Рефетека.ру / Физика

Реферат: Методы оценки температурного состояния

Содержание


1. Методы оценки температурного состояния

2. Постановка нестационарной краевой задачи теплопроводности в

системе, включающей прошивную оправку

2.1 Условия однозначности или краевые условия задачи

2.2 Математическая формулировка задачи расчета температурного поля оправки

3. Метод и алгоритм решения уравнений теплообмена

4. Методы оценки термонапряженного состояния

4.1 Физические основы возникновения термических напряжений

4.2 Формулировка задач термоупругости

5. Расчет температурных полей и полей напряжений в оправке при циклическом режиме работы

6. Износостойкость прошивных оправок

7. Основные выводы из полученных результатов

Список использованных источников

1. Методы оценки температурного состояния


На начальном этапе объектом исследования является тепловое поле, перенос тепла в системе тел. Тепловое поле на данный момент времени t определяется распределением температуры по телу, т.е. функцией Методы оценки температурного состояния, где Методы оценки температурного состояния) - декартовы координаты. Передача тепла может осуществляться теплопроводностью, конвекцией или излучением. В рассматриваемой задаче происходит сложный теплообмен, т.е. передача тепла осуществляется различными способами. Необратимый процесс теплопроводности описывается феноменологическим законом Фурье.

Температурное поле может быть стационарным, в этом случае температура во всех точках тела не зависит от времени, и нестационарным. Если температура изменяется только по одной пространственной координате, то температурное поле одномерное. Если по двум координатам - двухмерное.

Для оценки температурного состояния прошивной оправки в процессе прошивки, то есть для математического определения температурного поля, необходимо решить дифференциальные уравнения теплового состояния (уравнения теплопроводности). Принимается допущение, что температурное поле прошивной оправки является осесимметричным. Рассматривается двумерная задача теплопроводности (все величины зависят от двух координат).

При решении задач теплопроводности составляют сеточные уравнения. Методы решения сеточных уравнений в задачах теплопроводности делятся на прямые (метод Гаусса, метод квадратного корня или метод Холецкого, метод алгебраической прогонки, метод редукции, метод разделения переменных), итерационные (двухслойный итерационный метод, диагональный оператор B, треугольный итерационный метод и др.) и численные.

Приближенное решение задачи теплопроводности осуществляется численными методами (сеточными и проекционными). Сеточные (разностные) методы основаны на переходе от функций непрерывного аргумента к функциям дискретного аргумента. В проекционных методах функции непрерывного аргумента приближаются также функциями непрерывного аргумента. Также существуют и значительно распространены проекционно-сеточные методы (метод конечных элементов). Этот класс методов определяется специальным выбором элементов (конечных элементов).

Сеточные методы являются наиболее универсальным способом решения линейных задач в областях сложной формы, которые не всегда можно решить классическим способом. При решении составляется семейство разностных задач, которое ставится в соответствие непрерывной задаче. Это семейство называют разностной схемой. Разностные схемы применяются как для стационарных, так и для нестационарных задач, но в случаях стационарной и нестационарной теплопередач имеются некоторые различия в разностных схемах. Задача состоит в получении приближенного решения с некоторой заданной точностью. Это достигается на пути перехода от непрерывной задачи к дискретной. При построении дискретной задачи, т.е. при аппроксимации уравнений и граничных условий требуется сохранить за разностным решением характеристики искомого решения. Примером является свойство консервативности - выполнение законов сохранения и для разностной задачи. Консервативные схемы - это разностные схемы, выполняющие законы сохранения на сетке. В отличие от консервативных схем, неконсервативные схемы расходятся в случае разрывного коэффициента теплопроводности. Вторым примером служит свойство монотонности - выполнение принципа максимума и минимума разностного решения. Разностное решение должно сходиться к точному при измельчении сетки.

Консервативная разностная схема строится в одномерном или двумерном случае. Конечно элементная схема строится в двумерном плоском случае.

Далее рассматриваются способы построения разностных схем при решении задач теплопроводности численными методами.

Разностные схемы для задачи стационарной теплопроводности.

В случае стационарного температурного поля перенос тепла осуществляется теплопроводностью, а температура описывается эллиптическим уравнением второго порядка с определенными краевыми условиями.

Для применения разностных методов в области изменения переменных G вводят сетку. Все производные и краевые условия заменяют разностями значений функции в узлах сетки. При написании каждого разностного уравнения около некоторого узла сетки берется одно и то же количество узлов, образующее строго определенную конфигурацию. Эта конфигурация узлов, которые используются для построения разностного оператора, называется шаблоном разностной схемы. Узлы, в которых разностная схема записана на шаблоне, называются регулярными, а все остальные узлы - нерегулярными. На рис.1.1 показан пример прямоугольной равномерной сетки. Здесь: Методы оценки температурного состояния - переменные.


Методы оценки температурного состояния

Рис.1.1 Пример прямоугольной равномерной сетки, построенной для прямоугольной области изменения переменных G (x,t).


Для нерегулярных областей в ряде случаев удается построить согласованную сетку, которая образована узлами обычной прямоугольной неравномерной сетки с узлами, лежащими на границе (эти узлы согласованы). Пример согласованной разностной сетки для нерегулярной области приведен на рис.1.2


Методы оценки температурного состояния

Рис.1.2 Пример нерегулярной согласованной разностной сетки.


Исходная дифференциальная задача при аппроксимации заменяется сеточной. Соответствующие разностные (сеточные) уравнения есть система линейных алгебраических уравнений для неизвестных значений сеточной функции.

Другой способ построения разностных схем основан на методе конечных элементов.

Разностная схема метода конечных элементов.

Построение разностных схем может осуществляться на основе метода конечных элементов. Для построения конечномерного подпространства исходная расчетная область разбивается на некоторые элементарные ячейки. В двумерном случае в качестве таковых наиболее подходящими являются треугольники, причем внутри таких ячеек приближенное решение является линейной функцией. Такого вида сетки выбраны в связи с возможностью решения задач в областях достаточно произвольной формы. На рис.1.3 показана равномерная сетка Методы оценки температурного состоянияс шагом Методы оценки температурного состояния.


Методы оценки температурного состояния

Рис.1.3 Равномерная конечноэлементная сетка, состоящая из треугольников, применяемая в методе конечных элементов.


В рассматриваемой области фиксируется конечное число точек, которые называют узлами (узловыми точками). Непрерывная величина аппроксимируется моделью, состоящей из отдельных элементов. На каждом из этих элементов исследуемая непрерывная величина аппроксимируется кусочно-непрерывной функцией. Выбираются аппроксимирующие базисные функции Методы оценки температурного состояния в виде кусочных полиномов малой степени или полиномов более высоких степеней (квадратичных, кубических и др.) Полином, связанный с данным элементом называют функцией элемента. Далее строится разностная схема.

Разностные схемы для нестационарных задач.

Нестационарные тепловые поля описываются параболическими уравнениями второго порядка. Разностные схемы составляются многослойными. Например, при использовании двухслойной разностной схемы в разностное уравнение входят значения на двух временных слоях.

Для нестационарных задач в области вводится пространственная сетка, с которой связывается некоторое конечномерное пространство. Вводится сетка и по времени, для простоты, равномерная. Приближенное решение рассматривается как функция дискретного аргумента. Операторно-разностная схема связывает разностное решение на нескольких временных слоях. Такая разностная схема является многослойной.

У данной задачи есть и начальные, и граничные условия, поэтому задача является нестационарной (смешанной) краевой. Задача имеет нелинейный характер, т.е. теплофизические свойства среды зависят от температуры и граничные условия нелинейны.

Метод конечных разностей.

В качестве метода решения системы дифференциальных уравнений выбирается численный математический метод конечных разностей - широко известный и простейший метод интерполяции. Метод конечных разностей означает по сути обратный переход от дифференциальной модели к интегральной. При осуществлении данной методики строится конечно-разностная сетка и записываются конечно-разностные аналоги дифференциальных уравнений теплопроводности (разностная схема). Для аппроксимации дифференциальных уравнений теплопроводности применяется неявная консервативная итерационная разностная схема, реализуемая градиентным методом покоординатного спуска (Гаусса-Зейделя), являющимся классическим итерационным методом решения системы линейных уравнений. Неявной она является потому, что содержит несколько неизвестных значений функции на новом слое. Это означает, что значение функции нельзя явно выразить через значения функции на данном слое. Такая схема является безусловно устойчивой. Неявность разностной схемы достигается применением итерационной процедуры на каждом временном слое. Решение в узлах сетки получается приближенным (разностным). Поскольку одна из переменных имеет физический смысл времени t, то сетка строится так, чтобы среди ее линий были линии t=tm, где m - номер индекса дискретного момента времени. То есть переменная t не непрерывна, а увеличивается на дискретное значение. Решение численной задачи получается в виде таблицы.

Экономичные разностные схемы нестационарной теплопроводности.

Поскольку при использовании неявных схем вычислительные затраты высоки, применяют методы реализации разностных схем, которые по вычислительной реализации были бы аналогичны явным схемам. К таким методам относятся явный итерационный метод, метод переменных направлений, попеременно-треугольный метод, итерационный метод с эллиптическим оператором B. Для явных схем число арифметических операций, приходящихся на один узел сетки не зависит от общего числа узлов. Разностные схемы метода переменных направлений основываются на представлении оператора по пространственным переменным в виде суммы операторов, каждый из которых является одномерным [1], [2].

Постановка нестационарной краевой задачи теплопроводности начинается с задания краевых условий и выбора систем координат. Далее рассматривается методика составления краевых условий данной задачи.

2. Постановка нестационарной краевой задачи теплопроводности в

системе, включающей прошивную оправку


2.1 Условия однозначности или краевые условия задачи


Геометрические условия.

Оправка - это сплошное тело сложной формы (при решении задачи термоупругости не рассматривается возможное наличие в оправке специальных каналов для подачи охлаждающей жидкости, хотя они часто применяются на практике). Диаметр оправки зависит от внутреннего диаметра гильзы. Оправка подразделяется на участки различной геометрической формы: сферическую часть, коническую часть до пережима, коническую часть после пережима и часть штока, примыкающую к оправке. Длины этих участков рассчитываются по известным формулам.

Постановка краевой задачи зависит от выбора системы координат. Простейший подход к решению задач в нерегулярных областях состоит в использовании криволинейных координат, в которых расчетная область становится регулярной (понятия регулярной и нерегулярной областей были рассмотрены в разделе 1). Для сферического участка I принята сферическая система координат. Для участков II, III, IV принята цилиндрическая система координат.

Диаметр оправки на третьем участке равен:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - внутренний диаметр гильзы. Диаметр полусферы равен:


Методы оценки температурного состояния. 324


Длина первого участка:


Методы оценки температурного состояния. 324


Длина второго участка:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - конусность конической части оправки (Методы оценки температурного состояния).

Длина третьего участка:


Методы оценки температурного состояния. 324


Площадь поперечного сечения гильзы на выходе при заданных внутреннем диаметре гильзы и толщине стенки трубы рассчитывается по формуле:


Методы оценки температурного состояния. 324


Площадь поперечного сечения металла в зазоре валок - оправка определяется как:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния и Методы оценки температурного состояния - текущее значение радиуса валка и радиуса оправки, вычисляемое по следующим тригонометрическим соотношениям:

для сферической части оправки


Методы оценки температурного состояния; 324


для конической части оправки до пережима


Методы оценки температурного состояния; 324


для конической части оправки после пережима


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - радиус валка в сечении носка оправки; Методы оценки температурного состояния - радиус сферической части оправки; Методы оценки температурного состояния - угол от оси сферы до расчетного сечения сферической части оправки; Методы оценки температурного состояния - угол входного конуса валка (3°...4°); Методы оценки температурного состояния - угол выходного конуса валка (3°30'...6°); Методы оценки температурного состояния - угол конусности оправки; Методы оценки температурного состояния - текущая длина второго участка оправки; Методы оценки температурного состояния - выдвижение оправки за пережим.

На поверхности оправки образуется слой окалины. Толщина окалинообразующего слоя на поверхности оправки Методы оценки температурного состояния.

Физические условия.

При прошивке происходит теплообмен в системе тел: валки - линейки - гильза - слой окалины - оправка. Температура валков и линеек принимается постоянной. Источниками тепла являются нагретая заготовка и внутренние источники (деформационный разогрев, разогрев за счет сил трения). Тепловая энергия в процессе прошивки поступают на разогрев технологического инструмента. В период между прошивками оправка охлаждается на воздухе или в проточной воде.

Прошивная оправка является сплошным однородным изотропным телом. Ее теплопроводность является скалярной величиной. В качестве материала оправки выбирается сталь марки 30Х2МФА и 38ХНЗМФА. Физическими параметрами оправки являются плотность Методы оценки температурного состояния, удельная массовая теплоемкость оправки Методы оценки температурного состояния, коэффициент теплопроводности материала оправки Методы оценки температурного состояния. Внутренние источники тепла в оправке отсутствуют.

Время нагрева оправки при прошивке определяется по скорости движения металла Методы оценки температурного состояния и заданной длине гильзы Методы оценки температурного состояния:


Методы оценки температурного состояния. 324


Условия на границе металл - оправка.

Теплофизическими свойствами металла являются плотность Методы оценки температурного состояния, удельная массовая теплоемкость металла Методы оценки температурного состояния, коэффициент теплопроводности металла Методы оценки температурного состояния. При деформации металла происходит выделение теплоты.

Для определения кондуктивного и лучистого тепловых потоков на границе контакта металл - оправка необходимо предварительно рассчитать температуру металла в зазоре между валками, линейками и прошивной оправкой. Эта температура деформируемого металла в процессе прошивки зависит, с одной стороны, от тепловыделений за счет работы сил трения и при формоизменении металла, а с другой стороны, от теплоотдачи к оправке, валкам, линейкам и окружающей среде. В общем случае среднюю температуру металла за время одной прошивки можно рассчитать по формуле:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - средняя температура металла на входе в прошивной стан, рассчитывается по известному температурному полю заготовки перед прошивкой:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - объем заготовки; Методы оценки температурного состояния - время охлаждения заготовки на воздухе перед станом; Методы оценки температурного состояния - среднее повышение температуры металла при прошивке, которое определяется из уравнения теплового баланса очага деформации:


Методы оценки температурного состояния,324


где: Методы оценки температурного состояния - удельная объемная теплоемкость металла; Методы оценки температурного состояния - объем очага деформации; Методы оценки температурного состояния - общее количество энергии, затраченной на процесс деформирования; Методы оценки температурного состояния - коэффициент выхода теплоты; Методы оценки температурного состояния - теплота, поступающая в металл за счет работы сил трения; Методы оценки температурного состояния - тепловые потери очага деформации в окружающую среду и технологический инструмент; Методы оценки температурного состояния - поправочный коэффициент, полученный экспериментально.

Общее количество энергии на деформацию определяется по теоретической формуле П.И. Полухина:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния и Методы оценки температурного состояния - радиус заготовки до прошивки и радиус гильзы; Методы оценки температурного состояния - толщина стенки гильзы; Методы оценки температурного состояния - сопротивление металла деформированию, рассчитывается по эмпирической формуле


Методы оценки температурного состояния,324


Методы оценки температурного состояния - сопротивление деформации, выбираемое по величине среднего единичного обжатия; Методы оценки температурного состояния - обжатие в пережиме.

Теплота, поступающая в металл при трении, рассчитывается по формуле:


Методы оценки температурного состояния,324


в которой Методы оценки температурного состояния - коэффициент, учитывающий долю теплоты, поступающей на оправку от трения; Методы оценки температурного состояния - плотность теплового потока за счет работы сил трения; Методы оценки температурного состояния - коэффициент контакта; Методы оценки температурного состояния - площадь поверхности металла под оправкой; Методы оценки температурного состояния - время прошивки.

Тепловые потери металла в очаге деформации за время прошивки составляют величину:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния, Методы оценки температурного состояния и Методы оценки температурного состояния - площади поверхностей контакта металла с валками, линейками и окружающей средой; Методы оценки температурного состояния, Методы оценки температурного состояния, Методы оценки температурного состояния, Методы оценки температурного состояния - плотности тепловых потоков; Методы оценки температурного состояния - плотность потока тепловых потерь в окружающую среду; Методы оценки температурного состояния и Методы оценки температурного состояния - плотности потоков тепловых потерь к валкам и линейкам рассчитываются при допущении квазистационарного режима теплопроводности с учетом температурного сопротивления слоя окалины:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния и Методы оценки температурного состояния - температура валков и линеек в стационарном режиме работы.

Кондуктивный теплообмен между металлом и оправкой через слой окалины в месте контакта или через воздушный зазор, в первом приближении, рассчитывается при допущении квазистационарного режима теплообмена.

Через слой окалины:


Методы оценки температурного состояния; 324


через воздушный зазор:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - средняя температура металла при прошивке; Методы оценки температурного состояния - температура поверхности оправки; Методы оценки температурного состояния, Методы оценки температурного состояния - толщина приграничного слоя металла и оправки; Методы оценки температурного состояния, Методы оценки температурного состояния - толщина окалины и воздушной прослойки; Методы оценки температурного состояния, Методы оценки температурного состояния, Методы оценки температурного состояния, Методы оценки температурного состояния - коэффициенты теплопроводности деформируемого металла, оправки, окалины и воздуха соответственно.

Плотность лучистого теплового потока в воздушном зазоре находится при допущении равенства поверхностей, расположенных по обе стороны зазора. Учитывая, что воздух является диатермичной средой, получим


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - постоянная Стефана - Больцмана; Методы оценки температурного состояния - приведенная степень черноты. Плотность теплового потока, выделяемого при работе сил трения, определяется по формуле:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - касательное напряжение трения; Методы оценки температурного состояния - скорость перемещения металла вдоль оси оправки (оси Oz).

Касательное напряжение трения рассчитывается по формуле


Методы оценки температурного состояния,324


в которой Методы оценки температурного состояния - коэффициент трения; Р - сила нормального давления на оправку.

Для конических оправок различных геометрических размеров значения давлений, сохраняются на носке, в конце сферической части, в пережиме и в конце третьего участка.

Скорость течения металла в рассматриваемом расчетном сечении находится из уравнения неразрывности, которое при некотором допущении имеет вид:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - средняя скорость перемещения металла в сечении Методы оценки температурного состояния между валком и оправкой; Методы оценки температурного состояния - скорость движения гильзы на выходе из зазора. Скорость выхода гильзы определена экспериментально в зависимости от угла подачи Методы оценки температурного состояния.

Величина деформационного разогрева Методы оценки температурного состояния зависит не только от величины внутренних тепловыделений при деформации, но и от интенсивности теплообмена с окружающей средой и технологическим инструментом, поэтому для ее определения необходимо применить метод итераций. В качестве первого приближения Методы оценки температурного состояния рассчитывается при допущении равенства нулю тепловых потоков Методы оценки температурного состояния и Методы оценки температурного состояния.

Условия на границе металл - окалина.

Окалинообразующий слой очень существенно влияет на температурное поле оправки. Теплофизические свойства окалины характеризуются коэффициентом теплопроводности окалины Методы оценки температурного состояния. На границе металл-окалина за счет действия сил трения происходит выделение теплоты. Между слоем окалины и оправкой происходит кондуктивный теплообмен (теплопроводностью). Между слоем окалины и металлом осуществляется как кондуктивный теплообмен, так и лучистый теплообмен через воздушную среду, заполняющую прослойку. При этом воздух считается диатермической средой, то есть прозрачной для лучистой энергии. Теплофизические свойства воздуха характеризуются коэффициентом теплопроводности воздуха Методы оценки температурного состояния.

Начальные (временные) условия.

Рассматриваемый процесс является нестационарным, то есть в уравнения входит время в качестве переменной. Для такого процесса необходимы начальные условия, которые состоят в задании закона распределения температуры внутри тела в начальный момент времени.

При первой прошивке начальное поле температур задается равномерным и равным температуре окружающей среды Методы оценки температурного состояния:


Методы оценки температурного состояния. 324


При охлаждении оправки в качестве начального условия принимается температурное поле, полученное в конце нагрева оправки (в конце прошивки):


Методы оценки температурного состояния. 324


Для второго и последующих циклов нагрева и охлаждения за начальное условие также принимается температурное поле предыдущего процесса теплообмена.

Граничные условия (на границе в нерегулярных узлах).

Применяются условия второго рода (условия Неймана): на поверхности задается плотность теплового потока как функция от температуры и координаты Методы оценки температурного состояния.

Граничные условия на границе металл - оправка при нагреве.

Граничные условия в области раздела деформируемый металл - оправка задаются через плотность теплового потока с учетом теплоты, выделяемой при работе сил трения и температурного сопротивления слоя окалины:


Методы оценки температурного состояния; 324

Методы оценки температурного состояния,324


где Методы оценки температурного состояния - плотность кондуктивного теплового потока в системе металл - окалина - заготовка;

Методы оценки температурного состояния - плотность кондуктивного теплового потока в системе металл - воздух - оправка;

Методы оценки температурного состояния - плотность лучистого теплового потока от металла к оправке в воздушном зазоре;

Методы оценки температурного состояния - коэффициент контакта, равный отношению площади контакта ко всей площади поверхности оправки в данном сечении и определяемый экспериментально (в нашем случае на I участке Методы оценки температурного состояния, на II участке 0 < Методы оценки температурного состояния < 1 (Методы оценки температурного состояния), а на III и IV участках - Методы оценки температурного состояния); Методы оценки температурного состояния - плотность теплового потока за счет сил трения; Методы оценки температурного состояния - коэффициент, учитывающий долю теплоты, поступающей на оправку


Методы оценки температурного состояния. 324


Граничные условия при охлаждении оправки (граничные условия третьего рода).

При расчете охлаждения оправки между прошивками применяются граничные условия третьего рода (используется температура окружающей среды Методы оценки температурного состояния и коэффициент теплоотдачи Методы оценки температурного состояния):


Методы оценки температурного состояния. 324


Методы оценки температурного состояния - плотность теплового потока с поверхности оправки при охлаждении, которая рассчитывается в зависимости от условий охлаждения. Например, при охлаждении на воздухе:

Методы оценки температурного состояния,324

где Методы оценки температурного состояния - коэффициент теплоотдачи свободной конвекцией; Методы оценки температурного состояния - температура поверхности оправки; Методы оценки температурного состояния - температура охлаждающей среды (в данном случае воздуха).

При интенсивном охлаждении оправки


Методы оценки температурного состояния. 324


В этом случае Методы оценки температурного состояния - коэффициент теплоотдачи при вынужденной конвекции от поверхности оправки к потоку охладителя. Расчет коэффициента теплоотдачи выполняется по известным критериальным зависимостям.

Граничные условия на четвертом участке.

Граничные условия вдоль оси Oz на четвертом участке задаются при допущении отсутствия теплообмена на этой границе:


Методы оценки температурного состояния. 324


2.2 Математическая формулировка задачи расчета температурного поля оправки


В общем виде уравнение теплопроводности записывается так:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - температура, Методы оценки температурного состояния - теплоемкость удельная массовая теплоемкость, Методы оценки температурного состояния - коэффициент теплопроводности и Методы оценки температурного состояния - плотность источников тепла.

Поскольку внутренних источников тепла нет, то уравнение записывается так:


Методы оценки температурного состояния. 324


Поскольку прошивная оправка представляет собой тело вращения, то удобно использовать цилиндрическую систему координат. На первом участке для повышения точности решения применена сферическая система координат. Уравнение теплопроводности для сферической системы координат (участок I):


Методы оценки температурного состояния. 324


Для цилиндрической системы координат (участки II, III и IV):


Методы оценки температурного состояния. 324


В уравнениях Методы оценки температурного состояния - цилиндрические координаты; Методы оценки температурного состояния - сферические координаты; Методы оценки температурного состояния - температура; Методы оценки температурного состояния - время; Методы оценки температурного состояния - удельная объемная теплоемкость; Методы оценки температурного состояния - плотность материала оправки; Методы оценки температурного состояния - удельная массовая теплоемкость.

Для центра сферы уравнение теплопроводности записывается следующим образом:


Методы оценки температурного состояния. 324


Для оси центра:


Методы оценки температурного состояния. 324


Для выделения единственного решения дифференциального уравнения применяются описанные выше условия однозначности [3], [4].

3. Метод и алгоритм решения уравнений теплообмена

Для решения дифференциального уравнения теплопроводности (2.36) с соответствующими начальными и граничными условиями применяется метод конечных разностей. Конечно-разностная сетка изображена на рис.3.1 Каждый узел сетки нумеруется в виде Методы оценки температурного состояния, где Методы оценки температурного состояния - номер узла по направлению Методы оценки температурного состояния для полусферы и цилиндра, a Методы оценки температурного состояния - номер узла по направлению Методы оценки температурного состояния для полусферы и по направлению Методы оценки температурного состояния для цилиндра. Нумерация узлов начинается от центра сферы и оси цилиндра. Коническая поверхность оправки заменена ступенчатой, кратной шагу Методы оценки температурного состояния. Дискретные моменты времени обычно нумеруются индексами: Методы оценки температурного состояния - предыдущий, а Методы оценки температурного состояния - последующий моменты времени. Номер предыдущей и последующей итерации обозначается верхними индексами Методы оценки температурного состояния и Методы оценки температурного состояния соответственно.

Для аппроксимации дифференциальных уравнений теплопроводности (2.37) - (2.40) применяется неявная консервативная итерационная разностная схема, реализуемая методом Гаусса-Зейделя. Суть этого метода заключается в том, что при расчете температуры Методы оценки температурного состояния в узле Методы оценки температурного состояния на Методы оценки температурного состояния-й итерации используются температуры Методы оценки температурного состояния и Методы оценки температурного состояния из предыдущей итерации и вновь вычисленные температуры Методы оценки температурного состояния и Методы оценки температурного состоянияна расчетной Методы оценки температурного состояния-й итерации. Неявность разностной схемы достигается применением итерационной процедуры на каждом временном слое.


Методы оценки температурного состояния

Рис.3.1 Конечно-разностная сетка, применяемая в численном методе конечных разностей при решении задачи теплопроводности оправки.


Конечно-разностные аналоги дифференциального уравнения теплопроводности для всех характерных участков оправки записываются так:

а) внутренние узлы сферы Методы оценки температурного состояния:


Методы оценки температурного состояния324


б) внутренние узлы конической и цилиндрической частей оправки Методы оценки температурного состояния:


Методы оценки температурного состояния324


в) температура в узлах, расположенных на поверхности сопряжения: полусфера - конус, рассчитывается следующим образом. Поскольку поверхность сопряжения одновременно принадлежит полусфере и конусу, то вторая производную по координатам Методы оценки температурного состояния и Методы оценки температурного состояния аппроксимируется по формулам, приведенным далее. Для полусферы принимается составляющая второй производной по углу Методы оценки температурного состояния в сферических координатах, а для конической части - составляющая второй производной по Методы оценки температурного состоянияв цилиндрических координатах. Узлы, расположенные на поверхности сопряжения полусфера - конус, пронумерованы Методы оценки температурного состояния. На поверхности сопряжения при использовании равномерной сетки уравнения записываются так:


Методы оценки температурного состояния324


г) узлы, расположенные на оси полусферы Методы оценки температурного состояния


Методы оценки температурного состояния324


д) узлы, расположенные на оси конической и цилиндрической частей оправки Методы оценки температурного состояния


Методы оценки температурного состояния324


При аппроксимации дифференциальных уравнений (2.39) и (2.40) конечно-разностными аналогами (3.3) и (3.4) учитывается, что в силу симметрии Методы оценки температурного состояния и Методы оценки температурного состояния. В вышеприведенных формулах (3.1) - (3.4) принимаются следующие обозначения:


Методы оценки температурного состояния; 324

Методы оценки температурного состояния; 324

Методы оценки температурного состояния; 324

Методы оценки температурного состояния; 324

Методы оценки температурного состояния,324


где Методы оценки температурного состояния - шаг по координате Методы оценки температурного состояния.

На поверхности оправки граничные условия II рода при нагреве (2.28) и охлаждении (2.31) аппроксимируются по трем приграничным узлам с учетом поглощения (выделения) теплоты в приграничном узле толщиной Методы оценки температурного состояния:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - плотность теплового потока, поступающего на оправку при прошивке или уходящего с нее при охлаждении. Из последнего уравнения получается формула для определения температуры поверхности оправки в узлах Методы оценки температурного состояния:


Методы оценки температурного состояния. 324


Граничное условие (2.58) на торцевой границе стержня также аппроксимируется по значениям температуры в трех приграничных узлах сетки Методы оценки температурного состояния


Методы оценки температурного состояния,324


откуда получается


Методы оценки температурного состояния. 324


При расчете температуры в "центральной" точке сферы и усеченного конуса Методы оценки температурного состояния возникают трудности, связанные с тем, что эта точка принадлежит одновременно центру полусферы и оси плоскости сопряжения полусфера - цилиндр. Температура в этой "центральной" точке определяется по балансу тепловой энергии в объеме, прилегающем к этой точке (рис.3.2):


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - удельная объемная теплоемкость; Методы оценки температурного состояния- объем тела вращения ABDSA; Методы оценки температурного состояния - тепловой поток, поступающий в выделенный объемМетоды оценки температурного состояния.


Методы оценки температурного состояния

Рис.3.2 Пояснение к расчету температурного поля в центре сферического участка.


Тепловой поток равен


Методы оценки температурного состояния,324


где составляющие теплового баланса определяются по формулам


Методы оценки температурного состояния. 324


Объем тела вращения ABDSA (см. рис.3.2) рассчитывается по формуле


Методы оценки температурного состояния. 324


В общем случае все конечно-разностные уравнения приводятся к виду:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - коэффициенты разностного уравнения, Методы оценки температурного состояния - свободный член. Эти величины рассчитываются по формулам, приведенным в табл.3.1 и табл.3.2. Выражение для искомой температуры Методы оценки температурного состояния из уравнения (3.19), записывается так:


Методы оценки температурного состояния. 324


Для увеличения скорости сходимости итерационного процесса на каждом временном слое в расчет вводится коэффициент верхней релаксации Методы оценки температурного состояния. В этом случае:


Методы оценки температурного состояния. 324


Таблица 3.1 Коэффициенты конечно-разностных уравнений.

Уравнения

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.1)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.2)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.3)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.4)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.5)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния


Таблица 3.2 Коэффициенты конечно-разностных уравнений.

Уравнения

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.1)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.2)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.3)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.4)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния

(3.5)

Методы оценки температурного состояния

Методы оценки температурного состояния

Методы оценки температурного состояния


Погрешность расчета температуры на первой Методы оценки температурного состояния и последующих Методы оценки температурного состояния итерациях равна:


Методы оценки температурного состояния; 324

Методы оценки температурного состояния. 324


Критерием завершения итерационного процесса является условие:


Методы оценки температурного состояния,324


где Методы оценки температурного состояния - заданная точность расчета [4].

4. Методы оценки термонапряженного состояния


4.1 Физические основы возникновения термических напряжений


При изменении температуры происходит объемное расширение или сжатие твердого тела. Неравномерный нагрев приводит к возникновению внутренних напряжений, к деформированию твердого тела.

Уровень термических напряжений в существенной степени зависит от многих факторов: параметров теплового режима (скорости нагрева и охлаждении, уровня температур цикла), физико-механических характеристик материала и скорости их изменения при колебаниях температуры, вида напряженного состояния, а также геометрии и конструктивных параметров самого элемента. Высокие уровни температур, циклический характер температурного воздействия, чередование нестационарных и стационарных режимов создают в материале особые условия работы: высокую термомеханическую напряженность, большие уровни термических напряжений. Все это обусловливает в большинстве случаев работу материала конструктивного элемента за пределами упругости; в наиболее напряженных точках наблюдается процесс циклического упруго-пластического деформирования, приводящий материал к разрушению за ограниченное число циклов.

На условия разрушения при неизотермическом нагружении существенно влияет знак циклической пластической деформации при максимальной температуре цикла. Типичным случаем является такой, когда деформация сжатия осуществляется при максимальной температуре цикла. Такой вид нагружения реализуется именно в поверхностных слоях любого конструктивного элемента при термоциклическом воздействии.

Повреждаемость материала есть приводящий к разрушению процесс необратимых изменений, протекающих в материале под действием напряжений в условиях высоких температур.

Конкретным проявлением этого процесса являются, с одной стороны, необратимые изменения структуры материала (сдвиговые процессы внутри зерна, образование двойников, дробление зерен, процессы разрыхления и образование пустот, изменение упрочняющих фаз, деформация по границам зерен и образование субмикроскопических разрывов и пр.) и, с другой, - повреждение поверхности и поверхностного слоя детали в связи с действием ряда эксплуатационных факторов.

Повреждаемость материала вызывает снижение характеристик кратковременной и длительной прочности, ползучести и многоцикловой усталости, а также изменение многих физических характеристик, которые в ряде случаев становятся мерой количественной оценки степени повреждаемости материала. Структурные изменения, протекающие непрерывно в процессе нагружения, формируют повреждения, которые вызывают видимые нарушения сплошности материала (макротрещины и др.), характеризуемые как повреждения конструктивного элемента, вид которых определяется характером действующей нагрузки (усталостной, статической, длительной статической). Важными факторами являются размах упругопластической деформации, максимальная температура и длительность цикла.

Повреждения от термической усталости, проявляющиеся преимущественно в виде формоизменения или коробления с сеткой трещин в элементах технологического оборудования, свойственны некоторым технологическим операциям: прокатка (валки горячей прокатки, детали тракта горячего дутья, оправка для прошивки трубной заготовки и др.), литье, что существенно снижает качество продукции и препятствует интенсификации технологического процесса.

В конструкционных материалах (жаропрочных сплавах), работающих в условиях сочетания нагрева со значительными механическими нагрузками наблюдается явление ползучести материала. Ползучесть описывается так называемой кривой ползучести, которая представляет собой зависимость деформации от времени при постоянных температуре и приложенной нагрузке (или напряжении) (рис.4.1).


Методы оценки температурного состояния

Рис.4.1 Вид кривых ползучести, характерных для широкого круга материалов.


Ползучесть условно делят на три участка, или стадии (рис.4.1):

АВ - участок неустановившейся (или затухающей) ползучести (стадия I),

BC - участок установившейся ползучести - деформации, идущей с постоянной скоростью (стадия II),

CD - участок ускоренной ползучести (стадия III),

Методы оценки температурного состояния - деформация в момент приложения нагрузки (стадия IV),

точка D - момент разрушения.

При неизменной общей деформации напряжения в нагруженном теле с течением времени убывают вследствие ползучести, то есть происходит релаксация напряжений.

Процесс циклического температурного нагружения сопровождается процессом циклической ползучести. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае - растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении - процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагружения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. Циклический наклеп уменьшает пластичность, которая во многом определяет сопротивление длительной термической усталости.

Кроме того, в результате исчерпания ресурса пластичности в первых циклах уменьшается деформационная способность материала, процесс ползучести может происходить без повторения периода неустановившейся ползучести, и развивающиеся деформации уменьшаются по сравнению с первым циклом [5].


4.2 Формулировка задач термоупругости


Задачи такого рода относятся к разделу механики сплошных сред, рассматривающему явления термоупругости. Термоупругость объединяет две дисциплины - теории упругости и теплопроводности. Решение задач расчета термоупругих напряжений осуществляется методами приближенного решения. В случае двумерных задач стационарной термоупругости для описания напряжений используется система уравнений Ламе в смещениях. Используется разностная задача решения системы уравнений. Итерационные методы строятся на основе принципа регуляризации с использованием оператора Лапласа. Для динамических задач используется нестационарная система уравнений Ламе, которая является гиперболической.

Связь деформации с температурой устанавливается с помощью законов термодинамики. Реальный процесс термоупругого деформирования тела является неравновесным процессом, необратимость которого обусловливается градиентом температуры. В случае линейной теории смещения считаются малыми.

В квазистатической задаче пренебрегается влияние ускорений и движение рассматривается как последовательность состояний равновесия. Если механические воздействия отсутствуют, а тепловые медленно изменяются во времени, то такая задача называется связанной квазистатической.

Задача, в которой в которой рассматривается деформация, возникающая от нестационарных механических и тепловых воздействий, а также обратный эффект - изменение его температурного поля, обусловленное деформацией, называется связанной динамической задачей. В наиболее распространенном случае температурное поле является независящим от деформаций. В этом приближении основную проблему представляет решение уравнений упругости с известными объемными силами, определяемыми температурным полем.

Несмотря на связанность полей деформации и температуры в этих задачах, решения двух исходных уравнений находятся независимо друг от друга.

При резко нестационарных тепловых воздействиях задача является несвязанной динамической. Если в уравнении отсутствуют члены, связывающие уравнения и учитывающие инерцию, то задача несвязанная квазистатистическая.

В частном случае при описании термоупругости используется квазистационарное приближение, в котором пренебрежено влиянием деформаций на температуру, а в уравнениях движения отброшены члены со второй временной производной. В этом случае уравнение упругости и уравнение теплопроводности решаются фактически раздельно. При этом деформации рассчитываются по известному температурному полю.

Граничные условия на поверхности упругого тела, ограничивающей его объем, состоят из механических и тепловых условий. Механические граничные условия, как и в классической теории упругости, задаются либо в перемещениях, либо в напряжениях. В качестве теплового граничного условия применяется одно из граничных условий теории теплопроводности. Механические и тепловые граничные условия могут быть также смешанными. На одной части поверхности механические граничные условия могут быть заданы в перемещениях, а на другой - в напряжениях. Тепловое граничное условие на одной части поверхности тела задается, например, температурой, а на другой - законом конвективного теплообмена с окружающей средой. Система уравнений, описывающая задачу термоупругости, даже при малых деформациях вследствие нелинейности уравнения теплопроводности является нелинейной [6].

Вместо коэффициентов Ламе часто пользуются другими упругими постоянными для установления связи между напряжениями и дедеформациями. Упругие постоянные выбирают на основе опыта. Обыкновенно на опыте осуществляют простейшие виды напряженного состояния, и те коэффициенты пропорциональности, которые связывают взятый тип напряженного состояния с соответствующим типом деформации, принимают за упругую постоянную. Такие постоянные называют модулями упругости. Соответственно выбранному типу напряженного состояния различают:

1) модуль упругости при растяжении,

2) модуль упругости при сдвиге и 3) модуль упругости при всестороннем сжатии. Может быть установлена зависимость между различно выбранными упругими постоянными. Модули упругости выражаются через коэффициенты Ламе и наоборот.

5. Расчет температурных полей и полей напряжений в оправке при циклическом режиме работы


При моделировании циклического режима работы прошивной оправки были рассмотрены режимы, приближенные к реальным условиям эксплуатации оправки на прошивном стане. Рассматривается несвязанная квазистатическая задача. Модель поведения тела в режиме термонагружения - упругое тело. Были выбраны две оправки: первая - с диаметром цилиндрического участка 63 мм, вторая для сравнения - не более 35 мм. В качестве материала была выбрана высоколегированная сталь с наиболее близкими к стали, из которой изготавливают прошивные оправки (38ХН3МФА - как один из вариантов), температурными зависимостями свойств, таких как коэффициент температурного расширения, коэффициент теплопроводности, модуль нормальной упругости Юнга и удельная теплоемкость. Для исследования поведения материала в условиях циклического температурного нагружения важно знать физические свойства исследуемого материала. Физические свойства стали 38ХН3МФА представлены в таблице 5.1 (по данным источника [7]). Длительность цикла прошивки принимается равной 22,9 с, из которых 2,9 с затрачивается на прошивку, а остальные 20 с происходит охлаждение оправки на воздухе либо в воде в специальном устройстве. Были реализованы оба этих случая. Условия нагрева при прошивки во всех случаях приняты одинаковыми (температура заготовки Методы оценки температурного состояния, коэффициент теплопередачи Методы оценки температурного состояния). За время взаимодействия с нагретой заготовкой оправке передается тепло, вызывающее изменение ее температурного поля. Вместе с этим меняется и поле напряжений. За время охлаждения оправка не успевает отдать все накопленное тепло и при следующем цикле нагрева значения температур на внутренних температурных слоях будут выше. Это различие в температурах наружной поверхности и внутри оправки отчетливо видно по изолиниям температур, показанным на рис.5.1. Более массивная часть оправки с большим диаметром нагревается дольше и также медленнее и отдает тепло. Циклический режим работы создает нестационарное поле температур, поэтому наблюдаемая на рисунке картина теплового поля, зафиксированная в некоторый момент времени, непрерывно меняется, и в каждый момент времени будет различной. На этом же рисунке отмечены положения контрольных точек, для которых приведены графики изменения температур и температурных напряжений. Рассмотренные режимы работы оправки и номера соответствующих рисунков приведены в таблице 5.2.


Таблица 5.1. Физические свойства стали марки 38ХН3МФА.

Температура испытания, Методы оценки температурного состояния

20 100 200 300 400 500 600 700 800 900

Модуль нормальной упругости Методы оценки температурного состояния

2,10 2,03 1,97 1,90 1,84 1,76 1,70 1,54 1,37 н. д.

Плотность Методы оценки температурного состояния

7900

Коэффициент теплопроводностиМетоды оценки температурного состояния

34 34 34 33 32 32 30 29 28 н. д.

Уд. электросопротивление Методы оценки температурного состояния

300 321 365 437 516 613 750 897 1080 н. д.

Температура испытания, Методы оценки температурного состояния

20 -

100

20 -

200

20 -

300

20 -

400

20 -

500

20 -

600

20 -

700

20 -

800

20 -

900

20 -

1000

Коэффициент линейного расширения Методы оценки температурного состояния

12,0 12,5 12,9 13,3 13,6 13,8 13,8 10,7 н. д. н. д.

Удельная теплоемкость Методы оценки температурного состояния

496 508 525 538 567 601 672 697 н. д. н. д.

Зарубежный ближайший аналог материала 38ХН3МФА: DIN, WNr 34NiCrMoV14-5.

Таблица 5.2. Рассмотренные режимы работы оправки и номера рисунков к ним.

Диаметр оправки Режим работы Исследуемый параметр Номер рисунка
63 мм Нагрев - охлаждение на воздухе Температурное поле 5.1


Поле средних напряжений 5.2


Температуры в точках 5.3


Средние напряжения в точках 5.4

Нагрев - охлаждение в воде Температуры в точках 5.5


Средние напряжения в точках 5.6

Предварительный нагрев -нагрев - охлаждение на воздухе Температуры в точках 5.7


Средние напряжения в точках 5.8
35 мм Нагрев - охлаждение на воздухе Температурное поле 5.9


Поле средних напряжений 5.10


Температуры в точках 5.11


Средние напряжения в точках 5.12

Методы оценки температурного состояния

Рис.5.1. Температурное поле оправки в начале процесса прошивки при еще не установившемся режиме термоциклического нагружения.


На рисунке 5.1 показано поле температур в оправке с диаметром 63 мм в первом цикле процесса прошивки при еще не установившемся режиме термоциклирования. Точки P1 - P5 являются контрольными. В этих точках отслеживаются значения температур и средних температурных напряжений, которые показаны на соответствующих графиках. Как видно из рисунка, наиболее массивная часть оправки нагревается дольше (точки 1 и 4), чем, например, носок оправки, который нагревается значительно быстрее (точка 3). Градиент температур наблюдается от оси оправки к поверхностным слоям. Поверхностные слои нагреваются до более высоких температур. В процессе работы оправки в циклическом режиме нагрев - охлаждение картина температурного поля постоянно меняется и линии одинаковых температур смещаются сначала от приповерхностных слоев к центру, а затем наоборот - от центра к приповерхностным слоям.


Методы оценки температурного состояния

Рис.5.2. Поле средних температурных напряжений в оправке в начале процесса прошивки при еще не установившемся режиме термоциклического нагружения.


На рис.5.2 показано поле средних температурных напряжений в процессе прошивки. Как видно из рисунка, в приповерхностных слоях оправки (точки 2 и 5) при максимальной температуре возникают напряжения со знаком "минус" и соответственно деформации сжатия. Это является типичным сочетанием температурного и силового циклов. В центре оправки при этом наблюдаются деформации растяжения. Деформация растяжения в приповерхностных слоях (напряжения со знаком "плюс") осуществляется при минимальной температуре цикла. Точка в носке оправки (точка 3) близка к приповерхностным слоям, поэтому характер изменения температурных напряжений в этой точке схож с предыдущими точками. Абсолютное значение средних температурных напряжений наибольшее на тех участках оправки, которые имеют наибольший диаметр: минимальное - в носке оправки, максимальное - в месте перехода конического участка в цилиндрический. Изолинии с нулевыми значениями температурных напряжений со временем перемещаются к оси оправки. Поскольку термические напряжения связаны с градиентом температур, то поле напряжений следует за полем температур. В слоях со средними по сечению температурами напряжения будут близки к нулевым значениям.

Возникающие напряжения можно разделить на радиальные, тангенциальные и продольные, но в данной работе это не рассматривается, и считаются средние напряжения.


Методы оценки температурного состояния

Рис.5.3. График изменения температур в контрольных точках при работе оправки в циклическом режиме нагрев - охлаждение на воздухе.


На рис.5.3 показаны графики изменения температур в контрольных точках. Расположение этих точек по сечению оправки отмечено на рис.5.1. При охлаждении на воздухе коэффициент теплопередачи принят равным Методы оценки температурного состояния, что является несколько завышенным значением. График имеет характерную "пилообразную" форму. Изменения температуры в разных точках происходит не одинаково. Носок оправки (точка 3) нагревается быстрее и до более высоких температур (Методы оценки температурного состояния в первом цикле и Методы оценки температурного состояния - при приближении к установившемуся режиму). В точке 4, расположенной в приповерхностном слое температура достигает значения Методы оценки температурного состояния в первом цикле и Методы оценки температурного состояния - при приближении к установившемуся режиму. Наименьшие значения температур наблюдаются в точке 1 (Методы оценки температурного состояния в первом цикле и Методы оценки температурного состояния - при приближении к установившемуся режиму). Вследствие теплоинерционных свойств материала температуры на внутренних слоях оправки продолжают расти и в процессе охлаждения.

Следует отметить, что по прошествии восьми циклов режим все еще является неустановившемся. Для определения точного количества циклов до наступления установившегося режима было бы целесообразно произвести расчет для большего количества циклов. По материалам работы [4] установившийся режим наступает по прошествии 16 циклов.


Методы оценки температурного состояния

Рис.5.4. График изменения средних температурных напряжений в контрольных точках при работе оправки в циклическом режиме нагрев - охлаждение на воздухе.


Как видно из рис.5.4, термические напряжения при прошивке не остаются постоянными и уменьшаются вследствие прогрева оправки (уменьшения градиента температуры) и релаксации. Наиболее существенное уменьшение напряжений в первом цикле, что естественно, поскольку в этот период действует полная разность температур цикла. В условиях жесткого нагружения в материале создаются остаточные напряжения другого знака. Во втором и последующих циклах часть температурной разности расходуется на снятие этих остаточных напряжений, поэтому возникающие напряжения меньше, чем в первом цикле. В каждом цикле напряжения стремятся к нулю к концу цикла в процессе охлаждения.

Напряжения в 512 МПа, возникающие в оправке в течение первого цикла работы при ее разогреве, учитывая механические свойства применяемого сплава (Методы оценки температурного состояния), следует считать опасными (см. рис.5.2). Предел текучести зависит от вида термообработки материала. Указанное табличное значение предела текучести для исследуемого материала является минимальным.


Методы оценки температурного состояния

Рис.5.5. График изменения температур в контрольных точках при работе оправки в циклическом режиме нагрев - охлаждение в воде.


При работе оправки в режиме нагрев - охлаждение в воде за счет более высокого коэффициента теплопередачи Методы оценки температурного состояния происходит более интенсивная отдача тепла во время охлаждения. Как видно из рис.5.5, уровень температур в оправке при работе в этом режиме ниже. Амплитуда колебаний температур при этом оказывается выше. На практике такой режим встречается очень часто.

Преимущество такого режима работы в том, что температуры не достигают слишком больших значении на протяжении всего времени работы оправки.


Методы оценки температурного состояния

Рис.5.6. График изменения средних температурных напряжений в контрольных точках при циклическом режиме работы нагрев - охлаждение в воде.


Как видно из рис.5.6, в случае режима работы с охлаждением оправки в воде амплитуда знакопеременных колебаний средних напряжений будет значительно выше, чем при режиме с охлаждением на воздухе. Это связано с более резкими перепадами температур. Как и в случае режима с охлаждением на воздухе напряжения сначала стремятся к нулю, но затем меняют знак к концу цикла и начинают возрастать.


Методы оценки температурного состояния

Рис.5.7. График изменения температур в контрольных точках при предварительном подогреве оправки в течение 300 с и последующей работе оправки в циклическом режиме нагрев - охлаждение на воздухе.


На рис.5.7 показан график изменения температур в оправке в режиме работы с предварительным подогревом оправки перед первой прошивкой. Как видно из рисунка, за 300 с нагрева с небольшим коэффициентом теплопередачи Методы оценки температурного состояния практически все слои достигают температур Методы оценки температурного состояния. При вводе оправки в работу перепад температур уже является не таким резким, как в случае, отображенном на рис.5.4. Это благоприятно отражается на величинах средних термических напряжений, возникающих в оправке (они снижаются).


Методы оценки температурного состояния

Рис.5.8. График изменения средних температурных напряжений в контрольных точках при предварительном подогреве оправки в течение 300 с и последующей работе оправки в циклическом режиме нагрев - охлаждение на воздухе.


Как видно из рис.5.8, режим "мягкого" нагрева оправки перед прошивкой позволяет снизить термические напряжения в оправке в момент ввода ее в работу. Значения средних температурных напряжений в этом случае составляют менее 300 МПа, а при последующих циклах это значение никогда не превышает значение первого цикла. Это является важным результатом, поскольку приведет к повышению срока службы оправки.

Далее для сравнения рассматривается термонапряженное состояние оправки другой калибровки, геометрическая конфигурация которой отличается от рассмотренной выше оправки меньшими диаметральными размерами. Выбор такой калибровки связан с возможностью применения данной оправки при прошивке заготовок малого диаметра. Условия работы оправки приняты идентичными случаю циклической работы оправки большего диаметра в режиме нагрев - охлаждение на воздухе.


Методы оценки температурного состояния

Рис.5.9. Температурное поле оправки малого диаметра в начале процесса прошивки при еще не установившемся режиме термоциклического нагружения.


На рис.5.9 показано температурное поле оправки малого диаметра в первом цикле прошивки при еще не установившемся режиме термоциклического нагружения. В контрольных точках P1 - P5, обозначенных на рисунке, фиксируются значения температур и средних напряжений. Максимальное зафиксированное значение температуры составляет Методы оценки температурного состояния.


Методы оценки температурного состояния

Рис.5.10. Поле средних температурных напряжений в оправке малого диаметра в начале процесса прошивки при еще не установившемся режиме термоциклического нагружения.


На рисунке 5.10 показано поле средних температурных напряжений, возникающих в оправке малого диаметра в начале процесса прошивки при еще не установившемся режиме. Как видно из рисунка, наблюдается поле напряжений, схожее с рис.5.2, но с поправкой на новую геометрическую форму оправки.


Методы оценки температурного состояния

Рис.5.11. График изменения температур в контрольных точках при работе оправки малого диаметра в циклическом режиме нагрев - охлаждение на воздухе.


Как видно из рис.5.11, нагрев оправки меньшего диаметра до рабочих температур происходит значительно быстрее, чем в случае с оправкой большего диаметра. Наиболее существенный нагрев происходит в первом и втором циклах работы. Также наблюдается меньшее различие температур на оси оправки и в приповерхностных слоях. На основе этих графиков также можно сделать вывод о том, что седьмой и восьмой циклы - это уже установившийся режим термоциклического нагружения.


Методы оценки температурного состояния

Рис.5.12. График изменения средних температурных напряжений в контрольных точках при работе оправки малого диаметра в циклическом режиме нагрев - охлаждение на воздухе.


Рис.5.12 иллюстрирует изменение средних температурных напряжений в оправке малого диаметра при работе в циклическом режиме нагрев - охлаждение на воздухе. Во время самого первого цикла, как и в случае с оправкой большего диаметра, наблюдается большая амплитуда изменения напряжений как растягивающих, так и сжимающих. То есть в начале циклического режима работы оправка малого диаметра находится в не менее тяжелых с точки зрения напряженного состояния условиях, чем оправка большего диаметра. Наблюдаются некоторые отличия от случая с оправкой большего диаметра. Повышение скорости релаксации термических напряжений, проявляющееся в более резком их снижении на этапе спада, приводит к их снижению за меньшее время по сравнению с оправкой большего диаметра. Также за меньшее количество циклов (приблизительно за пять циклов) оправка выходит на стабильный установившийся режим термоциклического нагружения с постоянной амплитудой изменения температурных напряжений.

Для сравнения, усилие Методы оценки температурного состояния, действующее со стороны металла на оправку малого диаметра составляет от нескольких единиц до 110 МПа в зависимости от расстояния по длине оправки Методы оценки температурного состояния [4]. Значения же термических напряжений достигает величин 450 МПа, как это видно из рисунка 5.12. Поэтому воздействие термических напряжений очень существенно, и это надо учитывать при разработке мер по увеличению срока службы прошивной оправки.

В данной задаче не были рассмотрены напряжения, возникающие от механического воздействия металла на оправку, а также условия трения на границе металл - окалина - оправка. Не было учтено влияние слоя окалины со значительно изменяющейся теплопроводностью на температурное поле оправки. Поэтому надо учитывать, что суммарные напряжения, возникающие в оправке, будут выше.

При моделировании задачи термоупругости был использован пакет программ "Deform3D", в частности модуль подготовки данных "Термообработка", фирмы "Scientific Forming Company". Полученные результаты имеют хорошее сходство с аналогичной задачей, приведенной в работе [4]. В этой работе данные были получены путем решения сеточных уравнений методом конечных разностей. Можно сделать вывод о сходстве результатов, полученных с помощью метода конечных элементов при моделировании в программе "Deform3D" и результатов, полученных при численном решении дифференциальных уравнений задач теплопроводности и термоупругости.

6. Износостойкость прошивных оправок


Во время работы оправки подвергаются длительному циклическому воздействию высокой температуры (носик разогревается до 800...1000 °С) и значительного давления (до 170 МПа), поэтому материал оправок должен обладать высокой прочностью, термостойкостью и повышенной теплопроводностью. Даже при высокой прочности материала, но при недостаточной его термостойкости и теплопроводности, носик оправки быстро разогревается, теряет форму и оправка выходит из строя. Кроме того, поверхность оправки не должна свариваться с прокатываемым металлом. Это достигается образованием оксидной пленки на поверхности оправки при термообработке, защищающей ее при контакте во время работы с прокатываемым металлом.

На стойкость оправок влияет большое количество факторов: химический состав материала и режим термообработки оправок, их калибровка, марка прокатываемой стали, качество нагрева заготовок, режим прокатки, условия охлаждения оправок. В настоящее время в трубном производстве в качестве материала оправок широко применяется сталь марки 20ХН4ФА, содержащая, %: 0,17...0,24 С; 0,25...0,35 Мп; 0.17. Д37 Si; 0,7...1,0 Cr; 3,17...4,25 Ni; 0,15...0,30 V; используют также сталь марок 40ХМФС, 38Х2МФЮА, 4Х5МФС и др.

Эффективным способом повышения износостойкости оправок является наплавка на их рабочую поверхность жаропрочных материалов - сплавов на никелевой основе типа ЭП567 следующего состава: Мо - 15,4%, W - 3,5%, Fe - до 4%, С - 0,02%, Мп - 0,3%, Si -0,12%, S и Р - до 0,01%, Сг - 15%, Ni - основа.

Благодаря жаропрочному сплаву износостойкость оправок повышается в 1,7 - 2,0 раза, а с учетом зачисток налипших частиц металла - до 5 раз и составляет 3000-3500 проходов. Применяется металлизация носка оправки.

Стойкость оправок в значительной мере зависит от размеров и материала прошиваемых заготовок. Чем больше длина гильзы, тем более длительное время оправка находится в контакте с горячим деформируемым металлом, тем сильнее она разогревается и стойкость ее снижается. Повышению стойкости оправок способствует увеличение угла подачи, т.е. сокращение времени прокатки. При прокатке труб из коррозионностойких и высоколегированных сталей применяют неводоохлаждаемые оправки, которые выдерживают обычно 1 - 2 прохода. [8].

7. Основные выводы из полученных результатов


На основании полученных данных можно сделать следующие выводы:

Наибольшие термические напряжения возникают в начале первого цикла работы при контакте оправки, имеющей обычную температуру, с нагретой заготовкой. Если использовать предварительный "мягкий" подогрев оправки перед первой прошивкой, то эти напряжения оказываются значительно меньше. Это является важным практическим выводом, поскольку на практике возможно внедрение процесса подогрева оправки в технологическую цепочку процесса прошивки заготовки на прошивном стане.

Значения термических напряжений являются большими по величине, чем усилие, действующее от металла на оправку малого диаметра. Поэтому их влияние на срок службы оправки очень велико.

В поверхностных слоях оправки неизбежно преобладают деформации сжатия, что сказывается на сроке службы оправки.

В случае более интенсивного охлаждения оправки между прошивками наблюдается большая амплитуда колебаний термических напряжений. Поэтому более благоприятным с точки зрения напряженного состояния было бы применять охлаждения оправки на воздухе. Однако при таком режиме оправка разогревается до очень высоких температур, что тоже недопустимо. Поэтому охлаждение в воде более целесообразно.

Оправка меньшего диаметра, как и оправка большего диаметра, испытывает в начале первого цикла работы такие же высокие термические напряжения. Для подобной оправки тоже целесообразно применять предварительный нагрев перед прошивкой.

Материал для изготовления оправки должен обладать свойствами жаропрочности, высоким сопротивлением ползучести, как основным фактором жаропрочности, высокой релаксационной стойкостью, высоким значением предела текучести. Материал носика оправки должен обладать высокой термостойкостью и теплопроводностью, чтобы обеспечить быстрое отведение от него тепла.

Целесообразно применять водоохлаждаемые оправки, имеющие каналы для подачи охлаждающей жидкости. Это позволит лучше охлаждать те участки оправки, которые нагреваются до наибольших температур (носок оправки и область перехода его в сферический участок).

Увеличение угла подачи валков Методы оценки температурного состояния приводит к уменьшению деформационного разогрева и к увеличению скорости прошивки, следовательно, уменьшению времени нагрева и конечных температур нагрева, а с другой стороны, с ростом скорости течения металла увеличивается конечная температура нагрева и тепловой поток за счет работы сил трения. В результате действия этих альтернативных режимных факторов температура падает с увеличением угла подачиМетоды оценки температурного состояния. При этом наибольшее уменьшение наблюдается в центре сферы и составляет Методы оценки температурного состояния при изменении угла подачи Методы оценки температурного состояния от Методы оценки температурного состояния до Методы оценки температурного состояния [4]. Уменьшение температуры на поверхности оправки при том же изменении Методы оценки температурного состояния составляет приблизительно Методы оценки температурного состояния. Поэтому целесообразно увеличение угла подачи рабочих валков Методы оценки температурного состояния.

Для уменьшения разогрева оправки применяют графитовые смазки, снижающие коэффициент трения. При уменьшении коэффициента трения с 0,3 до 0,2 температура на поверхности полусферы уменьшается на Методы оценки температурного состояния [4]. Поэтому применение смазок также улучшает условия работы оправки.

Целесообразно использовать наплавку из жаростойкого сплава (ЭП567) на рабочую поверхность оправки для повышения износостойкости.

Список использованных источников


Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. - М.: Едиториал - УРСС, 2002.

Калиткин Н.Н. Численные методы. -М.: Наука, 1978.

Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. - М.: Энергия, 1975.

Прошивная оправка. Вавилкин Н.М., Бухмиров В.В. Научн. изд. -М.: ∙МИСИС∙, 2000. - 128 с.

Дульнев Р.А. Термическая усталость металлов -М.: Машиностроение, 1980. - 200 с.

Коваленко А.Д. Основы термоупругости - Киев: Наукова думка, 1970. -304 с.

Марочник стали и сплавов на сайте: www.splav. kharkov.com.

Обработка металлов давлением: Учебник / Б.А. Романцев, А.В. Гончарук, Н.М. Вавилкин, С.В. Самусев. -М.: Изд. Дом МИСиС, 2008. - 960 с.

Похожие работы:

  1. • Методы оценки финансового состояния коммерческих банков
  2. • Оценка экологического состояния реки Клязьма методом ...
  3. • Оценка стратегического состояния предприятия ...
  4. • Методы оценки эксплуатационного состояния ...
  5. • Разработка методики региональной экологической оценки ...
  6. • Способы обследования и методы оценки технического ...
  7. • Анализ бухотчетности
  8. • Оценка качества среды города Орска по функциональной ...
  9. • Аналитические методы исследования температурных полей
  10. • Основные методы оценки финансового состояния ...
  11. • Адаптивные возможности спортсменов-альпинистов российской ...
  12. • Биоиндикация как метод исследования экологических систем
  13. • Финансовое состояние организации по критериям ...
  14. • Методы биоиндикации
  15. • Оценка экологического состояния атмосферной ...
  16. • Развитие теоретических принципов технической диагностики
  17. • Что такое биоритмы
  18. • Оценка финансового состояния коммерческого банка на ...
  19. • Исследование влияния температурных деформаций ...
Рефетека ру refoteka@gmail.com