Рефетека.ру / Физика

Реферат: Механика жидкостей и газов в законах и уравнениях

ГОУ ВПО

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ


Реферат на тему:

МЕХАНИКА ЖИДКОСТЕЙ и газов


Выполнил:

Студент гр. МС-116

Оконешников А.В.


Проверил:

Шевченко С.С.


Омск - 2007

1. МЕХАНИКА ЖИДКОСТЕЙ

Совокупность векторов v(t), заданных для всех точек пространства, называется полем вектора скорости. Это поле можно наглядно изобразить с помощью линий тока (рис. 39.1). Линию тока

Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравнениях


Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравнениях


можно провести через любую точку пространства. Если построить все мыслимые линии тока, они просто сольются друг с другом. Поэтому для наглядного представления течения жидкости строят лишь часть линий, выбирая их так, чтобы густота линий тока была численно равна модулю скорости в данном месте. Тогда по картине линий тока можно судить не только о направлении, но и о модуле вектора v в разных точках пространства. Например, в точке А на рис.39.1 густота линий, а следовательно и модуль v, чем в точке В. Поскольку разные частицы жидкости могут проходить через данную точку про­странства с разными скоростями (т. е. v = v(t)), кар­тина линий тока, вообще говоря, все время изме­няется. Если скорость в каждой точке пространства остается постоянной (V=const), то течение жидко­сти Называется стационарным (установившим­ся). При стационарном течении любая частица жидкости проходит через данную точку пространства с од­ной и той же скоростью v. Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц. Если через все точки небольшого замкнутого контуpa провести линии тока, образуется поверхность, которую называют трубкой тока. Вектор v касателен к поверхности трубки тока в каждой ее точке. Следовательно, частицы жидкости при своем движе­нии не пересекают стенок трубки тока.

Возьмем трубку тока, достаточно тонкую для того, чтобы во всех точках ее поперечного сечения S скорость частиц v была одна и та же (рис. 39.2). При стационарном течении трубка тока подобна стен­кам жесткой трубы. Поэтому через сечение 5 прой­дет за время Δt объем жидкости, равный SvΔt, а в единицу времени объем

Механика жидкостей и газов в законах и уравнениях

(39.1)


Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравненияхЖидкость, плотность которой всюду одинакова и изменяться не может, называется несжимаемой. На рис. 39.3 изображены два сечения очень тонкой трубки тока — S1 и S2. Если жидкость несжи­маема , то кол – во ее между этими сечениями остается неизменным. От­сюда следует, что


Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравнениях


объемы жидкости, протекающие в единицу времени через сечения S1 и S2, должны быть одинаковыми:


Механика жидкостей и газов в законах и уравнениях


(39.2)

(напомним, что через боковую поверхность трубки тока частицы жидкости не проникают).

Равенство (39.2) справедливо для любой пары произвольно взятых сечений. Следовательно, для не­сжимаемой жидкости при стационарном течении про­изведение Sv в любом сечении данной трубки тока имеет одинаковое значение:

Механика жидкостей и газов в законах и уравнениях


(39.3)


Это утверждение носит название теоремы о неразрывности струи.

Мы получили формулу (39.3) для несжимаемой жидкости. Однако она применима к реальным жидко­стям и даже к газам в том случае, когда их сжимае­мостью можно пренебречь. Расчеты показывают, что при движении газов со скоростями, много меньшими скорости звука в этой среде, их можно с достаточной точностью считать несжимаемыми.

Из соотношения (39.3) вытекает, что при изме­няющемся сечении трубки тока частицы несжимаемой жидкости движутся с ускорением (рис. 39.4). Если трубка тока горизонтальна, это ускорение может быть обусловлено только непостоянством давления вдоль трубки — в местах, где скорость больше, давление должно быть меньше, и наоборот. Аналитическую связь между скоростью течения и давлением мы уста­новим в следующем параграфе.

2. Уравнение Бернулли

В реальных жидкостях при перемещении слоев жидкости друг относительно друга возникают силы внутреннего трения, тормозящие относительное сме­щение слоев. Воображаемая жидкость, у которой внутреннее трение полностью отсутствует, называется идеальной. Течение идеальной жидкости не со­провождается диссипацией энергии (см. предпослед­ний абзац § 24).

Рассмотрим стационарное течение несжимаемой идеальной жидкости. Выделим объем жидкости, огра­ниченный стенками узкой трубки тока и перпендику­лярными к линиям тока сечениями S1 и S2 (рис. 40.1), За время А/ этот объем сместится вдоль трубки тока, причем граница объема S1 получит перемещение Δl2 , а граница S2 — перемещение Δl2. Работа, совершае­мая при этом силами давления, раина приращению полной энергии (Ek + Ep), заключенной в рассматри­ваемом объеме жидкости.

Силы давления на стенки трубки тока перпенди­кулярны в каждой точке к направлению перемещения жидкости, вследствие чего работы не совершают. От­лична от нуля лишь работа сил давления, приложенных к сечениям S1 и S2. Эта работа равна (см. рис. 40.1).


Механика жидкостей и газов в законах и уравнениях


Механика жидкостей и газов в законах и уравненияхПолная энергия рассматриваемого объема жидко­сти слагается из кинетической энергии и потенциалальной энергии в поле сил земного тяготения. Вслед­ствие стационарности течения полная энергия той части жидкости, кото­рая ограничена сече­ниями 1’ и 2 (внутрен­няя незаштрихованная часть трубки тока на рис. 40.1), за время Δt не изменяется. Поэто­му приращение полной энергии равно разности значений полной энер­гии заштрихованных объемов ΔV2 и ΔV1, масса которых Δm = рΔV (р — плотность жидкости).

Возьмем сечение S трубки тока и перемещения Δl настолько малыми, чтобы всем точкам каждого из заштрихованных объёмов можно было приписать одно и то же значение скорости v , давления p, и высоты h. Тогда дли приращения полной энергии получается выражение

Механика жидкостей и газов в законах и уравнениях


Приравняв выражения (40.1) и (40.2), сократив на AV и перенеся члены с одинаковыми индексами в' одну часть равенства, придем к уравнению

Механика жидкостей и газов в законах и уравнениях


Это уравнение становится вполне строгим лишь при стремлении поперечного сечения S к нулю, т. е. при стягивании трубки тока в линию. Следовательно, ве­личины и, h и р в обеих частях равенства нужно рассматривать как относящиеся к двум произвольным точкам одной и той же линии тока.

При выводе формулы (40.3) сечения S1 и S2 были взяты совершенно произвольно. Поэтому можно утверждать, что в стационарно текущей несжимаемой и идеальной жидкости вдоль любой линии тока вы­полняется условие

Механика жидкостей и газов в законах и уравнениях


Уравнение (40.3) или равнозначное ему уравнение (40.4) называется уравнением Бернулли. Хотя это уравнение было получено для идеальной жидкости, оно хорошо выполняется для реальных жидкостей, у которых внутреннее трение невелико.


3. Истечение жидкости из отверстия

Механика жидкостей и газов в законах и уравненияхРассмотрим истечение идеальной несжимаемой жидкости из небольшого отверстия в широком откры­том сосуде (рис. 41.1). Выделим мысленно в жидко­сти трубку тока, сечениями ко­торой являются открытая по­верхность жидкости S1 и сече­ние струи при выходе из отвер­стия S2 (если не принять спе­циальных мер, то сечение струи будет меньше отвер­стия). Для всех точек каждого из этих сечений скорость жид­кости v и высоту h над некото­рым исходным уровнем можно считать одинаковыми. Поэтому к данным сечениям можно применить теорему Бернулли. Давления р1 и р2 в обоих сечениях одинаковы и равны атмосферному. Скоростью v1 пе­ремещения открытой поверх­ности жидкости ввиду ее малости можно пренебречь. Поэтому уравнение (40.3) в данном случае упро­щается следующим образом:

Механика жидкостей и газов в законах и уравнениях


Рис.41.1.


Механика жидкостей и газов в законах и уравненияхгде v — скорость жидкости в сечении S2 (скорость истечения из отверстия). Сократив на р, можно на­писать, что где h = h1 — h2 — высота открытой поверхности над отверстием.


Формула (41.1) называется формулой Торричелли. Из нее следует, что скорость истечения жидкости из отверстия, находящегося на глубине h под открытой поверхностью жидкости, совпадет со скоростью, которую приобретает любое тело, падая с высоты h (в случае, если сопротивлением воздуха можно пренебречь). Этот результат получен в пред­положении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения, определяемого формулой Торричелли, чем больше внутреннее трение в жидкости. Например, глицерин будет вытекать из сосуда медленнее, чем вода.


4. Вязкость. Течение жидкости в трубах

Идеальная жидкость, т. е. жидкость без внутрен­него трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей степени присуще внутреннее трение, называемое также вязкостью. Вязкость проявляется, в частности, в том, что возникшее в жидкости или газе движение, после прекращения действия причин, его вызвавших, постепенно прекращается. Примером может служить движение жидкости в стакане после того, как ее пе­рестают размешивать ложечкой.

Рассмотрим течение жидкости в круглой трубе. Измерения показывают, что при медленном течении скорость частиц жидкости изменяется от нуля в не­посредственной близости к стенкам трубы до макси­мума на оси трубы.

Механика жидкостей и газов в законах и уравнениях


Жидкость при этом оказывается как бы разделенной на тонкие цилиндрические слои, которые скользят друг относительно друга, не пере­мешиваясь (рис. 42.1). Такое течение называется ла­минарным или слоистым (латинское слово lamina означает пластинку, полоску). Отсутствие пе­ремешивания слоев можно наблюдать, создав в стек­лянной трубке диаметра несколько сантиметров сла­бый поток воды и вводя на оси трубы через узкую трубочку окрашенную жидкость (например, анилин). Тогда по всей длине трубы возникнет тонкая окра­шенная струйка, имеющая отчетливую границу с водой.

Из повседневного опыта известно, что для того, чтобы Создать и поддерживать постоянным течение жидкости в трубе, необходимо наличие между кон­цами трубы разности давлений. Поскольку при уста­новившемся течении жидкость движется без ускоре­ния, необходимость действия сил давления указывает на то, что эти силы, уравновешиваются какими-то си­лами, тормозящим движение. Этими силами являет­ся силы внутреннего трения на границе со стенкой трубы и на границах между слоями. Более быстрый слой стремится увлечь за собой более медленный слой, действуя на него с силой F1 направленной по течению. Одновременно более медленный слой стрёмится замедлить движение более быстрого слон, дей­ствуя на него с силой F2y направленном против тече­ния (рис. 42.2).

Экспериментально установлено, что модуль СИЛЫ внутреннего трения, приложенной к площадке 5, ле­жащей на границе между слоями, определяется фор­мулой


Механика жидкостей и газов в законах и уравнениях


где n— называемый вязкостью коэффициент про­порциональности, зависящим от природы и состояния

Механика жидкостей и газов в законах и уравнениях


(например, температуры) жидкости, dv/dz—производная, показывающая, как быстро изменяется в дан­ном месте скорость течения в направлений г, перпен­дикулярном к площадке S. В случае качения жидко­сти в трубе ось z направлена в каждой точке границы между слоями по радиус} грубы (см. pиc, 42.1), Поэтому вместо dv/dz можно написать, dv/df, Знак мо­дуля в формуле (42.1) поставлен в связи с тем, что в зависимости от выбора направления оси z и харак­тера изменения скорости производная dv/dz может быть как положительной, так и отрицательной, в то время как модуль силы является положительной ве­личиной.

Мы уже отмечали, что при ламинарном течении жидкости в круглой трубе скорость равна нулю у стенки трубы и максимальна па оси трубы. Най­дем закон изменения скорости. Выделим воображае­мый цилиндрический объем жидкости радиуса r и длины l (рис. 42.3). При стационарном течении этот объем движется без ускорения. Следовательно, сумма приложенных к нему сил равна нулю. В направлении


движения на жидкость действует сила давления, мо­дуль которой равен p1Пr2; во встречном направле­нии— сила давления, модуль которой равен p2Пr2. Результирующая сил давления имеет модуль

Механика жидкостей и газов в законах и уравнениях


(Пr2 — площадь основания цилиндра).

На боковую поверхность действует тормозящая движение сила внутреннего трения, модуль которой

Механика жидкостей и газов в законах и уравненияхсогласно формуле

(42.1) равен

Механика жидкостей и газов в законах и уравнениях


где rl — площадь бо­ковой поверхности ци­линдра, dv/dr — зна­чение производной на расстоянии r от оси трубы. Скорость убывает с расстоянием от оси труби, поэтому производ­ная dv/dr отрицательна и ее модуль равен —dv/dr {модуль отрицательного числа равен этому числу, взя­тому с обратным знаком).

Приравняв выражения (42.2) и (42.3), придем к дифференциальному уравнению

Механика жидкостей и газов в законах и уравнениях


Разделив переменные, получим уравнение

Механика жидкостей и газов в законах и уравнениях


интегрирование которого дает, что

Механика жидкостей и газов в законах и уравнениях


Постоянную интегрирования С нужно выбрать так, чтобы на стенке трубы (т. е. при г = R) скорость об* ращалась в нуль. Это условие выполняется при

Механика жидкостей и газов в законах и уравнениях


Механика жидкостей и газов в законах и уравненияхПодстановка этого значения в (42.4) приводит к фор­муле


Скорость на оси трубы равна

Механика жидкостей и газов в законах и уравнениях


С учетом этого формулу (42.5) можно написать в виде

Механика жидкостей и газов в законах и уравнениях


Отсюда следует, что при ламинарном течения скорость изменяется с расстоянием от оси трубы но параболическому закону (рис. 42.4а).


Механика жидкостей и газов в законах и уравнениях


С помощью формулы (42.7) можно вычисти, по­ток жидкости Q, т. е. объем жидкости, протекающей через поперечное сечение трубы и единицу времени. Разобьем сечение трубы на кольца ширины dr (рис. 42.5). Через кольцо радиуса r пройдёт в еди­ницу времени объем жидкости dQ, равный произведе­нию площади кольца rdr на скорость v(t) на рас­стоянии от оси трубы:

Механика жидкостей и газов в законах и уравнениях


Механика жидкостей и газов в законах и уравнениях(мы воспользовались формулой (42.7)). Проинтег­рировав это выражение по г в пределах ОТ пули до R, получим поток Q:


(S—площадь сечения трубы). Поток можно пред­ставить как произведение среднего по сечению значения скорости <и> на площадь 5. Из формулы (42.8) следует, что при ламинарном течении среднее значение скорости равно половине значения скорости на оси трубы.

Подставив в (42.8) выражение (42.6) дли с>о, по­лучим формулу

Механика жидкостей и газов в законах и уравнениях


Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравненияхкоторая называется ф о р м у л о й П у а з е й л я . Из нее следует, что поток очень сильно зависит от радиуса трубы.

Механика жидкостей и газов в законах и уравненияхЕстественно, что Q пропорционален отношению {P1 — Р2) / l т. е. перепаду давле­ния на единице длины трубы, а также обратно пропорционален вязкости жидкости n.

Формула Пуазейля использу­ется для определения вязкости жидкостей и газов. Пропуская жидкость или газ через трубку известного радиуса, измеряют перепад давления и поток Q. Затем на основании полученных данных вычисляют n.

Мы все время подчеркивали, что предполагаем те­чение медленным для того, чтобы оно имело ламинар­ный характер. Напомним, что ламинарное течение яв­ляется стационарным. Это означает, что скорость ча­стиц жидкости, проходящих через данную точку про­странства, все время одна и та же. Если увеличивать скорость течения, то при достижении определенного значения скорости характер течения резко меняется. Течение становится нестационарным — скорость ча­стиц в каждой точке пространства все время беспоря­дочно изменяется. Такое течение называется тур­булентным. При турбулентном течении происхо­дит интенсивное перемешивание жидкости. Если в турбулентный поток ввести окрашенную струйку, то уже на небольшом расстоянии от места ее введения окрашенная жидкость равномерно распределится по всему сечению потока. Это можно наблюдать в упоминавшемся выше опыте, если увеличить поток воды в стеклянной трубке.

Поскольку при турбулентном течении скорость в каждой точке все время меняется, можно говорить только о среднем по времени значении скорости, кото­рая при неизменных условиях течения оказывается постоянной в каждой точке пространства. Профиль средних скоростей для одного из сечений трубы при турбулентном течении показан на рис. 42.56. Сравне­ние с рис. 42.5 а показывает, что вблизи стенки трубы скорость изменяется гораздо сильнее, чем при лами­нарном течении; в остальной части сечения скорость изменяется меньше.

Рейнольдс установил, что характер течения оп­ределяется значением безразмерной величины

Механика жидкостей и газов в законах и уравнениях

где р— плотность жидкости (или газа), v — средняя по сечению трубы скорость потока, n - вязкость жид­кости, l — характерный для поперечного сечения по­тока размер, например сторона квадрата при квад­ратном сечении, радиус или диаметр при круглом се­чении. Величина Re называется числом Рейнольдса.


При малых значениях Re течение носит ламинар­ный характер. Начиная с некоторого значения Re, называемого критическим, течение приобретает турбулентный характер. Если в качестве характер­ного размера трубы взять ее радиус (в этом случае Re = pvr/n), то критическое значение числа Рейнольдса оказывается равным примерно 1000 (если в качестве / взять диаметр трубы, то критическое зна­чение Re будет равно 2000).

Число Рейнольдса служит критерием подобия для течения жидкостей в трубах, каналах и т. д. Напри­мер, характер течения различных жидкостей (или га­зов) в круглых трубах разных диаметров будет оди­наковым, если каждому течению соответствует одно и то же значение Re.

В число Рейнольдса входит отношение плотности р и вязкости т). Величина

Механика жидкостей и газов в законах и уравнениях


Механика жидкостей и газов в законах и уравненияхназывается кинематической вязкостью. Чтобы отличить ее от v, величину n называют ди­намической вязкостью. Будучи выраженным через кинематическую вязкость, число Рейнольдса имеет вид


5. Движение тел в жидкостях и газах.


Воздействие жидкой или газообразной среды на движущееся в ней с постоянной скоростью v тело бу­дет таким же, каким было бы действие на неподвиж­ное тело набегающего на пего со скоростью v одно­родного потока жидкости или газа (в дальнейшем для краткости мы будем говорить только о жидко­сти, подразумевая при этом и газы). Следовательно, при выяснении сил, действующих на тело, безраз­лично, что считать движущимся — тело или среду. Удобно предполагать тело неподвижным, а среду дви­жущейся. Поэтому мы будем, как правило, рассмат­ривать действие на неподвижное тело набегающего

па пего потока, помня, что результаты, полученные в этом случае, будут справедливыми и для случая движения тела относительно неподвижной среды.

Силу F, с которой набегающий поток действует на тело, можно разложить на две составляющие: на­правленную вдоль скорости v невозмущенного потока силу X, называемую лобовым сопротивлением, и перпендикулярную к v силу У, называемую подъемной силой. Лобовое сопротивление слагается из сил давления и сил внутреннего трения. Очевидно, что на тело, симметричное относительно направления скорости потока v, может действовать только лобовое сопротивление, подъемная же сила в этом случае будет отсутствовать.

Можно доказать, что в несжимаемой идеальной жидкости равномерное движение тела произвольной формы должно было бы происходить без лобового сопротивления. Этот результат получил название парадокса Даламбера.


Механика жидкостей и газов в законах и уравненияхПокажем отсутствие лобового сопротивления на примере обтекания идеальной жидкостью очень длин­ного («бесконечного») цилиндра (рис. 43.1). Не обла­дая вязкостью, идеальная жидкость должна сколь­зить по поверхности цилиндра, полностью обтекая его.


Механика жидкостей и газов в законах и уравнениях


Поэтому линии тока будут симметричными как отно­сительно прямой, проходя­щей через точки 2 и 3, так и относительно прямой, проходящей через точки 2 и 4. Теорема Бернулли позволяет по картине линий тока судить о давлении в разных точках потока. Вблизи точек 1 и 3 давление одинаково (и больше, чем в невозмущенном потоке, так как скорость вблизи этих точек меньше). Вблизи точек 2 и 4 давление также одинаково (и меньше, чем в невозмущенном потоке, так как скорость вблизи этих точек, больше) Следовательно, результирующая сил давления на по­верхность цилиндра (которая в отсутствие вязкости могла бы обусловить лобовое сопротивление) будет равна нулю. Как уже отмечалось, такой же результат получается и для тел любой (в том числе и несиммет­ричной) формы. Этот вывод касается только лобового сопротивления. Подъемная сила, равная нулю для симметричных тел (см., например, рис. 43.1), для не­симметричных тел отлична от нуля.

На рис. 43.2 показаны линии тока при обтекании идеальной жидкостью полуцилиндра. Вследствие идеального обтекания линии тока несимметричны относитель­но прямой, проходящей через точки 2 и 4. Однако от­носительной прямой, проходящей через точки, 1 и 3 картина линий тока несимметрична. Вблизи точки 2 где линии гуще, давление меньше, чем вблизи дочки 4 , в результате чего возникает подъемная сила.


Иначе обстоит дело при движении тела в вязкой жидкости. В этом случае очень топкий слой жидкости прилипает к поверхности тела и движется с ним как одно целое, увлекая за собой из-за внутреннего тре­ния последующие слои. По мере удаления от поверх­ности тела скорость слоев становится все меньше и, наконец, на некотором расстоянии от поверхности жидкость будет не возмущенной движением тела. Таким образом, тело оказывается окруженным слоем жидкости с быстро изменяющейся внутри него ско­ростью. Этот слой называется пограничным. В нем действуют силы вязкого трения, которые в конечном счете приложены к телу и приводят к возник­новению лобового сопротивления.

Но влияние вязкости не исчерпывается возникновением сил трения. Наличие пограничного слоя в кор­не изменяет характер обтекания тела жидкостью.


Полное обтекание становит­ся невозможным. Действие сил трения в пограничном

Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравнениях


слое приводит к тому, что поток отрывается от по­верхности тела, в результате чего позади тела возни­кают вихри (рис. 43.3). Вихри уносится потоком и постепенно затухают вследствие трения; при этом энергия вихрей расходуется на нагревание жидкости. Давление в образующейся за телом вихревой области оказывается пониженным, вследствие чего результи­рующая сил давления отлична от нуля. Это в свою очередь обусловливает лобовое сопротивление.

Таким образом, как уже отмечалось, лобовое сопротивление слагается из сопротивления трения и со­противления давления. При данных поперечных раз­мерах тела сопротивление давления сильно зависит от формы тела. Наименьшим сопротивлением давления обладают тела хорошо обтекаемой каплевидной формы (рис. 43.4).

Соотношение между сопротивлением трения и сопротивлением давления определяется значением числа Рейнольдса (см. формулу (42.10)). В данном слу­чае v — скорость тела относительно жидкости (или скорость потока, набегающего на тело), l — характер­ный размер тела, например радиус для тела шаровой формы. При малых Re (т. е. при малых v и l) основ­ную роль играет сопротивление трения, так что сопротивлением давления можно пренебречь. С ростом вязкости относительная роль сил трения возрастает. По мере увеличения Re роль сопротивления давления все больше растет. При больших значениях Re в ло« бовом сопротивлении преобладают силы давления.

Определяя характер сил, действующих на тело в потоке жидкости или газа, число Рейнольдса служит критерием подобия и в этом случае. Это обстоятель­ство используется при моделировании. Например, мо­дель самолета ведет себя в потоке газа так же, как и ее прообраз, если кроме геометрического подобия модели и самолета будет соблюдено равенство для них значений числа Рейнольдса.

Механика жидкостей и газов в законах и уравненияхСтокс установил, что при небольших скоростях и размерах тел (т. е. при малых Re, когда сопротив­ление среды обусловлено практически только силами трения), модуль силы сопротивления определяется формулой

Здесь n — динамическая вязкость среды, v — скорость движения тела, l — характерный размер тела, k — коэффициент пропорциональности, который зависит от формы тела. Для шара, если взять в качестве l его радиус r, коэффициент пропорциональности равен 6П.Следовательно, сила сопротивления движению в жидкостях небольших шариков при малых скоростях равна

Механика жидкостей и газов в законах и уравнениях


Надо иметь в виду, что формула Стокса справедлива при условии, что расстояние от тела до границ жидкости (например, до стенок сосуда) много больше размеров тела.

Механика жидкостей и газов в законах и уравнениях

Самолет поддерживается в воздухе подъемной си­лой, действующей на его крылья. Лобовое сопротивление играет при полете самолета вредную роль По этому крыльям и фюзеляжу самолета придают удобообтекаемую форму (рис. 43.5). Вследствие асим­метричной формы и наклонного расположения крыла скорость воздуха над крылом оказывается больше (а, следовательно, давление меньше), чем под крылом. Благодаря этому создается подъем­ная сила. Существенную роль в образовании подъ­емной силы играет вяз­кость воздуха, которая обусловливает образова­ние вихрей, отрывающих­ся от задней кромки крыла. Однако вникать в детали явлений, обусловливающих подъёмную силу, мы не имеем возможности .

Основы теории крыла самолета создал в 1904 г. Жуковский, который сформулировал теорему о подъемной силе и вывел формулу для определения этой силы, являющуюся основой всех аэродинамиче­ских расчетов самолетов.


Рефетека ру refoteka@gmail.com