочность стали после нормализации будут выше, чем после отжига.

Закалку проводят с целью повышения прочности и твердости деталей, ее можно применять для сталей, содержащих не менее 0,3% углерода. Закалка состоит из нагрева до температур фазовых превращений, выдержки и быстрого охлаждения в воде или масле. В процессе нагрева и охлаждения внутренние напряжения изменяются. Так, при нагреве поверхностные слои детали испытывают напряжения сжатия, так как стремятся расшириться, а этому препятствуют более холодные слои сердцевины. При охлаждении поверхностные слои, имеющие более низкую температуру, чем сердцевина, испытывают напряжения растяжения, а сердцевина – напряжения сжатия. Закаленная сталь всегда находится в структурно-напряженном состоянии.

Для снятия остаточных внутренних напряжений после закалки, повышения пластичности при сохранении достаточно высоких прочностных характеристик проводят отпуск. В зависимости от температуры нагрева, определяемой требуемыми свойствами детали, различают высокий (500 … 650 °С), средний (350 … 450 °С) и низкий (150 … 200 °С) отпуск.

Старение проводят для стабилизации размеров и свойств деталей после сварки, литья или термообработки. Оно заключается в длительном выдерживании при комнатной или небольшой повышенной температуре. Старению подвергают детали типа корпусов, рам.

Для повышения поверхностной твердости (износостойкости) деталей из низкоуглеродистых сталей с содержанием углерода до 0,2%, при сохранении хорошей сопротивляемости ударам и вибрационным нагрузкам, проводят цементацию и последующую закалку с низким отпуском. Цементация заключается в насыщении поверхностного слоя детали углеродом в газовой, твердой или жидкой среде. Толщина цементированного слоя возможна до 1,5 миллиметров за счет диффузии при соответственном подборе режима обработки.

Чтобы увеличить износостойкость и коррозионную стойкость детали, проводят насыщение ее поверхности при повышенных температурах азотом (азотирование), бором (борирование), углеродом и азотом (цианирование), хромом (хромирование), цинком (цинкование), алюминием (алитирование), кремнием (силицирование) и другими элементами в твердых, жидких и газообразных средах.

ЛИТЕРАТУРА


1 Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с. 2001

2 Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с. 2004

3 Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.

1999

Похожие работы:

  1. • Конструкционные материалы в судостроении
  2. • Технологии конструкционных материалов
  3. • Технология конструкционных материалов
  4. • Свойства конструкционных материалов
  5. • Технология конструкционных материалов
  6. • Технология Конструкционных Материалов
  7. • Технология конструкционных материалов
  8. • Конструкционные материалы
  9. •  ... определения прочности конструкционных керамических материалов
  10. • Материаловедение и технология конструкционных ...
  11. • Электротехнические и конструкционные материалы
  12. • Материаловедение и технология конструкционных ...
  13. • Материаловедение и технология конструкционных ...
  14. • Технология металлов и конструкционные материалы
  15. • Технология обработки конструкционных материалов
  16. • Сопротивление материалов
  17. • Конструкционные углеродистые стали и сплавы
  18. • Технология машиностроения
  19. • Ядерные иследования
Рефетека ру refoteka@gmail.com