СОДЕРЖАНИЕ:
Введение…………………………………………………………………………..3
1. Основные подходы к проблеме происхождения жизни. Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни…………5
2. Этапы химической и предбиологической эволюции на пути к жизни…8
3. Новая гипотеза об особой роли малых молекул в первичном
зарождении белково-нуклеиновых систем…………………………………...10
Заключение……………………………………………………………………….11
Литература…………………………………………………………………….…13
Приложение………………………………………………………………………14
ВВЕДЕНИЕ:
Чтобы создать полную теорию эволюции, надо в первую очередь определить ее отправную точку.
На сегодня есть ряд концепций зарождения жизни на Земле: от божественного происхождения, зарождение через эволюцию неживого вещества до информации в гене Вселенной, которая реализуется в уникальных условиях: сочетание антропоцентристского принципа и внешних условий космического объекта Вселенной.
Для того чтобы установить начало жизни, нужно определить границу, отделяющую живое от неживого, и есть ли она? К сожалению, однозначно дать определение живому не удается, но принципиальные отличительные характеристики указать можно.
Считается, что первые убедительные научные факты представил Л. Пастер в 1860 г., проведя пастеризацию мяса. Однако из его опытов не следует, что жизнь не может зарождаться из неживого, так как нет сведений о длительности такого процесса. Им были созданы закритические условия для ее существования и зарождения, то есть Среда была умерщвлена и изолирована.
Суть опыта Пастера, основателя микробиологии заключается в том, что он прокипятил мясной бульон и герметично закрыл его. Будучи специалистом по кристаллографии, он отметил, что вещества небиологического происхождения имеют симметричную структуру, а микроорганизмы — асимметричную. Но и это не убедительно, ибо и у кристалла можно нарушить симметрию, но он не оживет и не разрушится, а живое может быть симметричным.
Приверженцами гена Вселенной, несущего информацию о жизни, были Аррениус, лорд У. Кельвин (1824-1907), Г. Гельмгольц, С. Либих, К. А. Тимирязев (1843-1905) и др. И если колебательно-волновое и вращательное движения наиболее характерны для Природы, то "дыхание" Вселенной (расширение — сжатие) должно восприниматься естественно, и ее ген должен нести зачатки жизни. Иначе нарушается вся логика развития Природы.
Кроме логики и философии, существуют и физические предпосылки, объясняющие зарождение жизни. В 1975 г. обнаружены в лунном грунте и в метеоритах составляющие аминокислот. Правда и эти части Вселенной могли быть порождены Землей.
В 1999 г. жизнь обнаружена на расстояниях до 11 км в верхних слоях атмосферы и на таких же глубинах в гидросфере и земной коры.
Для создания углеводородов нужны существенные затраты энергии. И жизнь при соответствующих внешних условиях может возникнуть из неживой материи скачком при появлении необходимой энергии (Менделеев, Опарин, Джине и др.) — от сложных органических веществ перейти к простым живым организмам. Лауреат Нобелевской премии американский генетик -Г. Миллер заявил, что жизнь возникла в форме гена — элемента наследственксстх — путем случайного сочетания атомных-групп и молекул.
Российский академик А. И. Опарин (1894-1980)в 1936 г. дал описание коллоидной фазы развития жизни и возникновения способности к фотосинтезу у предшественников растительных организмов. Коацерваты уже могут увеличиваться в размерах, делиться на части и подвергаться химическим изменениям на границе, которые носят зачатки метаболизма, а переход к живому происходит, когда на смену "соревнованию в скорости роста приходит борьба за существование". С ним созвучен и Д. С. Холдейн (1860-1936), а сама гипотеза носит название Холдейна -Опарина.
В 60-е-70гг.ХХ столетия опыты и расчеты Г.С. Юри, Б. С. Соколова, X. Оро, К. Миллера, К. Сагана показали, что солнечное излучение способно обеспечить ход мощных процессов синтеза и неорганического фотосинтеза, что могло привести к "выживанию" более сложных молекул вместо простых. Итак, теория Опарина получила признание, но переход от сложных органических веществ к простым живым организмам остается тайной.
Наиболее лаконичное и нетрадиционное для биологов-натуралистов определение жизни дал физик Ф. Типлер (амер.): жизнь — это закодированная информация, которая сохраняется естественным отбором, не привязанная к нуклеиновым кислотам обязательным образом. То есть к белково-нуклеиновой основе жизни можно прийти только через какой-то или какие-то промежуточные переходные этапы. Прямой синтез, возможно, и не реализуем.
Другой подход: обнаружение в метеоритах органических веществ позволило предположить, что жизнь была занесена на Землю из космоса. Как могли на Земле в ходе химической эволюции сложиться из неживого вещества такие высокоупорядоченные системы обмена веществ и воспроизведения? Появление и эволюция человека неразрывно связывают биологию с философией, как биологическая эволюция привела к появлению разума, ведь принципиальных различий в строении мозга человека и шимпанзе нет?
Выяснилось, что простейшей структурной единицей мозга служит не отдельная нервная клетка, а их ансамбль со сложными, но фиксированными взаимосвязями. Эволюция мозга, его усложнение идет за счет роста организованности, упорядоченности
Переход от приматов к человеку связан с переходом от биологических регуляторов внутри сообщества к регуляторам социальным. Этого требовала организация трудового процесса.
Строение ансамблей нервных клеток, их связи в мозге программируются генетическим аппаратом. Развитость речевых и двигательно-трудовых структурных ансамблей мозга человека наследуется от родителей. Но наследуются не речь и не трудовые навыки, а лишь потенциальная возможность их последующего приобретения.
1. Основные подходы к проблеме происхождения жизни. Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни.
Вначале в науке вообще не существовало проблемы возникновения жизни. Допускалась возможность постоянного зарождения живого из неживого.
Великий Аристотель (IV в. до н.э.) не сомневался в самозарождении лягушек, мышей. В III в. н.э. философ Плотин (ярко выраженный идеалист) говорил о самозарождении живых существ из земли в процессе гниения. В XVII в. голландский ученый Я.Б. Ван-Гельмонт составлял рецепты получения мышей из пшеницы и загрязненного потом белья. В. Гарвей, Р. Декарт, Г. Галилей, Ж.Б. Ламарк, Г. Гегель тоже придерживались мысли о постоянно осуществляющемся самопроизвольном зарождении живого из неживого.
Но с XVII в. стали накапливаться данные против такого понимания. В 1668 г. тосканский врач Франческо Реди доказал, что белые черви в гниющем мясе есть не что иное, как личинки мух. Через 100 лет итальянец Л. Спаллацани и русский М. Тереховский поставили под сомнение представления о самозарождении микроорганизмов.
Окончательно же ученые отказались от подобных представлений лишь во второй половине XIX в. В 1862 г. Луи Пастер убедительными опытами доказал невозможность самопроизвольного зарождения простейших организмов в современных условиях и утвердил принцип «все живое из живого».
После этого одни ученые поставили вопрос об историческом возникновении жизни в первобытных условиях Земли, другие же склонились к тому, что жизнь на нашей планете никогда не зарождалась, а была занесена на нее из Космоса, где она существует вечно. Однако такой подход просто снимает проблему возникновения жизни.
Существует также точка зрения, что жизнь возникла чисто случайно и совершенно внезапно. Американский генетик Г. Меллер (лауреат Нобелевской премии) допускает, что живая молекула, способная размножаться, могла возникнуть вдруг, случайно в результате взаимодействия простейших веществ.
Он считает, что элементарная единица наследственности — ген — является и основой жизни. И жизнь в форме гена, по его мнению, возникла путем случайного сочетания атомных группировок и молекул, существовавших в водах первичного океана. Но подсчеты показывают невероятность такого события. Трудно рассчитывать получить одну молекулу РНК вируса табачной мозаики за 109 лет даже в том случае, если бы весь Космос представлял собой реагирующую смесь нуклеотидов, входящих в РНК.
Большинство ученых отказалось от такого предположения.
Ф. Энгельс одним из первых высказал мысль, что жизнь возникла не внезапно, а сформировалась в ходе длительной эволюции материи. Эволюционная идея положена в основу гипотезы сложного, многоступенчатого пути развития материи, предшествовавшего зарождению жизни на Земле, выдвинутой А.И. Опариным в 1924 г. и английским исследователем Дж. Холдейном в 1929 г.
Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни.
Коацерваты — это комплексы коллоидных частиц. Они могут возникать, например, из комплексных солей кобальта, кремнекислого натрия и нашатырного спирта, в растворе ацетилцеллюлозы, в хлороформе или бензоле, при смешивании растворов различных белков. Такой раствор, как правило, разделяется на два слоя — слой, богатый коллоидными частицами, и жидкость, почти свободную от них.
В некоторых случаях коацерваты образуются в виде отдельных капель, видимых под микроскопом. Для их образования необходимо присутствие в растворе нескольких (хотя бы двух) разноименно заряженных высокомолекулярных веществ. Поскольку в водах первичного океана это условие было соблюдено, образование в нем коацерватов могло быть реальным.
А.И. Опарин предположил, что в массе коацерватных капель должен был идти отбор наиболее устойчивых в существовавших условиях. Многие миллионы лет шел процесс естественного отбора коацерватных капель. Сохранялась лишь ничтожная их часть.
Способность к избирательной адсорбции постепенно преобразовалась в устойчивый обмен веществ. Вместе с этим в процессе отбора оставались лишь те капли, которые при распаде на дочерние сохраняли особенности своей структуры, т.е. приобретали свойство самовоспроизведения — важнейшего признака жизни.
По достижении этой стадии коацерватная капля превратилась в простейший живой организм. Коацерватные капли были местом встречи и взаимодействия до этого независимо возникавших простых белков, нуклеиновых кислот, полисахаридов и липидов.
Отдельная молекула, даже очень сложная, не может быть живой. Ученые считают, что первоначально на молекулярном уровне могли возникать лишь белково- и нуклеино-подобные полимеры, лишенные какой-либо биологической целесообразности своего строения. Только при объединении этих полимеров в многомолекулярные фазовообособленные системы могло возникнуть взаимосогласование их структур и биологическое функционирование новых целостных систем.
Это значит, что не разрозненные части определяют собой организацию целого, а целое, продолжая эволюционировать, обусловливает целесообразность строения частей.
Где-то на той же стадии возникает и естественный отбор, способствующий сохранению наиболее совершенных и целесообразных структур. Здесь много неясного, но в трудах ведущих синергетиков И. Пригожина и М. Эйгена и многих других ученых дается все более обосновываемая картина действия отбора на высокомолекулярном и надмолекулярном уровнях.
2. Этапы химической и предбиологической эволюции на пути к жизни
Гипотеза А.И. Опарина способствовала конкретному изучению происхождения простейших форм жизни. Она положила начало физико-химическому моделированию процессов образования молекул аминокислот, нуклеиновых оснований, углеводородов в условиях предполагаемой первичной атмосферы Земли.
После работ немецкого исследователя С. Мюллера и других стало известно, что под воздействием физических излучений эти биоорганические молекулы могут образовываться в самых различных смесях, содержащих водород, азот, аммиак, воду, углекислый газ, метан, синильную кислоту и т.п.
Имеется ли этот исходный материал в реальном космическом пространстве? Сейчас установлено наличие в межзвездной среде облаков пыли и газа, в которых обнаружены многие неорганические молекулы Н2О, NH3, SO, SiO, H2S и т.д. Особенно показательно присутствие в космосе таких органических соединений, как формальдегид, цианацетилен, ацетальдегид, формамид, метилформиат.
Сенсацией явилось открытие космических облаков этилового спирта с температурой 200 К и с концентрацией молекул 1012-1013 в 1 см3. Подобные соединения близки к биоорганическим молекулам или легко могут превратиться в них. Таким образом, достоверно установлено, что в космосе имеются необходимые компоненты для синтеза более сложных соединений, важных для формирования белков, углеводов, нуклеиновых полимеров и липидов.
Следующие, более сложные звенья эволюционной цепочки обнаружены при изучении вещественного состава метеоритов и лунных пород, доставленных космическим аппаратом. В них обнаружены аминокислоты, алифатические и ароматические углеводороды, предшественники нуклеиновых кислот -аденин и гуанин, порфирин — простейший химический предшественник хлорофилла. И на земле, в древних отложениях с возрастом порядка сотен миллионов и нескольких миллиардов лет, обнаружено множество органических соединений, которые подсказывают возможные пути возникновения жизни (аминокислоты, углеводороды, порфирины и др.).
Обращает на себя внимание следующий факт. В нашей галактике наиболее распространены водород, углерод, азот, кислород, составляющие основу живого. В земной же коре, в лунных породах и метеоритах их очень мало, а преобладают здесь кремний, алюминий, железо. Для первой, космической группы элементов характерна молекулярная форма существования и склонность к флюидному, текучему состоянию (жидкость, газ). Для планетарной группы элементов типично твердое агрегатное состояние в виде бесконечных кристаллических структур, в которых невозможно выделить отдельные молекулы.
Мертвые, застывшие, окаменевшие пространства Луны, Меркурия, Марса — результат утраты ими подвижных флюидных элементов, осуществляющих транспортировку вещества и энергии.
На Земле же до сих пор продолжаются более активные химические процессы. И это благодаря остаткам флюидной группы элементов: наличию значительного количества воды, метана, аммиака, других газов и жидкостей в атмосфере, гидросфере, в твердой коре и глубинных породах, откуда легкие соединения выделяются в форме вулканических газов или в виде общего газового обмена планеты и окружающей части космоса.
Химическая эволюция на поверхности планет реализуется тогда, когда энергия звездного излучения может превратиться в энергию возбуждения молекулярных структур. Поэтому решающим условием зарождения жизни на Земле явился фотосинтез.
Возраст нашей Земли более 4 млрд. лет, а следы остатков древних организмов насчитывают 3,2—3,8 млрд. лет.
Если сейчас в атмосфере Земли 78% азота и 21% кислорода, то более 3 млрд. лет назад в атмосфере Земли свободного кислорода практически не было. Тогда температура поверхности Земли была намного выше современной, а атмосфера состояла из паров воды и примеси вулканических газов (азота, углекислого газа, аммиака, метана и др.) Единственным источником ничтожных количеств кислорода были реакции фотодиссоциации молекул воды в верхних частях атмосферы под воздействием солнечной радиации.
Около 3 млрд. лет назад на Земле пошли энергичные процессы окисления за счет кислорода, источником которого явились фотосинтсзирующие живые организмы. Активность биосферы, в конечном счете, и определила современный состав атмосферы Земли.
Первые достоверные следы жизни обнаружены в отложениях, возраст которых около 3 млрд. лет. К ним относятся следы, оставшиеся от сине-зеленых водорослей в известняках Южной Африки, остатки организмов в песчаниках Канады. Но им предшествовали более древние и примитивные формы жизни, а еще ранее — стадии предбиологической и химической эволюции.
3. Новая гипотеза об особой роли малых молекул в первичном зарождении белково-нуклеиновых систем
На очередном совещании по философским вопросам современной медицины в Президиуме Российской академии медицинских наук исследователи А.В. Олескин, И.В. Ботвинко и Т.А. Кировская сообщили следующее:
«В последние десятилетия накапливаются данные о том, что не белок и не ДНК/РНК, вероятно, положили начало доклеточным предшественникам современной жизни — гипотетическим пробионтам. Жизнь, что представляется все более правдоподобным в свете современных данных, эволюционировала на базе динамичной игры малых молекул (органических и неорганических). Это были ионы металлов (Fe2t, Zn2t, AP% N\\ Cu2\ Co2+, Mg2+, Са2+), соединения серы (дисульфиды, полисульфиды), фосфора (ортофосфат, нитрофосфат, полифосфаты), азота (особенно NO и N2O), а также небольшие органические молекулы типа аминов (этаноламин, холин, гисталины и др.), аминокислот (особенно глицин, гдуатамат, аслартат), углеводородов (например, этилен). ...
Имеется предположение, что даже функция наследственной передачи признаков, ныне выполняемая нуклеиновыми кислотами, первоначально зависела от неорганических генов" - матриц для синтеза молекул (вначале даже небелковой природы), построенных на основе алюмосиликатов глины. Первые биополимеры могли быть результатом автокаталитических реакций малых молекул...
Имеется общий сценарий "возникновения жизни в облаках", где мельчайшие дождевые капли, озаренные ультрафиолетом первобытного Солнца и поглощающие частицы соединений металлов и неметаллов в ходе пыльных бурь, обеспечивали достаточную суммарную поверхность для фотоиндуцированного гетерогенного катализа и последующего синтеза более сложных, органических молекул, поступавших с дождевыми потоками в океан, где жизнь "дозревала" уже в соответствии с опаринским сценарием "первичного бульона" и "коацерватных капель"»1.
Изложенный подход представляется весьма интересным развитием гипотезы А.И. Опарина. Главное теперь — в окончательном экспериментальном подтверждении (или отрицании!) и старой, и новой гипотез.
_________________________________________________________________
1 Совещание по философским проблемам современной медицины. 16 января 1997 г. - М., 1997. - С. 88-89.
ЗАКЛЮЧЕНИЕ:
Естествознание затрагивает широкий спектр вопросов о многочисленных и всесторонних проявлениях свойств Природы.
При физико-информационном подходе Вселенная — сверхсистема, способная к самоорганизации, самоуправлению на всех этапах и уровнях существования, а потому к ней применимы основные идеи теории информации и семиотики, в том числе принцип знакового посредника, кибернетический и антропный принципы.
Исходя из этого можно прийти к пониманию сущности эволюции Вселенной с точки зрения реализации единого космологического кода, изначально заданного и содержащегося в ее электромагнитном спектре. При этом чисто теоретическая умозрительная реконструкция фотонной фазы эволюции должна привести к иному пониманию существа не только физического пространства-времени и материи, но и всего разнообразия физико-химических, биохимических, социобиологических, социотехнологических и ноокосмических эволюционных процессов во Вселенной.
Поиск новых теорий, которые могли бы заменить Общую Теорию Относительности, будут продолжаться и впредь — такова логика развития науки.
А. А. Логунов утверждает, что "создание ОТО получено ценой отказа от законов сохранения вещества и гравитационного поля вместе взятых" . В постньютоновском изложении его полевая теория гравитации совпадает с ОТО, но при рассмотрении вопроса о сильных полях могут быть существенные расхождения.
ОТО не дает решений существования Вселенной, не прошедшей через сингулярную точку, однако ни описать, ни осознать ее современная наука не в состоянии, поэтому ряд ученых согласились с теологами в рассуждениях о сотворении Мира.
Заслуживают внимание слова Борна: "Атеистам, которым не нравится "начало", потому что его можно истолковать как сотворение, следует сказать, что начало Вселенной в том виде, как оно нам известно, может быть концом другой формы развития материи, хотя практически было бы совершенно невозможно узнать что-нибудь относительно этого периода, поскольку все следы в хаосе разрушения и перестройки".
Один из столпов церкви, идеолог католицизма, Фома Аквинский (1225 - 1274) по этому поводу сказал: "В начало Мира можно не верить, но его невозможно ни доказать, ни осознать умом"
По некоторым гипотезам в микромире пространство и время могут иметь иное, чем в макромире, число измерений. Несомненно, что со временем связь микро- и мегамиров, физики элементарных частиц и космологии будет проявляться все теснее и в самых неожиданных ракурсах.
В настоящее время известен генетический код и установлена передача наследственной информации при помощи языка белковых молекул. Существование языка электромагнитных волн, который объединяет Мир в единое целое, будет иметь универсальное значение для системы световещества. Это должно привести к пониманию единой информационной Природы всего сущего.
Знание концепций современного естествознания поможет людям вне зависимости от их профессии понять и представить уровень материальных и интеллектуальных затрат современных исследований, позволяющих проникнуть в суть явлений Мира и осознать чрезвычайную важность проблем сохранения окружающей Среды.
ЛИТЕРАТУРА:
1. Горохов В. Г. Концепции современного естествознания. — М: Инфра-М, 2000.
2. Горелов А. А. Концепции современного естествознания.— М.: Центр, 1997.
3. Дубнищева Т. Я. Концепции современного естествознания. -Новосибирск. ЮКЭА, 1997.
4. Кокин А. В. Концепции современного естествознания. — М.: 1998.
5. Лавриенко В. Н.идр. Концепции современного естествознания. — М.: Культура и спорт, ЮНИТИ, 1997.
6. Солопов Е.Ф. Концепции современного естествознания: Учеб. Пособие . – М.: ВЛАДОС, 2001
ПРИЛОЖЕНИЕ:
Этапы развития жизни на Земле
Абсолютный возраст, миллионы лет назад |
Эра |
Период (система) |
Важнейшие события в эволюции жизни, уровни развития живого |
0-1 1-25 25-70 |
Кайнозойская |
Антропоген Неоген Палеоген |
Человек Австралопитек Обезьяны |
70-140 140-185 185-225 |
Мезозойская |
Мел Юра Триас |
Полуобезьяны Вымирание динозавров, выход на первый план млекопитающих Первые птицы Господство пресмыкающихся |
225-270 270-320 320-400 400-420 420-480 480-570 |
Палеозойская |
Пермь Карбон Девон Силур Ордовик Кембрий |
Наземные позвоночные Животные Папоротники, хвощи, предки современных форм рыб Массовый выход растений, а потом и животных на сушу Панцирные рыбы - первые позвоночные животные Членистоногие, иглокожие, медузы |
570-1200 1200-1500 1500-1900 |
Протерозойская |
Синий Енисей Саян |
Многоклеточные животные (медузы, губки, черви) Появляются многоклеточные водоросли Начало бурного развития жизни |
1900-2700 | Архейская | Не расчленена | Одноклеточные водоросли и бактерии |
2700-3500 | Катархейская | Не расчленена |
Бактериоподобные одноклеточные организмы Предполагаемые простейшие, доклеточные формы жизни |