Содержание
Радиация и её разновидности
Ионизирующие излучения
Источники радиационной опасности
Устройство ионизирующих источников излучения
Пути проникновения излучения в организм человека
Меры ионизирующего воздействия
Механизм действия ионизирующего излучения
Последствия облучения
Лучевая болезнь
Обеспечение безопасности при работе с ионизирующими излучениями
Радиация и её разновидности
Радиация – это все виды электромагнитного излучения: свет, радиоволны, энергия солнца и множество иных излучений вокруг нас.
Источниками проникающей радиации, создающими природный фон облучения, являются галактическое и солнечное излучение, наличие радиоактивных элементов в почве, воздухе и материалах, используемых в хозяйственной деятельности, а также изотопов ,главным образом ,калия, в тканях живого организма. Одним из наиболее весомых естественных источников радиации является радон – газ, не имеющий вкуса и запаха.
Интерес представляет не любая радиация, а ионизирующая, которая, проходя сквозь ткани и клетки живых организмов, способна передавать им свою энергию, разрывая химические связи внутри молекул и вызывая серьёзные изменения в их структуре. Ионизирующее излучение возникает при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.
Ионизирующие излучения
Все ионизирующие излучения делятся на фотонные и корпускулярные.
К фотонному ионизирующему излучению относятся:
а) Y-излучение, испускаемое при распаде радиоактивных изотопов или аннигиляции частиц. Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, т.е. потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний, т.е. y < 10 см. Не имея массы, Y-кванты двигаются со скоростью света, не теряя её в окружающей среде. Они могут лишь поглощаться ею или отклоняться в сторону, порождая пары ионов: частица- античастица, причём последнее наиболее значительно при поглощении Y- квантов в среде. Таким образом, Y- кванты при прохождении через вещество передают энергию электронам и, следовательно, вызывают ионизацию среды. Благодаря отсутствию массы, Y- кванты обладают большой проникающей способностью (до 4- 5 км в воздушной среде);
б) рентгеновское излучение, возникающее при уменьшении кинетической энергии заряженных частиц и / или при изменении энергетического состояния электронов атома.
Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят:
а) нейтроны – единственные незаряженные частицы, образующиеся при некоторых реакциях деления ядер атомов урана или плутония. Поскольку эти частицы электронейтральны, они глубоко проникают во всякое вещество, включая живые ткани. Отличительной особенностью нейтронного излучения является его способность превращать атомы стабильных элементов в их радиоактивные изотопы, т.е. создавать наведённую радиацию, что резко повышает опасность нейтронного излучения. Проникающая способность нейтронов сравнима с Y- излучением. В зависимости от уровня носимой энергии условно различают нейтроны быстрые ( обладающие энергией от 0,2 до 20 Мэ В ) и тепловые ( от 0,25 до 0,5 Мэ В ). Это различие учитывается при проведении защитных мероприятий. Быстрые нейтроны замедляются, теряя энергию ионизации, веществами с малым атомным весом ( так называемыми водородосодержащими: парафин, вода, пластмассы и др.). Тепловые нейтроны поглощаются материалами, содержащими бор и кадмий (борная сталь, бораль, борный графит, сплав кадмия со свинцом).
Альфа -, бета-частицы и гамма - кванты обладают энергией всего в несколько мегаэлектронвольт, и создавать наведённую радиацию не могут;
б) бета частицы - электроны, испускаемые во время радиоактивного распада ядерных элементов с промежуточной ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).
в) альфа частицы - положительно заряженные ядра атомов гелия, а в космическом пространстве и атомов других элементов, испускаемые при радиоактивном распаде изотопов тяжёлых элементов – урана или радия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), даже человеческая кожа является для них непреодолимым препятствием. Опасны они лишь при попадании внутрь организма, так как способны выбивать электроны из оболочки нейтрального атома любого вещества, в том числе и тела человека, и превращать его в положительно заряженный ион со всеми вытекающими последствиями, о которых будет сказано далее. Так, альфа частица с энергией 5 МэВ образует 150 000 пар ионов.
Характеристика проникающей способности различных видов ионизирующего излучения
Количественное содержание радиоактивного материала в организме человека или веществе определяется термином «активность радиоактивного источника» (радиоактивность). За единицу радиоактивности в системе СИ принят беккерель (Бк), соответствующий одному распаду в 1 с. Иногда на практике применяется старая единица активности – кюри (Ки). Это активность такого количества вещества, в котором за 1с происходит распад 37 млрд. атомов. Для перевода пользуются зависимостью: 1 Бк = 2,7 х 10 Ки или 1 Ки = 3,7 х 10 Бк.
Каждый радионуклид имеет неизменный, присущий только ему период полураспада (время, необходимое для потери веществом половины активности). Например, у урана-235 он составляет 4 470 лет, тогда как у йода-131 – всего лишь 8 суток.
Источники радиационной опасности
1. Главная причина опасности – радиационная авария. Радиационная авария – потеря управления источником ионизирующего излучения (ИИИ), вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. При авариях, вызванных разрушением корпуса реактора или расплавлением активной зоны выбрасываются:
Фрагменты активной зоны;
Топливо (отходы) в виде высокоактивной пыли, которая может долгое время находиться в воздухе в виде аэрозолей, затем после прохождения основного облака выпадать в виде дождевых (снеговых) осадков, а при попадании в организм вызывать мучительный кашель, иногда по тяжести сходный с приступом астмы;
лавы, состоящие из двуокиси кремния, а также расплавленный в результате соприкосновения с горячим топливом бетон. Мощность дозы вблизи таких лав достигает 8000 Р/час и даже пятиминутное пребывание рядом губительно для человека. В первый период после выпадения осадков РВ наибольшую опасность представляет йод-131, являющийся источником альфа- и бэта-излучения. Периоды полувыведения его из щитовидной железы составляют: биологический – 120 суток, эффективный – 7,6. Это требует быстрейшего проведения йодной профилактики всего населения, оказавшегося в зоне аварии.
2. Предприятия по разработке месторождений и обогащению урана. Уран имеет атомный вес 92 и три естественных изотопов: уран-238 (99,3%), уран-235 (0,69%) и уран-234 (0,01%). Все изотопы являются альфа-излучателями с незначительной радиоактивностью (2800кг урана по активности эквивалентны 1 г радия-226). Период полураспада урана-235 = 7,13 х 10 лет. Искусственные изотопы уран-233 и уран-227 имеют период полураспада 1,3 и 1,9 мин. Уран – мягкий металл, по внешнему виду похожий на сталь. Содержание урана в некоторых природных материалах доходит до 60 %, но в большинстве урановых руд оно не превышает 0,05-0,5 %. В процессе добычи при получении 1 тонны радиоактивного материала образуется до 10-15 тыс. тонн отходов, а при переработке от 10 до 100 тыс. тонн. Из отходов (содержащих незначительное количество урана, радия, тория и других радиоактивных продуктов распада) выделяется радиоактивный газ – радон-222, который при вдохе вызывает облучение тканей лёгких. При обогащении руды радиоактивные отходы могут попасть в близлежащие реки и озёра. При обогащении уранового концентрата возможна некоторая утечка газообразного гексафторида урана из конденсационно-испарительной установки в атмосферу. Получаемые при производстве тепловыделяющих элементов некоторые урановые сплавы, стружки, опилки могут воспламеняться во время транспортировки или хранения, в результате в окружающую среду могут быть выброшены значительные количества отходов сгоревшего урана.
3. Ядерный терроризм. Участились случаи кражи ядерных материалов, пригодных для изготовления ядерных боеприпасов даже кустарным способом, а также угрозы вывода из строя ядерных предприятий, кораблей с ядерными установками и АЭС с целью получения выкупа. Опасность ядерного терроризма существует и на бытовом уровне.
4. Испытания ядерного оружия. За последнее время достигнута миниатюризация ядерных зарядов для испытаний.
Устройство ионизирующих источников излучения
По устройству ИИИ бывают двух типов – закрытые и открытые.
Закрытые источники помещены в герметизированные контейнеры и представляют опасность лишь в случае отсутствия должного контроля за их эксплуатацией и хранением. Свою лепту вносят и воинские части, передающие списанные приборы в подшефные учебные заведения. Утери списанного, уничтожение за ненадобностью, кражи с последующей миграцией. Например, в Братске на заводе стройконструкций, ИИИ, заключенный в свинцовую оболочку, хранился в сейфе вместе с драгоценными металлами. И когда грабители взломали сейф, то они решили, что эта массивная болванка из свинца – тоже драгоценная. Украли её, а затем честно поделили, распилив пополам свинцовую «рубашку» и заточенную в ней ампулу с радиоактивным изотопом.
Работа с открытыми ИИИ может привести к трагическим последствиям при незнании или нарушении соответствующих инструкций по правилам обращения с данными источниками. Поэтому прежде, чем начинать любую работу с использованием ИИИ, необходимо тщательно изучить все должностные инструкции и положения техники безопасности и неукоснительно выполнять их требования. Эти требования изложены в «Санитарных правилах обращения с радиоактивными отходами (СПО ГО-85)». Предприятие «Радон» по заявкам производит индивидуальный контроль лиц, территорий, объектов, проверку, дозировку и ремонт приборов. Работы в области обращения ИИИ, средств радиационной защиты, добычи, производства, транспортирования, хранения, использования, обслуживания, утилизации, захоронения производятся только на основании лицензии.
Пути проникновения излучения в организм человека
Чтобы правильно понимать механизм радиационных поражений, необходимо иметь чёткое представление о существовании двух путей, по которым излучение проникает в ткани организма и воздействует на них.
Первый путь – внешнее облучение от источника, расположенного вне организма (в окружающем пространстве). Это облучение может быть связано с рентгеновскими и гамма лучами, а также некоторыми высокоэнергетическими бета частицами, способными проникать в поверхностные слои кожи.
Второй путь – внутреннее облучение, вызванное попаданием радиоактивных веществ внутрь организма следующими способами:
- в первые дни после радиационной аварии наиболее опасны радиоактивные изотопы йода, поступающие в организм с пищей и водой. Весьма много их в молоке, что особенно опасно для детей. Радиоактивный йод накапливается главным образом в щитовидной железе, масса которой составляет всего 20 г. Концентрация радионуклидов в этом органе может быть в 200 раз выше, чем в других частях человеческого организма;
- через повреждения и порезы на коже;
- абсорбция через здоровую кожу при длительном воздействии радиоактивных веществ (РВ). В присутствии органических растворителей (эфир, бензол, толуол, спирт) проницаемость кожи для РВ увеличивается. Причем некоторые РВ, поступившие в организм через кожу, попадают в кровеносное русло и, в зависимости от их химических свойств, поглощаются и накапливаются в критических органах, что приводит к получению высоких локальных доз радиации. Например, растущие кости конечностей хорошо усваивают радиоактивный кальций, стронций, радий, почки – уран. Другие химические элементы, такие как натрий и калий, будут распространяться по всему телу более или менее равномерно, так как они содержатся во всех клетках организма. При этом наличие в крови натрия-24 означает, что организм дополнительно подвергся нейтронному облучению (т.е. цепная реакция в реакторе в момент облучения не была прервана). Лечить больного, подвергшегося нейтронному облучению, особенно тяжело, поэтому необходимо проводить определение наведенной активности биоэлементов организма (Р, S и др.);
- через лёгкие при дыхании. Попадание твердых радиоактивных веществ в лёгкие зависит от степени дисперсности этих частиц. Из проводившихся над животными испытаний установлено, что частицы пыли размером менее 0.1 микрона ведут себя так же как и молекулы газов. При вдохе они попадают с воздухом в лёгкие, а при выдохе вместе с воздухом удаляются. В лёгких может оставаться лишь незначительная часть твёрдых частиц. Крупные частицы размером более 5 микрон задерживаются носовой полостью. Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через лёгкие в кровь, не являются соединениями, входящими в состав тканей, и со временем удаляются из организма. Не задерживаются в организме длительное время и радионуклиды, однотипные с элементами, входящими в состав тканей и употребляемые человеком с пищей (натрий, хлор, калий и др.). Они со временем полностью удаляются из организма. Некоторые радионуклиды (например, отлагающиеся в костных тканях радий, уран, плутоний, стронций, иттрий, цирконий) вступают в химическую связь с элементами костной ткани и с трудом выводятся из организма. При проведении медицинского обследования жителей районов, пострадавших от аварии на Чернобыльской АЭС, во Всесоюзном гематологическом центре АМН было обнаружено, что при общем облучении организма дозой в 50 рад отдельные его клетки оказались облученными дозой в 1 000 и более рад. В настоящее время для различных критических органов разработаны нормативы, определяющие предельно допустимое содержание в них каждого радионуклида. Эти нормы изложены в разделе 8 «Числовые значения допустимых уровней» Норм радиационной безопасности НРБ – 76/87.
Внутреннее облучение является более опасным, а его последствия более тяжёлыми по следующим причинам:
- резко увеличивается доза облучения, определяемая временем пребывания радионуклида в организме (радий-226 или плутоний-239 в течение всей жизни);
- практически бесконечно мало расстояние до ионизируемой ткани (так называемое, контактное облучение);
- в облучении участвуют альфа частицы, самые активные и поэтому самые опасные;
- радиоактивные вещества распространяются не равномерно по всему организму, а избирательно, концентрируются в отдельных (критических) органах, усиливая локальное облучение;
- невозможно использовать какие-либо меры защиты, применяемые при внешнем облучении: эвакуацию, средства индивидуальной защиты (СИЗ) и др.
Меры ионизирующего воздействия
Мерой ионизирующего воздействия внешнего излучения является экспозиционная доза, определяемая по ионизации воздуха. За единицу экспозиционной дозы (Дэ) принято считать рентген (Р) – количество излучения, при котором в 1 куб.см. воздуха при температуре 0 С и давлении 1 атм образуются 2,08 х 10 пар ионов. Согласно руководящим документам Международной компании по радиологическим единицам (МКРЕ) РД – 50-454-84 после 1 января 1990 г. использовать такие величины, как экспозиционная доза и её мощность, в нашей стране не рекомендуется (принято, что экспозиционная доза есть поглощённая доза в воздухе). Большая часть дозиметрической аппаратуры в РФ имеет градуировку в рентгенах, рентген / часах, и от этих единиц пока не отказываются.
Мерой ионизирующего воздействия внутреннего облучения является поглощённая доза. За единицу поглощенной дозы принят рад. Это доза излучения, переданная массе облучаемого вещества в 1 кг и измеряемая энергией в джоулях любого ионизирующего излучения. 1 рад = 10 Дж/кг. В системе СИ единицей поглощённой дозы является грей (Гр), равный энергии в 1 Дж/кг.
1 Гр = 100 рад.
1 рад = 10 Гр.
Для перевода количества ионизирующей энергии в пространстве (экспозиционная доза) в поглощённую мягкими тканями организма применяют коэффициент пропорциональности К = 0,877, т.е.:
1 рентген = 0,877 рад.
В связи с тем, что различные виды излучений обладают разной эффективностью (при равных затратах энергии на ионизацию производят различное воздействие), введено понятие «эквивалентная доза». Единица её измерения – бэр. 1 бэр – это доза излучения любого вида, воздействие которой на организм эквивалентно действию 1 рад гамма излучения. Поэтому при оценке общего эффекта воздействия радиационного излучения на живые организмы при суммарном облучении всеми видами излучений учитывается коэффициент качества (Q), равный 10 для нейтронного излучения (нейтроны примерно в 10 раз эффективнее в плане радиационного поражения) и 20 – для альфа излучения. В системе СИ единицей эквивалентной дозы является зиверт (Зв), равный 1 Гр х Q.
Наряду с величиной энергии, видом облучения, материалом и массой органа важным фактором является, так называемый биологический период полураспада радиоизотопа – продолжительность времени, необходимого для выведения (с потом, слюной, мочой, калом и др.) из организма половины радиоактивного вещества. Уже через 1-2 часа после попадания РВ в организм они обнаруживаются в его выделениях. Сочетание физического периода полураспада с биологическим даёт понятие «эффективный период полураспада» - наиболее важный в определении результирующей величины облучения, которому подвергается организм, особенно критические органы.
Наряду с понятием «активность» существует понятие «наведённая активность» (искусственная радиоактивность). Она возникает при поглощении медленных нейтронов (продуктов ядерного взрыва или ядерной реакции), ядрами атомов нерадиоактивных веществ и превращении их в радиоактивные калий-28 и натрий-24, образующиеся, в основном, в грунте.
Таким образом, степень, глубина и форма лучевых поражений, развивающихся у биологических объектов (в том числе у человека) при воздействии на них радиации, зависят от величины поглощённой энергии излучения (дозы).
Механизм действия ионизирующего излучения
Принципиальной особенностью действия ионизирующего излучения является его способность проникать в биологические ткани, клетки, субклеточные структуры и, вызывая одномоментную ионизацию атомов, за счёт химических реакций повреждать их. Ионизирована может быть любая молекула, а отсюда все структурно-функциональные разрушения в соматических клетках, генетические мутации, воздействия на зародыш, болезнь и смерть человека.
Механизм такого воздействия заключается в поглощении энергии ионизации организмом и разрыве химических связей его молекул с образованием высокоактивных соединений, так называемых свободных радикалов.
Организм человека на 75% состоит из воды, следовательно, решающее значение в этом случае будет иметь косвенное воздействие радиации через ионизацию молекулы воды и последующие реакции со свободными радикалами. При ионизации молекулы воды образуется положительный ион Н О и электрон, который, потеряв энергию, может образовать отрицательный ион Н О. Оба эти иона являются неустойчивыми и распадаются на пару стабильных ионов, которые рекомбинируют (восстанавливаются) с образованием молекулы воды и двух свободных радикалов ОН и Н, отличающихся исключительно высокой химической активностью. Непосредственно или через цепь вторичных превращений, таких как образование перекисного радикала (гидратного оксида воды), а затем перекиси водорода Н О и других активных окислителей группы ОН и Н, взаимодействуя с молекулами белков, они ведут к разрушению ткани в основном за счет энергично протекающих процессов окисления. При этом одна активная молекула с большой энергией вовлекает в реакцию тысячи молекул живого вещества. В организме окислительные реакции начинают превалировать над восстановительными. Наступает расплата за аэробный способ биоэнергетики – насыщение организма свободным кислородом.
Воздействие ионизирующего излучения на человека не ограничивается изменением структуры молекул воды. Меняется структура атомов, из которых состоит наш организм. В результате происходит разрушение ядра, клеточных органелл и разрыв наружной мембраны. Так как основная функция растущих клеток – способность к делению, то утрата её приводит к гибели. Для зрелых неделящихся клеток разрушение вызывает потерю тех или иных специализированных функций (выработку определённых продуктов, распознавание чужеродных клеток, транспортные функции и тд.). Наступает радиационно индуцированная гибель клеток, которая в отличие от физиологической гибели необратима, так как реализация генетической программы терминальной дифференцировки в этом случае осуществляется на фоне множественных изменений нормального течения биохимических процессов после облучения.
Кроме того, дополнительное поступление энергии ионизации в организм нарушает сбалансированность энергетических процессов, происходящих в нём. Ведь наличие энергии в органических веществах зависит в первую очередь не от их элементарного состава, а от строения, расположения и характера связей атомов, т.е. тех элементов, которые легче всего поддаются энергетическому воздействию.
Последствия облучения
Одно из наиболее ранних проявлений облучения – массовая гибель клеток лимфоидной ткани. Образно говоря, эти клетки первыми принимают на себя удар радиации. Гибель лимфоидов ослабляет одну из основных систем жизнеобеспечения организма – иммунную систему, так как лимфоциты – такие клетки, которые способны реагировать на появление чужеродных для организма антигенов выработкой строго специфических антител к ним.
В результате воздействия энергии радиационного излучения в малых дозах в клетках происходят изменения генетического материала (мутации), угрожающие их жизнеспособности. Как следствие наступает деградация (повреждение) ДНК хроматина (разрывы молекул, повреждения), которые частично или полностью блокируют или извращают функцию генома. Происходит нарушение репарации ДНК – способности её к восстановлению и залечиванию повреждений клеток при повышении температуры тела, воздействии химических веществ и пр.
Генетические мутации в половых клетках оказывают влияние на жизнь и развитие будущих поколений. Этот случай характерен, например, если человек подвергся воздействию небольших доз радиации во время экспозиции в медицинских целях. Существует концепция – при получении дозы в 1 бэр предыдущим поколением она даёт дополнительно в потомстве 0.02 % генетических аномалий, т.е. у 250 младенцев на миллион. Эти факты и многолетние исследования данных явлений привели ученых к выводу, что безопасных доз радиации не существует.
Воздействие ионизирующих излучений на гены половых клеток может вызвать вредные мутации, которые будут передаваться из поколения в поколение, увеличивая «мутационный груз» человечества. Опасными для жизни являются условия, увеличивающие «генетическую нагрузку» вдвое. Такой удваивающей дозой является, по выводам научного комитета ООН по атомной радиации, доза в 30 рад при остром облучении и 10 рад при хроническом (в течение репродуктивного периода). С ростом дозы повышается не тяжесть, а частота возможного проявления.
Мутационные изменения происходят и в растительных организмах. В лесах, подвергшихся выпадению радиоактивных осадков под Чернобылем, в результате мутации возникли новые абсурдные виды растений. Появились ржаво-красные хвойные леса. В расположенном недалеко от реактора пшеничном поле через два года после аварии ученые обнаружили около тысячи различных мутаций.
Влияние на зародыш и плод вследствие облучения матери в период беременности. Радиочувствительность клетки меняется на разных этапах процесса деления (митоза). Наиболее чувствительна клетка в конце покоя и начале первого месяца деления. Особенно чувствительна к облучению зигота – эмбриональная клетка, образующаяся после слияния сперматозоида с яйцом. При этом развитие зародыша в этот период и влияние на него радиационного, в том числе и рентгеновского, облучения можно разделить на три этапа.
1-й этап – после зачатия и до девятого дня. Только что сформировавшийся зародыш под воздействием радиации погибает. Смерть в большинстве случаев остается незамеченной.
2-й этап – с девятого дня по шестую неделю после зачатия. Это – период формирования внутренних органов и конечностей. При этом под воздействием дозы облучения в 10 бэр у зародыша появляется целый спектр дефектов – расщепление нёба, остановка развития конечностей, нарушение формирования мозга и др. Одновременно возможна задержка роста организма, что выражается в уменьшении размеров тела при рождении. Результатом облучения матери в этот период беременности также может быть смерть новорожденного в момент родов или спустя некоторое время после них. Однако, рождение живого ребёнка с грубыми дефектами, вероятно, самое большое несчастье, гораздо худшее, чем смерть эмбриона.
3-й этап – беременность после шести недель. Дозы радиации, полученные матерью, вызывают стойкое отставание организма в росте. У облученной матери ребёнок при рождении имеет размеры меньше нормы и остается ниже среднего роста на всю жизнь. Возможны патологические изменения в нервной, эндокринной системах и т.д. Многие специалисты-радиологи предполагают, что большая вероятность рождения неполноценного ребенка служит основанием для прерывания беременности, если доза, полученная эмбрионом в течение первых шести недель после зачатия, превышает 10 рад. Такая доза вошла в законодательные акты некоторых скандинавских стран. Для сравнения, при рентгеноскопии желудка основные участки костного мозга, живот, грудная клетка получают дозу излучения в 30-40 рад.
Иногда возникает практическая проблема: женщина проходит серию сеансов рентгенографии, включающих снимки желудка и органов таза, а впоследствии обнаруживается, что она беременна. Ситуация усугубляется, если облучение произошло в первые недели после зачатия, когда беременность может оставаться незамеченной. Единственное решение данной проблемы – не подвергать женщину облучению в указанный период. Этого можно достичь в том случае, если женщина репродуктивного возраста будет проходить рентгенографию желудка или брюшной полости только в течение первых десяти дней после начала менструального периода, когда нет сомнений в отсутствии беременности. В медицинской практике это называется правилом «десяти дней». При неотложной ситуации рентгеновские процедуры не могут быть перенесены на недели или месяцы, однако со стороны женщины будет благоразумным рассказать врачу перед проведением рентгенографии о своей возможной беременности.
По степени чувствительности к ионизирующему излучению клетки и ткани человеческого организма неодинаковы.
К особо чувствительным органам относятся семенники. Доза в 10-30 рад может снизить сперматогенез в течение года.
Высокой чувствительностью к облучению обладает иммунная система.
В нервной системе наиболее чувствительной оказалась сетчатка глаза, так как при облучении наблюдалось ухудшение зрения. Нарушения вкусовой чувствительности наступали при лучевой терапии грудной клетки, а повторные облучения дозами 30-500 Р снижали тактильную чувствительность.
Изменения в соматических клетках могут способствовать возникновению рака. Раковая опухоль возникает в организме в тот момент, когда соматическая клетка, выйдя из-под контроля организма, начинает быстро делиться. Первопричиной этого являются вызванные многократными или сильным разовым облучением мутации в генах, приводящие к тому, что раковые клетки теряют способность даже в случае нарушения равновесия погибать физиологической, а точнее программированной смертью. Они становятся как бы бессмертными, постоянно делясь, увеличиваясь в количестве и погибая лишь от недостатка питательных веществ. Так происходит рост опухоли. Особенно быстро развивается лейкоз (рак крови) – болезнь, связанная с избыточным появлением в костном мозге, а затем и в крови неполноценных белых клеток – лейкоцитов. Правда, в последнее время выяснилось, что связь между радиацией и заболеванием раком более сложная, чем предполагалось ранее. Так, в специальном докладе японско-американской ассоциации ученых сказано, что только некоторые виды рака: опухоли молочной и щитовидной желёз, а также лейкемия – развиваются в результате радиационного поражения. Причем опыт Хиросимы и Нагасаки показал, что рак щитовидной железы наблюдается при облучении в 50 и более рад. Рак молочной железы, от которого умирают около 50% заболевших, наблюдается у женщин, многократно подвергавшихся рентгенографическим обследованиям.
Характерным для радиационных поражений является то, что лучевые травмы сопровождаются тяжелыми функциональными расстройствами, требуют сложного и длительного (более трёх месяцев) лечения. Жизнеспособность облученных тканей значительно снижается. Кроме того, через много лет и десятилетий после получения травмы возникают осложнения. Так, наблюдались случаи возникновения доброкачественных опухолей через 19 лет после облучения, а развитие лучевого рака кожи и молочной железы у женщин – через 25-27 лет. Нередко травмы обнаруживаются на фоне или после воздействия дополнительных факторов нерадиационной природы (диабет, атеросклероз, гнойная инфекция, термические или химические травмы в зоне облучения).
Необходимо также учитывать, что люди, пережившую радиационную аварию, испытывают дополнительный стресс в течение нескольких месяцев и даже лет после неё. Такой стресс может включить биологический механизм, который приводит к возникновению злокачественных заболеваний. Так, в Хиросиме и Нагасаки крупная вспышка заболеваний раком щитовидной железы наблюдалась спустя 10 лет после атомной бомбардировки.
Исследования, проведённые радиологами на основании данных Чернобыльской аварии, свидетельствуют о снижении порога последствий от воздействия облучения. Так, установлено, что облучение в 15 бэр может вызвать нарушения в деятельности иммунной системы. Уже при получении дозы в 25 бэр у ликвидаторов аварии наблюдалось снижение в крови лимфоцитов – антител к бактериальным антигенам, а при 40 бэр увеличивается вероятность возникновения инфекционных осложнений. При воздействии постоянного облучения дозой от 15 до 50 бэр часто отмечались случаи неврологических расстройств, вызванных изменениями в структурах головного мозга. Причём эти явления наблюдались в отдалённые сроки после облучения.
Лучевая болезнь
В зависимости от дозы и времени облучения наблюдаются три степени заболевания: острая, подострая и хроническая. В очагах поражения (при получении высоких доз) возникает, как правило, острая лучевая болезнь (ОЛБ).
Различают четыре степени ОЛБ:
- лёгкая (100 – 200 рад). Начальный период – первичная реакция как и при ОЛБ всех других степеней – характеризуется приступами тошноты. Появляются головная боль, рвота, общее недомогание, незначительное повышение температуры тела, в большинстве случаев – анорексия (отсутствие аппетита, вплоть до отвращения к пище), возможны инфекционные осложнения. Первичная реакция возникает через 15 – 20 минут после облучения. Её проявления постепенно исчезают через несколько часов или суток, а могут вообще отсутствовать. Затем наступает скрытый период, так называемый период мнимого благополучия, продолжительность которого обусловливается дозой облучения и общим состоянием организма (до 20 суток). За это время эритроциты исчерпывают свой срок жизни, переставая подавать кислород клеткам организма. ОЛБ лёгкой степени излечима. Возможны негативные последствия – лейкоцитоз крови, покраснения кожи, снижение работоспособности у 25% поражённых через 1,5 – 2 часа после облучения. Наблюдается высокое содержание гемоглобина в крови в течение 1 года с момента облучения. Сроки выздоровления – до трёх месяцев. Большое значение при этом имеют личностная установка и социальная мотивация пострадавшего, а также его рациональное трудоустройство;
- средняя (200 – 400 рад). Короткие приступы тошноты, проходящие через 2-3 дня после облучения. Скрытый период – 10-15 суток (может отсутствовать), в течение которого лейкоциты, вырабатываемые лимфатическими узлами, погибают и прекращают отторгать попадающую в организм инфекцию. Тромбоциты перестают свёртывать кровь. Всё это – результат того, что убитые радиацией костный мозг, лимфатические узлы и селезёнка не вырабатывают новые эритроциты, лейкоциты и тромбоциты на смену отработавшим. Развиваются отёк кожи, пузыри. Такое состояние организма, получившее название «костномозговой синдром», приводит 20% поражённых к смерти, которая наступает в результате поражения тканей кроветворных органов. Лечение заключается в изоляции больных от внешней среды, введении антибиотиков и переливании крови. Молодые и пожилые мужчины более подвержены заболеванию ОЛБ средней степени, нежели мужчины среднего возраста и женщины. Потеря трудоспособности наступает у 80% поражённых через 0,5 – 1 час после облучения и после выздоровления долгое время остаётся сниженной. Возможно развитие катаракты глаз и местных дефектов конечностей;
- тяжёлая (400 – 600 рад). Симптомы, характерные для кишечно-желудочного расстройства: слабость, сонливость, потеря аппетита, тошнота, рвота, длительный понос. Скрытый период может длиться 1 – 5 суток. Через несколько дней возникают признаки обезвоживания организма: потеря массы тела, истощение и полное обессиливание. Эти явления – результат отмирания ворсинок стенок кишечника, всасывающих питательные вещества из поступающей пищи. Их клетки под воздействием радиации стерилизуются и теряют способность делиться. Возникают очаги прободения стенок желудка, и бактерии поступают из кишечника в кровоток. Появляются первичные радиационные язвы, гнойная инфекция от радиационных ожогов. Потеря трудоспособности через 0,5-1 час после облучения наблюдается у 100% пострадавших. У 70% поражённых смерть наступает через месяц от обезвоживания организма и отравления желудка (желудочно-кишечный синдром), а также от радиационных ожогов при гамма облучении;
- крайне тяжёлая (более 600 рад). В считанные минуты после облучения возникают сильная тошнота и рвота. Понос – 4-6 раз в сутки, в первые 24 часа – нарушение сознания, отёк кожи, сильные головные боли. Данные симптомы сопровождаются дезориентацией, потерей координации движений, затруднением глотания, расстройством стула, судорожными припадками и в конечном итоге наступает смерть. Непосредственная причина смерти – увеличение количества жидкости в головном мозге вследствие её выхода из мелких сосудов, что приводит к повышению внутричерепного давления. Такое состояние получило название «синдром нарушения центральной нервной системы».
Необходимо отметить, что поглощённая доза, вызывающая поражение отдельных частей организма и смерть, превышает смертельную дозу для всего тела. Смертельные дозы для отдельных частей тела следующие: голова – 2000 рад, нижняя часть живота – 3000 рад, верхняя часть живота – 5000 рад, грудная клетка – 10000 рад, конечности – 20000 рад.
Достигнутый на сегодня уровень эффектности лечения ОЛБ считается предельным, так как основан на пассивной стратегии – надежде на самостоятельное выздоровление клеток в радиочувствительных тканях (главным образом костном мозге и лимфатических узлах), на поддержку других систем организма, переливание тромбоцитной массы для предотвращения кровоизлияния, эритроцитарной – для предотвращения кислородного голодания. После этого остаётся только ждать, когда заработают все системы клеточного обновления и ликвидируют гибельные последствия радиационного облучения. Исход болезни определяется к концу 2-3 месяца. При этом могут наступить: полное клиническое выздоровление пострадавшего; выздоровление, при котором его трудоспособность в той или иной мере будет ограниченной; неблагоприятный исход с прогрессированием заболевания или развитием осложнений, приводящих к смерти.
Пересадке здорового костного мозга мешает иммунологический конфликт, который в облучённом организме особенно опасен, так как истощает и без того подорванные силы иммунитета. Российские учёные-радиологи предлагают новый путь лечения больных лучевой болезнью. Если забрать у облучённого часть костного мозга, то в кроветворной системе после этого вмешательства начинаются процессы более раннего восстановления, чем при естественном развитии событий. Извлечённую часть костного мозга помещают в искусственные условия, а затем через определённый срок возвращают в тот же организм. Иммунологического конфликта (отторжения) не происходит.
В настоящее время учёными проводятся работы, и получены первые результаты по применению фармацевтических радиопротекторов, позволяющих человеку переносить дозы облучения, превышающие летальную примерно вдвое. Это – цистеин, цистамин, цистофос и ряд других веществ, содержащих сульфидгидрильные группы (SH) на конце длинной молекулы. Эти вещества, словно «мусорщики», убирают образующиеся свободные радикалы, которые во многом ответственны за усиление окислительных процессов в организме. Однако крупным недостатком указанных протекторов является необходимость введения его в организм внутривенно, так как сульфидгидрильная группа, добавляемая в них для уменьшения токсичности, разрушается в кислой среде желудка и протектор теряет защитные свойства.
Ионизирующая радиация имеет негативное воздействие также на жиры и липоеды (жироподобные вещества), содержащиеся в организме. Облучение нарушает процесс эмульгирования и продвижения жиров в области криптального отдела слизистой оболочки кишечника. В результате в просвет кровеносных сосудов попадают капли неэмульгированного и грубо эмульгированного жира, усваиваемого организмом.
Повышение окисления жирных кислот в печени приводит при инсулиновой недостаточности к повышенному кетогенезу печени, т.е. избыток свободных жирных кислот в крови понижает активность инсулина. А это в свою очередь ведёт к широко распространённому сегодня заболеванию сахарным диабетом.
Наиболее характерными заболеваниями, сопутствующими поражению от облучения, являются злокачественные новообразования (щитовидной железы, органов дыхания, кожи, кроветворных органов), нарушения обмена веществ и иммунитета, болезни органов дыхания, осложнения течения беременности, врождённые аномалии, психические расстройства.
Восстановление организма после облучения – процесс сложный, и протекает он неравномерно. Если восстановление эритроцитов и лимфоцитов в крови начинается через 7 – 9 месяцев, то восстановление лейкоцитов – через 4 года. На длительность этого процесса оказывают влияние не только радиационные, но и психогенные, социально-бытовые, профессиональные и другие факторы пострадиационного периода, которые можно объединить в одно понятие «качество жизни» как наиболее ёмко и полно выражающее характер взаимодействия человека с биологическими факторами среды, социальными и экономическими условиями.
Обеспечение безопасности при работе с ионизирующими излучениями
При организации работ используются следующие основные принципы обеспечения радиационной безопасности: выбор или уменьшение мощности источников до минимальных величин; сокращение времени работы с источниками; увеличение расстояния от источника до работающего; экранирование источников излучения материалами, поглощающими или ослабляющими ионизирующие излучения.
В помещениях, где проводится работа с радиоактивными веществами и радиоизотопными приборами, ведётся контроль за интенсивностью различных видов излучения. Эти помещения должны быть изолированы от других помещений и оснащены приточно-вытяжной вентиляцией. Другими коллективными средствами защиты от ионизирующего излучения в соответствии с ГОСТ 12.4.120 являются стационарные и передвижные защитные экраны, специальные контейнеры для транспортировки и хранения источников излучения, а также для сбора и хранения радиоактивных отходов, защитные сейфы и боксы.
Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Защита от альфа излучения достигается применением оргстекла толщиной несколько миллиметров. Для защиты от бэта-излучения экраны изготовляют из алюминия или оргстекла . От нейтронного излучения защищает вода, парафин, бериллий, графит, соединения бора, бетон. От рентгеновских и гамма-излучений защищают свинец и бетон. Для смотровых окон используют свинцовое стекло.
При работе с радионуклидами следует применять спецодежду. В случае загрязнения рабочего помещения радиоактивными изотопами поверх хлопчатобумажного комбинезона следует надевать пленочную одежду: халат, костюм, фартук, брюки, нарукавники.
Пленочная одежда изготавливается из пластиков или резиновых тканей, легко очищаемых от радиоактивного загрязнения. В случае применения пленочной одежды необходимо предусмотреть возможность подачи воздуха под костюм.
В комплекты спецодежды входят респираторы, пневмошлемы и другие средства индивидуальной защиты. Для защиты глаз следует применять очки со стеклами, содержащими фосфат вольфрама или свинец. При использовании индивидуальных средств защиты необходимо строго соблюдать последовательность их надевания и снятия, и дозиметрического контроля.