Рефетека.ру / Химия

Курсовая работа: Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Министерство образования и науки Республики Казахстан

СЕМИПАЛАТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени ШАКАРИМА

МАГИСТРАТУРА ФЗ и ЗОС

КАФЕДРА ХИМИИ И ЭКСПЕРТИЗЫ


Курсовая работа


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов


Исполнитель Сальменбаев С.Е.

Научный руководитель Кудайбергенов С.Е.

Допущена к защите

Зав. Кафедрой Яшкарова М.Г.


СЕМИПАЛАТИНСК - 2008

РЕФЕРАТ


Курсовая работа содержит: 40 страниц, 9 рисунков, 8 таблиц, приложений, список литературы включает 14 наименований.

Тема:«Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов»

Результатом исследования является полиамфолит бетаиновой структуры поли (карбоксиэтил 3-аминокротонат) (ПКЭАК) синтезированный в институте полимерных материалов и технологий г. Алматы.

Цель работы: исследование взаимодействия полиамфолита с ионами металлов и изучение возможности его практического применения.

Работа выполнена на кафедре химии и экспертизы Семипалатинского

Государственного университета имени Шакарима.

В работе был использован метод потенциометрического титрования.

Были исследованы:

1. Исследование взаимодействия линейного полиэлектролита с ионами двухвалентных металлов: Ca, Sr, Ni, Co, Cd, Pb, Zn, Cu.


СОДЕРЖАНИЕ


Введение

Перечень сокращений, символов и обозначений

1.Теоретическая часть

1.1 Комплексы водорастворимых полимеров с различными классами соединений

1.2 Комплексы полимеров с низкомолекулярными соединениями

1.2.1 Комплексы полимер – ион металла

1.3 Амфотерные полиэлектролиты

1.4 Применение комплексов полимер – металл в катализе

2.Методическая часть

2.1 Характеристика исходных веществ

2.2 Методика исследования

3. Экспериментальная часть

3.1.Результаты и обсуждение

4.Заключение

5.Список использованных источников

6.Приложения

Введение


Актуальность темы

Известно, что число полиамфолитов и полимерных бетаинов весьма ограничено. Линейные и слабосшитые полимерные бетаины, содержащие кислотные и основные функциональные группы, представляют большой интерес, так как они наиболее близки по свойствам к природным полимерам. Исследование полиамфолитов и их взаимодействий с самыми различными соединениями (комплементарными макромолекулами, белками, ионами металлов, лекарственными веществами и т.д.) интересно с точки зрения моделирования процессов, протекающих в биологических системах, а также возможного использования в различных процессах – в процессах извлечения ионов металлов, разделения, очистки и концентрирования белков, иммобилизации и контролируемом высвобождении лекарственных веществ и т.д.

Данная работа посвящена исследованию процессов комплексооборазования поли (карбоксиэтил 3-аминокротоната) с ионами двухвалентных металлов.

Цель работы

1) Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов потенциометрическим титрованием.

Научная новизна темы

Научная новизна данной работы в том, что исследуемый объект является совершенно новым полиэлектролитом, ранее еще не исследованным. Полученные результаты могут быть использованы при извлечении металлов из природных и сточных вод, создании полимерных катализаторов, биомедицинских препаратов.

Достоверность полученных данных

Полученные данные подтверждают комплексообразование полиамфолита с ионами двухвалентных металлов.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, СИМВОЛОВ И ОБОЗНАЧЕНИЙ.


ПКЭАК – поли-карбоксиэтил 3-аминокротонат

ПМК – полимер-металлические комплексы

ИЭТ – изоэлектрическая точка

ПЭГ - полиэтиленгликоль

ТПМК – тройные полимер – металлические комплексы

ПЭК – полиэлектролитные комплексы

ПА - полиамфолит

ПЭ – полиэлектролит

П4ВП – поли-4-винилпиридин

ПВПД – поливинилпиролидон

ВМС: высокомолекулярные соединения.

Me: металл.

др.: другое.

ИК: инфракрасный.

ПМК: полимер металлические комплексы.

ИОС: ионно-обменные смолы.

ИПК: интерполимерные комплексы.

х.ч.: химически чистый.


1.Теоретическая часть


1.1 Комплексы водорастворимых полимеров с различными классами соединений


Исследование взаимодействий комплементарных макромолекул и продуктов этих реакций – полимерных комплексов представляет одну из важнейших проблем химии и физики полимеров и молекулярной биологии [1-3].

Комплементарными называются разнородные макромолекулы, содержащие функциональные группы, которые способны к специфическим взаимодействиям, а геометрическое строение цепей не создает препятствий для возникновения достаточно большого числа межмолекулярных связей. Это могут быть водородные связи, электростатические, ион-дипольные, ван-дер-ваальсовые и гидрофобные взаимодействия.

Интерес к данной проблеме связан с тем, что взаимодействие комплементарных структур и продукты их ассоциации играют исключительно важную роль в живых организмах (это образование двойных и тройных спиралей комплексов полинуклеотидов, надмолекулярных структур клеток вирусов, комплексов фермент-субстрат, антиген-антитело). Классическим примером кооперативного интерполимерного комплекса является двойная спираль из комплементарных цепей ДНК. Изучение подобных взаимодействий, но с участием синтетических комплементарных макромолекул делает возможным моделирование процессов, протекающих в биологических системах, на сравнительно простых полимерных объектах, т.е. позволяет осуществить подход к биологическим системам и протекающим в них процессам со стороны химии.

С другой стороны, продукты взаимодействия комплементарных макромолекул – полимерные комплексы являются, по существу, новыми полимерными материалами, хотя и получены в большинстве случаев из известных полимеров при простом смешении растворов взаимодействующих компонентов в общем растворителе. Это открывает новые пути рационального использования известных полимеров и сам процесс комлексообразования можно рассматривать как способ модификации традиционных полимеров.

По типу специфических взаимодействий, обуславливающих комплексообразование, различают комплексы, обусловленные ван-дер-ваальсовыми взаимодействиями (например, комплексы стереоизомеров полиметилметакрилата), электростатическими взаимодействиями (полиэлектролитные комплексы), комплексы с водородными связями (комплексы неионогенных полимеров с поликарбоновыми кислотами), комплексы с координационными связями (например, комплексы полимер-металл).

Существует большой класс так называемых молекулярных комплексов, которые являются продуктами невалентных взаимодействий, в основном, неионогенных полимеров – полиэтиленгликоля (ПЭГ) с резорцином, поливинилпиролидона (ПВПД) с фенолами, высокомолекулярные соединения включения полиэтиленгликоля с мочевиной, тиомочевинной, пергидротрифениленом, солям ртути, поливинилового спирта (ПВС) с йодом и боратами. К молекулярным комплексам относятся комплексы, образующиеся между гетероатомом (O, N, S, P)-содержащими полимерами и ионами щелочных и щелочно-земельных металлов. Эти комплексы стабилизированы ион-дипольными взаимодействиями. Наряду с основным взаимодействием, обуславливающим образование полимерного комплекса, не менее важную роль играют и другие взаимодействия. Например, в стабилизации полиэлектролитных комплексов с водородными связями большую роль играют гидрофобные взаимодействия.

В процессах комплексообразования полимеров могут участвовать различные классы соединений: комплементарные макромолекулы (интерполимерные комплексы), поверхностно-активные вещества (комплексы полимер-ПАВ), ионы металлов (комплексы полимер-металл), красители (комплексы полимер-краситель), лекарственные вещества, органические молекулы и т.д.[4-9].

Полимерные комплексы могут быть получены несколькими способами. Наиболее распространенный из них – это смешение растворов готовых взаимодействующих компонентов в общем растворителе. В результате образуются так называемые комплексы смешения, свойства которых наиболее детально изучены в растворах[4-8]

Полимерные комплексы могут быть получены методом матричной полимеризации. При этом образуются более высокоориентированные полимерные комплексы, поскольку матрица контролирует скорость образования «дочерней цепи», её длину, химическое строение и структуру. Полимерный комплекс образуется лишь при достижении некоторой критической степени полимеризации «дочерней цепи», после чего растущая цепь ассоциируется с матрицей и начинается собственно матричная полимеризация.

В последние годы разработан новый способ получения полимерных комплексов в дополнение к традиционным (смешением растворов готовых комплементарных молекул или реакцией матричной полимеризации). Способ заключается в осуществлении реакции коплексообразования на границе раздела двух несмешивающихся жидкостей, например, бензол-вода, в которой растворены взаимодействующие компоненты[12-14]. Эти несмешивающиеся жидкости являются перекрестно-селективными растворителями для исходных компонентов. Полимерные комплексы образуются в виде тонких пленок на границе раздела фаз.

Факт комплексообразования в каждой системе устанавливается совокупностью физических и физико-химических методов. Самые различные методы – потенциометрия, кондуктометрия, турбидиметрия, вискозиметрия, калориметрия, седиментация, двойное лучепреломление, светорассеяние, высокоразрешающая ЯМР-спектроскопия, хроматография, ИК- и УФ-спектроскопия, флуоресценция, электронная микроскопия, рентгеноструктурный анализ и другие могут быть использованы для исследования образования, состава и свойств полимерных комплексов.

Экспериментальные результаты могут быть представлены в виде кривых титрования или диаграмм свойство-состав. Экстремумы или точки перегиба на кривых титрования указывают на образование комплексов и их состав. Диаграммы свойство-состав бинарной смеси не подчиняются правилу аддитивности, имеют экстремальный характер и обнаруживают особые точки, что согласно основам физико-химического анализа, свидетельствует об образовании индивидуального соединения (полимерного комплекса), имеющего определенный состав. На седиментограммах поликомплексов наблюдается один пик, однозначно подтверждающий, что полимерный комплекс является индивидуальным соединением, а не смесью исходных взаимодействующих компонентов. В том случае, когда комплексообразования в системе не происходит и комплексы не образуются, кривые титрования не имеют особых точек, а зависимости свойство-состав не подчиняются правилу аддитивности.

Полимерные компоненты, участвующие в реакциях комплексообразования, могут быть гомополимерами и сополимерами (регулярными, статистичными, блочными). Они могут нести положительный заряд (поликатионы), отрицательный заряд (полианионы), оба типа зарядов (полиамфолиты), или быть неионогенными.


1.2 Комплексы полимеров с низкомолекулярными соединениями


1.2.1 Комплексы полимер – ион металла

Полимер-металлические комплексы образуются в результате взаимодействия полимеров содержащих функциональные группы (поликатионов, полианионов, неионогенных полимеров), с ионами переходных металлов (Cu2+, Cd2+, Zn2+, Ni2+, Co2+, Mg2+, Fe2+ и др.)[14]. Возможно получение таких комплексов и путем полимеризации закомплексованного мономера, например, винилового эфира моноэтаноламина с ионами переходных металлов. Этот класс полимерных комплексов представляет большой интерес в процессах очистки и извлечения ионов металлов из промышленных и природных вод, в процессах водоподготовки, синтеза полимерных катализаторов, действующих по принципу энзимов, извлечения ионов металлов из почв и т.д.

Обычно связь между ионом металла и полимерным лигандом осуществляется посредством донорно-акцепторного взаимодействия с образованием координационной связи (хелатные комплексы) или замещением протона лиганда ионом металла с образованием ионной связи. Ионы металлов являются акцепторами; атомы O-, -N, -S, -F, -Cl полимерной цепи, предоставляющие пару электронов для образования связи, являются донорами. В низкомолекулярных комплексных соединениях обычно координационное число металла равно 4 или 6. В случае макромолекулярных лигандов могут образовываться координационные центры состава 1:1, 1:2, 1:3 или 1:4. Свободные вакансии координационной сферы ионов переходных металлов занимают молекулы растворителя или других низкомолекулярных веществ. Изменение конформации полимерного лиганда в процессе комплексообразования может значительно влиять на результаты расчетов координационного числа иона металла и константы устойчивости комплексов[13,14]. Так, до сих пор остается открытым вопрос: имеет место ступенчатое образование комплекса полимер – металл или сразу образуется полимер-металлический комплекс с максимальным координационным числом?

Характерной особенностью комплексов полимер – металл в отличие от комплексов низкомолекулярный лиганд – металл является близость всех последовательных констант комплексообразования. Это связано с высокой локальной плотностью активных центров взаимодействия в полимерных цепях, т.е. «полимерный эффект» может играть значительную роль в образовании комплексов полимер – ион металла.

В водном растворе ионы металлов всегда гидратированы (т.е. координационно связаны с водой) – иногда частично, а иногда и полностью. Комплексообразование протекает через замещение некоторого числа молекул воды лигандами, к которым металл имеет большое сродство. При равных концентрациях двух или большого числа лигандов (или двух или большого числа ионов металлов при данной концентрации лиганда) наибольшую концентрацию в состоянии равновесия будет иметь координационное соединение с наибольшей константой устойчивости.

Полимер-металлические комплексы могут быть получены различными путями: 1) в результате внутри- и или межмолекулярной «сшивки»; 2) при взаимодействии полимерного лиганда со стабильным комплексом, в котором центральный ион металла замаскирован низкомолекулярным лигандом; 3) полимеризацией пар мономер-ион металла; 4) путем включения иона металла в сетку полимера и т.д.

Комплексы полимер – ион металла в воде имеют компактную структуру, стабилизированную внутри- и межцепными координационными «сшивками», которые существенно изменяют размер клубка полилиганда. При добавлении к раствору поли-4-винилпиридина (П4ВП) в метаноле вязкость уменьшается, т.е. происходит сворачивание цепей П4ВП вследствие внутрицепного хелатирования. Сжатие макромолекул различно для разных ионов металла, т.е. структура полимер-металлического комплекса зависит от типа иона металла.

На устойчивость комплексов полимер – ион металла в растворе сильное влияние оказывают такие факторы как конформация и микроструктура полимерных лигандов, природа металлов, степень ионизации, природа противоионов (анионов) металлов, рН среды, ионная сила раствора, природа растворителя, температура, т.е. все те факторы, которые определяют конформационное состояние макромолекул в растворе и их гидродинамические характеристики. Многочисленные исследования систем полимер – металл посвящены установлению влияния этих факторов на свойства и структуру образующихся полимер-металлических комплексов.

Обнаружено, что некоторые типы синтетических полиамфолитов способны связывать ионы металлов при определенных значениях рН и высвобождать их в изоэлектрической точке (ИЭТ). Такое поведение полиамфолитов, возможно связано с тем, что в ИЭТ электростатическое притяжение между противоположно заряженными зарядами звеньев полиамфолита является более сильным, чем взаимодействие полимер – металл, что ведет к высвобождению связанных ионов металлов из макромолекулярного клубка.

Путем стехиометрических превращений в звеньях полимерной цепи возможна настройка «первичной» структуры макромолекулы на взаимодействие с определенным ионом металла. Так, комплекс линейный полимер – ион металла сшивается сшивающим агентом, и затем металл удаляется действием минеральной кислоты. Полученный сорбент обладает высокой специфичностью и селективностью.

Повышенный интерес к полимерметаллическим комплексам, с одной стороны, обусловлен тем, что некоторые ионы металлов (железо, медь кобальт, и др.) играют особо важную роль в живых организмах – участвуют в ферментативных реакциях (металлоэнзимы), мышечных сокращениях, явлениях переноса (например, гемоглобин), мембранных процессах (натрий-каливый насос) и т.д. Другая необходимость изучения комплексов полимер-металл связана с практическими задачами – извлечением редких и благородных металлов из промышленных сточных вод, созданием высокоэффективных гомогенных и гетерогенных полимерных катализаторов, термо- и механостойких полимерных материалов, полупроводников, мембран и т.д. Возрастает роль комплексных соединений полимеров в медицине. Всестороннее исследование процессов комплексообразования с целью определения состава, структуры и констант устойчивости комплексов, кинетики и механизма их формирования, анализ влияния микроструктуры, конформационного состояния макромолекул и хелатного эффекта, в конечном счете, может привести к установлению основных закономерностей комплексообразования и физико-химического поведения координационных соединений в растворах.

Помимо органических полимеров должны быть рассмотрены и неорганические макромолекулы, которые обеспечивают лучшую теоретическую и химическую стойкость образующихся полимер-металлических комплексов. Должны быть также рассмотрены надмолекулярные структуры полимер-металлических комплексов, обеспечивающие некоторые свойства материалов на их основе. Взаимодействия макромолекула – ион металла (комплекс, хелат) контролируют не только высокоорганизованную структуру полимер-металлических комплексов, но и их свойства. Полагают возможным обнаружение полимер-металличесими комплексами следующих свойств и соответствующее их применение:

Извлечение и концентрирование ионов металлов посредством образования комплексов полимер-металл

Терапевтические эффекты – лекарства, протолекарства

Селективность – газовый транспорт / разделение, сенсоры

Ионная проводимость – электрон-улавливающие устройства, батареи

Системы переменой валентности – мультиэлектронный переход, катализ, фотокатализ

Электронные взаимодействия в твердом состоянии – проводимость, электрокатализ, электрохимия

Фотовзаимодействия в твердом состоянии – фотопроводимость, фотогальваника, лазерография, люминесценция, оптическое хранение / переключение

Нелинейная оптика – модуляторы, интегрированная оптика

Керамика – квантовые устройства

Наиболее широко взаимодействия полимер – ион металла используются для извлечения и концентрирования ионов металлов. [13,14]


1.3 Амфотерные полиэлектролиты


Высокомолекулярные соединения, содержащие в цепи функциональные группы кислотного и основного характера, называются полиамфолитами. К ним относится большинство полимеров биологического происхождения – белки и нуклеиновые кислоты. Однако в отличие от синтетических аналогов биополимеры обладают специфическим строением, функциями и свойствами, которые в полной мере проявляются лишь в живом организме. Тем не менее, ряд свойств природных полимеров удается моделировать при помощи синтетических амфотерных макромолекул.

Широко и разнообразно применение практическое применение амфотерных полиэлектролитов в различных областях народного хозяйства. Амфотерные ионообменники обладают высокой сорбционной емкостью по отношению к ионам металлов и позволяют проводить селективное разделение. Благодаря высокому содержанию функциональных групп они служат эффективными флокулянтами и коагулянтами. Полимерные амфолиты могут выступать в роли катализаторов, моделирующих функцию биокатализаторов – ферментов, носителей лекарственных препаратов – полимерных депо, микрокапсул, латексов и т.д.

Извлечение ионов переходных металлов и органических примесей как водорастворимыми, так и водонабухающими полиамфолитами особенно важно для гидрометаллургии и решения экологических проблем. В большинстве случаев взаимодействие водорастворимых полиамфолитов с ионами переходных металлов сопровождается осаждением комплексов полиамфолит – металл. Ионы металлов могут быть выщелочены из осадка более сильным низкомолекулярным комплексующим агентом. Извлечение ионов металлов также возможно в изоэлектрической точке (ИЭТ) полиамфолитов. Если ИЭТ растворимого полиамфолита смещена преимущественно в щелочную область, то ионы переходных металлов могут осаждаться в виде гидроксидов, а макромолекулы растворимого полиамфолита остаются в супернатанте. И наоборот, если ИЭТ находиться в кислой области и полиамфолит является нерастворимым, то тогда полиамфолит может осаждаться, в то время как ионы металлов остаются в растворе. Эти подходы успешно используются для разделения ионов переходных металлов.

В зависимости от изменения рН среды полиамфолиты проявляют свойства, как поликислот, так и полиоснований. Значение рН, при котором средний заряд макромолекул равен нулю, соответствует изоэлектрической точке полиамфолита (ИЭТ). Классическим методом установления ИЭТ является электрофорез при разных рН с экстраполяцией к нулевому заряду.

Можно ожидать, что в области рН, значительно удаленной от ИЭТ, в макромолекуле будет появляться избыток зарядов одного знака. Это, в свою очередь, разворачивает цепные молекулы и увеличивает их размеры. При приближении к ИЭТ взаимное притяжение противоположно заряженных групп должно приводить к относительно плотному сворачиванию полиионов. Характерная особенность большинства полиамфолитов – ухудшение растворимости в воде вблизи ИЭТ.

По поведению вблизи ИЭТ полиамфолиты можно разделить на два типа: полиамфолиты, водорастворимые при любых значениях рН, и полиамфолиты, которые вблизи ИЭТ коагулируют и дают область нерастворимости. Наличие или отсутствие растворимости определяется концентрацией биполярных ионов (цвиттерионов) в ИЭТ. Если в пределе полимерная молекула представляет собой строение цвиттериона, то данный полиамфолит водорастворим во всем интервале изменения рН. Если же макромолекула в ИЭТ не заряжена (т.е. концентрация биполярных ионов очень низкая), то для таких полиамфолитов обнаруживается область нерастворимости. В свою очередь концентрация цвиттерионов зависит от константы диссоциации кислотных и основных составляющих сополимера.

Равновесие ионов водорода в растворах синтетических полиамфолитов детально не анализировалось. Причина этого заключается в том, что вблизи ИЭТ макромолекула в целом электронейтральна и имеет очень компактную конформацию. При приближении к ИЭТ труднее титровать ту или иную группу, несмотря на изменение рН среды на две единицы. Однако по мере преобладания положительного или отрицательного зарядов происходит разворачивание цепи, и дальнейшее титрование кислотных и основных групп значительно облегчается.

Для амфотерных полиэлектролитов вблизи ИЭТ возможно увеличение размеров клубка в присутствии низкомолекулярных электролитов. В кислой и щелочной областях молекулы полиамфолита веду себя как поликатионы и полианионы соответственно – вязкость полиамфолита () падает с ростом ионной силы раствора (), тогда как в ИЭТ наблюдается противоположный эффект – вязкость полиамфолита возрастает с увеличением . Такой характер изменения () с ростом ионной силы обусловлен тем, что низкомолекулярный электролит, экранируя противоположные заряды на макромолекулах, ослабляет их взаимодействие и приводит к разворачиванию клубка.

Амфотерные полиэлектролиты наиболее близки по своей структуре и поведению к биологическим полимерам. Однако процесс комплексообразования с участием полиамфолитов и ионов металлов изучен недостаточно. Причиной этого является, по-видимому, сложность структуры и конформационная лабильность такого класса полиэлектролитов. В отличие от гомополиэлектролитов полиамфолиты в своем составе содержат, по крайней мере, две потенциально комплексообразующие группы. Причем доля их участия в образовании комплексов будет определяться структурой и составом сополимеров, степенью ионизации составляющих звеньев, а также конформационным состоянием амфотерных макромолекул, зависящим от рН среды, ионной силы раствора, температуры и т.д. [7,13, 14].


1.4 Применение комплексов полимер – металл в катализе


Одним из интенсивно развивающихся направлений химии является катализ полимерами, возникший на стыке химии высокомолекулярных соединений, координационной химии и каталитической химии. С помощью синтетических макромолекул можно конструировать полимерные катализаторы, работающие по принципу ферментов, многие из которых представляют собой ионополимеры с встроенными ионами металлов. Благодаря точности сборки такие полимер-металлические комплексы проявляют высокую каталитическую активность, стабильность и избирательность действия. В решении важных проблем химической и нефтехимической отрасли большая роль будет принадлежать каталитически активным металлокомплексам, закрепленным на полимерные носители. Они представляют собой гетерогенные катализаторы с активной фазой – гомогенным комплексом, который может быть закреплен на полимерной подложке различными способами – инкапсуляцией, ковалентным присоединением, координационными связями, гельиммобилизацией и т.д. Эти катализаторы сочетают преимущества как гомогенных (высокая активность и селективность), так и гетерогенных катализаторов (простота отделения катализатора от продуктов реакции).

Полимеры, содержащие функциональные группы, являются подходящими носителями ионов металлов. При взаимодействии их с ионами металлов образуются новые типы координационных соединений, в которых лигандами являются макромолекулы.

Интерес к координационным соединениям ионов различных металлов с макромолекулярными лигандами обусловлен тем, что ионы железа, меди, кобальта, цинка играют важную роль в ферментативных реакциях.

Каталитическое действие комплексов водорастворимых полимеров с ионами переходных металлов рассмотрено на примере реакций разложения пероксида водорода, окисления, гидрирования и др. Такие комплексы часто проявляют более высокую активность, чем соответствующие низкомолекулярные аналоги.[6,11,14].

2.Методическая часть


2.1 Характеристика исходных веществ


При выполнении работы были использованы следующие реактивы:

Полиамфолит ПКЭАК бетаиновой структуры (синтезирован в институте полимерных материалов и технологий г. Алматы)


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов


CoCl2, NiCl2, Cd (CH3COO)2, Sr (NO3)2, CaCl2, ZnSO4, Pb (NO3)2, CuCl2.

NaOH (фиксанал), HCl – 37% ,  г/см3, Буферные растворы приготовленные из стандарт-титров с pH = 1,65; 6,86; 9,18.

Использованные приборы:

рН растворов измеряли на иономере универсальном ЭВ-74 со стеклянным и хлорсеребряным электродом.

Для работы были использованы:

Аналитические весы.

Технические весы.

Калька.

Фильтровальная бумага.

Мерные колбы на 25мл, 50мл, 100мл, 1000мл.

Пипетки на 1мл, 2мл, 5 мл, 10мл.

Колбы для титрования.

Бюретка.

Стаканчики на 25мл, 50мл.

Секундомер.

Груша.

Мерные цилиндры на 25мл.

Воронки.


2.2 Методика исследования


рН-метрическое титрование проводили при помощи иономера ЭВ-74 (точностью измерения + 0,05 ед рН) со стеклянными и хлорсеребряными электродами. Градуировку электродной системы осуществляли по стандартным буферным растворам с рН = 1,65; 6,86; 9,18.

В стакан для титрования наливают 10 мл 0,001 М раствора полимера. Титрование ведут 0,01 М раствором соли металла при постоянном перемешивании из микробюретки. Измерение рН производят через каждые 0,05 мл добавленной соли металла до постоянного значения pH. Результаты отображают в виде графика, где на оси абсцисс – объем прилитой соли металла, на оси ординат – соответствующее значение pH.

Таблицы и графики представлены в приложении.


3.Экспериментальная часть


3.1Результаты и обсуждение


Цель работы:

Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов: Ca, Sr, Ni, Co, Cd, Pb, Zn, Cu.

Полимер бетаиновой структуры синтезирован в институте полимерных материалов и технологий г. Алматы содержит в полимерной цепи карбоксильные группы и аминогруппы, что позволяет рассматривать его как новый полиамфолит. Определение комплексообразования ПКЭАК с ионами двухвалентных металлов провели потенциометрическим методом.

Как видно из рис. 1 – 8 при титровании идет постепенное снижение pH раствора, что свидетельствует о взаимодействии ПКЭАК с ионами металлов, при котором в раствор постепенно выделяются ионы водорода. На рис. 4 представлена кривая титрования ПКЭАК раствором Cd(CH3COO)2. Из рисунка видно, что при титровании полимера кривая постепенно идет вниз, затем, достигнув точки эквивалентности, идет вверх. Предположительно увеличение pH, после точки эквивалентности, связано с гидролизом соли, образованной слабым основанием и слабой кислотой.

Как видно из сводного графика, рис. 9, наибольшей склонностью к комплексообразованию с ПКЭАК обладает ион Pb2+. Таким образом, кривые потенциометрического титрования свидетельствуют об образовании полимер – металлических комплексов (ПМК).


Заключение


В результате проведенных исследований получены следующие результаты:

Методом потенциометрического титрования исследовано взаимодействие полимера с ионами металлов Co2+ и Ni2+, Pb2+, Ca2+, Zn2+, Sr2+, Cd2+, Cu2+. Полученные данные свидетельствуют о возможности использования полибетаинов: в процессах очистки питьевой воды, для извлечения ионов металлов из промышленных сточных вод, извлечения ионов металлов из загрязненных почв и т.д.


Список использованных источников


Френкель С. Я. Полимеры, проблемы, перспективы, прогнозы. //В кн. Физика сегодня и завтра. Л. 1973. С. 179.

Волькенштейн М. В. Молекулярная биофизика. М. Наука. 1975. 616с.

Bekturov E. A., Bimendina L. A. //J. Macromol. Sci. Rev. Macromol. Chem.Phys. 1997.C37(3).P.501.

Зезин А.Б., Кабанов В. А. //Успехи химии. 1982. Т. 56. С. 1447.

Бектуров В.А., Бимендина Л.А. Интерполимерные комплексы. Алма-Ата. Наука 1977. 264с.

Бектуров Е.А., Бимендина Л А., Кудайбергенов С.Е. Полимерные комплексы и катализаторы. Алма-Ата. Наука. 1982. 192 с.

Бектуров Е. А., Кудайбергенов С. Е., Хамзамулина Р. Э. Катионные полимеры. Алма-Ата. Наука. 1986. 159с.

Бектуров Е.А., и др. Молекулярные комплексы полимеров. Алма-Ата. Наука. 1988. 174с.

Паписов И. М. //Высокомолек. ссоед. 1997. Т. Б39. С. 562.

Бимендина Л. А., Бектуров Е. А., Самоорганизация молекул в растворах и на границе раздела фаз. //В. Кн. «Неравновесность и неустойчивость в эволюции динамических структур в природе » Алматы. Ғылым. 1998. С. 157.

Бектуров Е. А., Кудайбергенов С. Е. Катализ полимерами. Алма-Ата. Наука. КазССР. 1988. 184с.

Кабанов Н. М. и др. //Высокомолек. соед. 1979. Т. А21. С.209.

Бектуров Е. А., Бимендина Л. А., Мамытбеков Г. К.//Комплексы водорастворимых полимеров и гидрогелей.

Бимендина Л.А., Яшкарова М.Г., Кудайбергенов С.Е., Бектуров Е.А. Полимерные комплексы (получение, свойства, применение): Монография / под редакцией Жубанова Б.А. – Семипалатинский государственный университет имени Шакарима – Семипалатинск, 2003. – 313 с.

Таблица 1

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром Sr(NO3)2

V Sr(NO3)2 pH V Sr(NO3)2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


1,2


1,25


1,3


1,35


1,4


1,45


1,5


6,35


6,1


5,91


5,75


5,63


5,55


5,47


5,43


5,38


5,31


5,29


5,26


5,22


5,2


5,18


5,17


5,15


5,13


5,12


5,11


5,1


5,09


5,07


5,06


5,06


5,05


5,04


5,03


5,02


5,01


4,96


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


2,35


2,4


2,45


2,5


2,55


2,6


2,65


2,7


2,75


2,8


2,85


2,9


2,95


4,95


4,94


4,94


4,93


4,93


4,93


4,93


4,93


4,92


4,91


4,91


4,91


4,91


4,91


4,9


4,9


4,9


4,9


4,9


4,89


4,89


4,89


4,89


4,89


4,88


4,88


4,88


4,88


4,88





Таблица 2

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром Cd(CH3COO)2

V Cd(CH3COO)2 pH V Cd(CH3COO)2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


6,25


6,1


5,98


5,86


5,74


5,63


5,46


5,38


5,32


5,26


5,21


5,16


5,12


5,08


5,04


5,02


5,01


5,01


4,99


4,99


5


5,01


5,02


5,03


1,2


1,25


1,3


1,35


1,4


1,45


1,5


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


5,04


5,06


5,07


5,08


5,1


5,11


5,12


5,12


5,13


5,13


5,14


5,15


5,16


5,17


5,18


5,19


5,2


5,21


5,22


5,23


5,24


5,25


5,26





Таблица 3

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром ZnSO4

V ZnSO4 pH V ZnSO4 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


1,2


1,25


1,3


6,35


6,08


5,94


5,77


5,64


5,51


5,35


5,24


5,19


5,15


5,12


5,07


5,04


5,02


5


4,98


4,97


4,95


4,94


4,91


4,91


4,89


4,87


4,85


4,85


4,84


4,83


1,35


1,4


1,45


1,5


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


2,35


2,4


2,45


4,82


4,81


4,8


4,79


4,78


4,77


4,76


4,75


4,75


4,74


4,74


4,73


4,73


4,73


4,72


4,71


4,71


4,71


4,71


4,69


4,69


4,69


4,69





Таблица 4

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром CaCl2

V CaCl2 pH V CaCl2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


1,2


1,25


1,3


1,35


1,4


1,45


1,5


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


6,42


6,3


6,16


6,01


5,89


5,75


5,64


5,5


5,48


5,47


5,43


5,34


5,31


5,27


5,24


5,21


5,18


5,15


5,13


5,11


5,08


5,05


5,03


5


4,97


4,94


4,93


4,92


4,9


4,89


4,87


4,84


4,82


4,8


4,78


4,76


4,74


4,72


4,7


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


2,35


2,4


2,45


2,5


2,55


2,6


2,65


2,7


2,75


2,8


2,85


2,9


2,95


3


3,05


3,1


3,15


3,2


3,25


3,3


3,35


3,4


3,45


3,5


3,55


3,6


3,65


3,7


3,75


3,8


4,69


4,66


4,64


4,63


4,61


4,6


4,58


4,56


4,54


4,52


4,51


4,49


4,47


4,46


4,45


4,44


4,42


4,41


4,39


4,37


4,36


4,35


4,34


4,32


4,31


4,3


4,29


4,27


4,26


4,26


4,24


4,23


4,21


4,2


4,19


4,17


4,16


4,15




Таблица 5

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром NiCl2

V NiCl2 pH V NiCl2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


1,2


1,25


1,3


6,2


6,11


6,05


5,98


5,9


5,84


5,76


5,7


5,63


5,57


5,47


5,43


5,4


5,35


5,3


5,28


5,26


5,24


5,22


5,2


5,17


5,15


5,13


5,11


5,1


5,09


5,08


1,35


1,4


1,45


1,5


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


2,35


2,4


2,45


2,5


5,07


5,06


5,05


5,04


5,03


5,02


5,01


5,01


5


5


4,99


4,99


4,98


4,98


4,98


4,97


4,96


4,96


4,95


4,95


4,95


4,95


4,94


4,94





Таблица 6

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром CoCl2

V CoCl2 pH V CoCl2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


1,2


6,45


6,32


6,32


6,11


6,02


5,92


5,81


5,64


5,57


5,51


5,46


5,42


5,39


5,34


5,3


5,27


5,26


5,24


5,22


5,2


5,17


5,15


5,14


5,14


5,11


1,25


1,3


1,35


1,4


1,45


1,5


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


2,35


2,4


5,1


5,1


5,09


5,08


5,07


5,05


5,05


5,04


5,04


5,01


5,01


5,01


5


5


5


4,99


4,99


4,98


4,98


4,97


4,96


4,96


4,96


4,96





Таблица 7

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром CuCl2

V CuCl2 pH V CuCl2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


1,05


1,1


1,15


1,2


1,25


1,3


1,35


6,37


6,25


6,14


6,04


5,96


5,87


5,79


5,58


5,48


5,38


5,29


5,25


4,91


4,79


4,65


4,5


4,42


4,35


4,25


4,21


4,18


4,15


4,12


4,1


4,07


4,07


4,04


4,01


1,4


1,45


1,5


1,55


1,6


1,65


1,7


1,75


1,8


1,85


1,9


1,95


2


2,05


2,1


2,15


2,2


2,25


2,3


2,35


2,4


2,45


2,5


2,55


2,6


2,65


3,95


3,95


3,94


3,92


3,9


3,9


3,89


3,88


3,87


3,85


3,85


3,85


3,84


3,84


3,83


3,83


3,81


3,81


3,81


3,8


3,8


3,79


3,79


3,79


3,79


3,79





Таблица 8

Результаты рН - метрического титрования 0,001 М р-ра ПКЭАК 0,01 н. р-ром Pb(NO3)2

Pb(NO3)2 pH Pb(NO3)2 pH

0


0,05


0,1


0,15


0,2


0,25


0,3


0,35


0,4


0,45


0,5


0,55


0,6


0,65


0,7


0,75


0,8


0,85


0,9


0,95


1


6,27


6,02


5,82


5,61


5,4


4,7


4,25


3,93


3,8


3,72


3,67


3,63


3,58


3,59


3,55


3,53


3,52


3,51


3,49


3,48


3,48


1,05


1,1


1,15


1,2


1,25


1,3


1,35


1,4


1,45


1,5


1,55


1,6


1,65


1,7


3,47


3,47


3,47


3,47


3,47


3,46


3,46


3,46


3,46


3,45


3,45


3,45


3,45


3,44





Рисунок 1


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 2


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 3


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 4


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов


Рисунок 5


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 6


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 7


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 8

Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Рисунок 9


Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Похожие работы:

  1. • Вискозиметрическое исследование комплексообразования ...
  2. • Взаимодействие нового полиамфолита на основе этил 3 ...
  3. • Аналитическая химия
  4. • Получение пурпуреосоли. Аммиакаты кобальта (III)
  5. • Радиоматериалы и радиокомпоненты
  6. • Кислотно-основное, комплексно-метрическое и ...
  7. • Молекулы генетического аппарата
  8. • Магнитомягкие материалы. Ферриты
  9. • Иммобилизованные соединения
  10. • Действие ионов цинка и меди на некоторых гидроидов ...
  11. • Экстракционно-фотометрический метод определения ...
  12. • Принципы биохимических исследований
  13. • Исследование каталитических свойств полимерных ...
  14. • Атомно-адсорбционный спектрохимический анализ тяжелых ...
  15. • Виды цементов
  16. • Ферромагнетики
  17. • Окисление парафиновых углеводородов
  18. • Электроосаждение металлов
  19. • Молекулярные механизмы регуляции клеточного цикла
Рефетека ру refoteka@gmail.com