Рефетека.ру / Физика

Курсовая работа: Проектирование электрической части подстанций

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«Амурский государственный университет»


Кафедра энергетики


КУРСОВОЙ ПРОЕКТ


По дисциплине "Электропитающие системы и сети"


На тему:

"Проектирование электрической части подстанций"


Благовещенск 2006

Задание


Выбрать и обосновать принципиальную электрическую схему ГПП в части РУ-110 (35) и 10 (6) кВ. Рассчитать, используя метод коэффициента спроса, потребную мощность силовых трансформаторов на ГПП. Нагрузки предприятия относятся к потребителям I, II и III категорий, причем нагрузки III категории составляют 30% общей нагрузки. Установленная мощность нагрузок приведена ниже. Потребители электроэнергии I, II и III категорий сосредоточены равномерно в цехах промышленного предприятия и питаются от 15 трансформаторных подстанций, находящихся на расстоянии не более 800 м от главной понизительной подстанции. Питание ГПП осуществляется от РУ-110 кВ ТЭЦ самостоятельными линиями. Связь ТЭЦ с системой и ГРЭС покачана на схеме.

Вычислить токи короткого замыкания, выбрать и проверить на действие токов короткого замыкания основное оборудование ГПП (короткозамыкатели, разъединители, выключатели, трансформаторы тока и напряжения, проходные и опорные изоляторы, сборные шины и т.д.).

Число часов использования максимума нагрузок – 4200 час. Мощность питающей системы неограниченно большая.

Предусмотреть компенсацию реактивной мощности и выбрать места установки компенсирующих устройств и их мощность.

Графический материал должен содержать два листа чертежей формата А1:

1. Принципиальная однолинейная схема коммутации подстанции;

2. План и разрезы по закрытой части подстанции.

Исходные данные:

ЛЭП-110 кВ, Проектирование электрической части подстанций(км) – 20; ЛЭП-110 кВ, Проектирование электрической части подстанций(км) – 15; ЛЭП-110 кВ, Проектирование электрической части подстанций(км) – 21; ЛЭП-110 кВ, Проектирование электрической части подстанций(км) – 12.

Генераторы Г1, Г2 (МВА) – 300; генераторы Г3, Г4 (МВА) – 63.

Проектирование электрической части подстанций ген-ров Г3, Г4–0,87; Проектирование электрической части подстанций ген-ров Г1, Г2–0,82.

Трансформаторы Т1, Т2 (МВА) – 320; трансформаторы Т3, Т4 (МВА) – 80.

Нагрузки (кВт):

Цехи горячей обработки металлов -8000; то же при холодной обработки металлов-6000; вентиляторы, производственные насосы-11000; производственные механизмы с повторно-кратковременным режимом-2000; краны цеховые-2700; приёмники непрерывного транспорта обработки земли в литейных цехах-2800; печи сопротивления, нагревательные приборы-1900; печи плавильные-4300; сварочные машины-900; освещение-370.


Реферат


Работа 47 с., 5 рисунков, 17 таблиц, 5 источников. Распределительное устройство, трансформатор, шина, выключатель, разъединитель, ток, мощность, измерительный прибор.

Выбор мощности и типов трансформаторов и электрической схемы ГПП. Рассчитаны токи при КЗ и при нормальных режимах работы, по которым выбрали электрические аппараты, находящихся на подстанции. Произведена проверка каждого аппарата при различных условиях режима работы.


Содержание


Введение

1. Определение расчётных мощностей нагрузок

2. Выбор рационального напряжения. Компенсация реактивной мощности. Выбор числа и мощности силовых трансформаторов

3. Выбор питающих линий

4. Выбор принципиальной схемы подстанции

5. Определение токов короткого замыкания

6. Выбор электрических аппаратов

6.1 Общие сведения

6.2 Выбор выключателей

6.3 Выбор ограничителей перенапряжения и высокочастотных заградителей

6.4 Выбор разъединителей

6.5 Выбор трансформаторов тока

6.6 Выбор трансформаторов напряжения

6.7 Выбор предохранителей для защиты ТСН и ТН

6.8 Целесообразность установки дугогасящего реактора

6.9 Выбор кабелей

7. Выбор шинных конструкций

7.1 Выбор гибких шин на стороне 110 кВ

7.2 Выбор жестких шин на стороне 10 кВ

7.3 Выбор изоляторов

Заключение

Библиографический список


Введение


Проектирование электрической части станции представляет собой сложный процесс выработки и принятия решений по схеме электрических соединений, составу электрооборудования и его размещению.

Курсовой проект по курсу «Электропитающие системы и сети» является одним из самых важных для студентов всех электроэнергетических специальностей.

В курсовом проекте рассматриваются следующие части:

выбор типа, числа и мощности силовых трансформаторов;

выбор принципиальной схемы электростанции;

расчёты токов КЗ;

выбор коммутационной аппаратуры: выключателей, разъединителей, трансформаторов тока и напряжения и их вторичной нагрузки;

расчёт токоведущих частей подстанции;

выбор изоляторов;

компоновка ОРУ подстанции.


1.Определение расчётных мощностей нагрузок


Определение расчётных мощностей нагрузок следует производить по любому из существующих методов их расчета. Т.к. этот раздел в настоящем курсе является вспомогательным и предназначен только для выбора мощности понизительных трансформаторов, расчетную мощность можно определить методом коэффициента спроса, как более простым.

По заданной установленной мощности Проектирование электрической части подстанций и по коэффициентам спроса Проектирование электрической части подстанций и мощности Проектирование электрической части подстанций (определённым по справочным данным /1/) для всех характерных групп потребителей определяются расчётные активные Проектирование электрической части подстанций и реактивные Проектирование электрической части подстанций мощности нагрузок:


Проектирование электрической части подстанций (1)


Проектирование электрической части подстанций (2)


Затем определяются результирующие активная Проектирование электрической части подстанций, реактивная Проектирование электрической части подстанций и полная Проектирование электрической части подстанций расчётная мощности нагрузок:


Проектирование электрической части подстанций (3)


Проектирование электрической части подстанций (4)


Проектирование электрической части подстанций (5)


Сведём результаты расчёта в таблицу.

Таблица 1

Нагрузка

Установленная мощность Проектирование электрической части подстанций

Коэф. спроса Проектирование электрической части подстанций

Проектирование электрической части подстанций

1 2 3 4
цехи горячей обработки металлов 8000 0,6 1,33
то же при холодной обработки металлов 6000 0,6 1,75
вентиляторы, производственные насосы 11000 0,75 0,62
производственные механизмы с повторно-кратковременным режимом 2500 0,5 1,33
краны цеховые 2600 0,5 1,73
приёмники непрерывного транспорта обработки земли в литейных цехах 2600 0,6 1,02
печи сопротивления, нагревательные приборы 2700 0,85 0
печи плавильные 4100 0,8 0,48
сварочные машины 1000 0,5 1,33
освещение 340 0,7 0,48

2. Выбор рационального напряжения. Компенсация реактивной мощности. Выбор числа и мощности силовых трансформаторов


Проектируемая ГПП питается по двум линиям. Определим рациональное напряжение по эмпирической формуле Стилла:


Проектирование электрической части подстанций, (6)


где Проектирование электрической части подстанций- длинна трассы в двухцепном исполнении, км;

Проектирование электрической части подстанций- активная мощность, передаваемая по одной цепи линии, МВт.

Получаем:

Проектирование электрической части подстанций кВ

Принимаем номинальное напряжение питающей линии 110 кВ.

Определим мощность компенсирующих устройств.

Экономически целесообразный коэффициент:

Проектирование электрической части подстанций – для 110 кВ.

Мощность компенсирующих устройств определяется по формуле:


Проектирование электрической части подстанций (7)


где Проектирование электрической части подстанций – мощность компенсирующих устройств на две секции шин, Мвар;

Проектирование электрической части подстанций – максимальная реактивная мощность, Мвар;

Проектирование электрической части подстанций- максимальная активная мощность, МВт.

С учетом баланса реактивной мощности определяем требуемую реактивную мощность для каждой секции шин. Если полученное значение не превосходит 10 Мвар, то целесообразно установить батареи статических конденсаторов (БСК). В противном случае устанавливаются синхронные компенсаторы.

Определяем нескомпенсированную реактивную мощность, т.е. ту мощность, которая будет поступать через трансформатор от энергосистемы.


Проектирование электрической части подстанций. (8)


где Проектирование электрической части подстанций- фактическая мощность компенсирующих устройств, Мвар

Рассчитаем требуемую мощность компенсирующих устройств на одну секцию шин для подстанции по формулам:

Проектирование электрической части подстанций Мвар

Мощность, требуемая на ПС, менее 10 Мвар. Значит к установке принимаем комплектные конденсаторные установки (ККУ) типа УКЛ(П) напряжением 10 кВ.

Батареи конденсаторов комплектуются из отдельных конденсаторов, соединенных последовательно и параллельно. Конденсаторы выпускаются в однофазном и трехфазном исполнениях на номинальное напряжение 0,22 – 10,5 кВ. Увеличение рабочего напряжения БК достигается увеличением числа последовательно включенных конденсаторов. Для увеличения мощности БК применяют параллельное их соединение.

Выбираем комплектные конденсаторные установки марки:

УКЛ56–10,5–2700УЗ– 3 шт.

Проектирование электрической части подстанций Мвар

Проектирование электрической части подстанций Мвар

В соответствии с существующими нормативами мощность трансформаторов на понижающих ПС рекомендуется выбирать из условия допустимой перегрузки в послеаварийных режимах до 70–80%, на время максимума общей суточной продолжительностью не более 6 часов в течение не более 5 суток.

Количество силовых трансформаторов, планируемых к установке на проектируемой ПС, в первую очередь определяется категорийностью потребителей по надёжности электроснабжения. При наличии потребителей первой категории их количество должно быть в соответствии с рекомендациями ПУЭ не менее двух, соответственно мы устанавливаем два трансформатора на ГПП.

Мощность силовых трансформаторов определяется по выражению:


Проектирование электрической части подстанций (9)


где Проектирование электрической части подстанций- расчётная нагрузка, МВт;

Проектирование электрической части подстанций-нескомпенсированная мощность, текущая от источника мощности через трансформатор, Мвар;

Проектирование электрической части подстанций-число трансформаторов;

Проектирование электрической части подстанций-оптимальный коэффициент загрузки трансформатора.

Для потребителей первой и второй категории как преобладающих:

Проектирование электрической части подстанций

Номинальная мощность трансформатора выбирается из стандартного ряда выпускаемых трансформаторов, при этом номинальная мощность должна быть больше расчётной.

После выбора трансформатора осуществляется проверка правильности выбора по коэффициенту загрузки в нормальном и послеаварийном режимах.


Проектирование электрической части подстанций (10)


Проектирование электрической части подстанций (11)


Если коэффициент загрузки трансформатора после проверки оказался на много ниже оптимального, то целесообразно выбрать трансформатор меньшей мощности, а в послеаварийном режиме отключить третью категорию.

Приведём пример расчёта:

Расчётная мощность силового трансформатора:

Проектирование электрической части подстанцийМВА

Ближайшая номинальная мощность по каталожным данным 25 МВА. Проверяем трансформаторы по загруженности, определяя коэффициент загрузки в нормальном режиме. Он должен быть в пределах: 0,5–0,75.

Выбираем трансформатор ТРДН-25000/110: Проектирование электрической части подстанций МВА

Проектирование электрической части подстанций

Также необходима проверка выбранных трансформаторов в условиях послеаварийной работы. Она характеризуется выводом из строя одного из трансформаторов, т.е. принимаем, что Проектирование электрической части подстанций=1. Коэффициент загрузки в этом случае должен находиться в пределах от 1 до 1,4, исходя из возможности работы трансформатора со 140% загрузки.

Проектирование электрической части подстанций

Трансформаторы загружены оптимально.


3. Выбор сечений воздушных линий методом экономических токовых интервалов


Максимальный ток в воздушных линиях рассчитывается по формуле:


Проектирование электрической части подстанций, (12)


где Проектирование электрической части подстанций-максимальный ток, кА;

Проектирование электрической части подстанций,Проектирование электрической части подстанций – потоки активной максимальной и нескомпенсированной реактивной мощности передаваемой по линии в зимний период, МВт, Мвар.

Проектирование электрической части подстанций – количество цепей;

Проектирование электрической части подстанций- номинальное напряжение, кВ

Расчетный ток на участках линии, в зависимости от которых, по экономическим токовым интервалам /2/ выберем сечение проводов ЛЭП:


Проектирование электрической части подстанций, (13)


где Проектирование электрической части подстанций-расчётный ток, А;

Проектирование электрической части подстанций – максимальный ток, А;

Проектирование электрической части подстанций – коэффициент, учитывающий изменение нагрузки по годам эксплуатации; для сетей 110–220 кВ в курсовом проекте этот коэффициент принимается равным 1,05. Введение этого коэффициента учитывает фактор разновременности затрат в технико-экономических расчетах.

Проектирование электрической части подстанций – коэффициент, учитывающий число часов использования максимальной нагрузки линий и ее значение в максимуме ЭЭС (определяется коэффициентом Kм).Значение этого коэффициента принимается равным отношению нагрузки линий в час максимума нагрузки энергосистемы к собственному максимуму нагрузки линий. Kм принимается равным 1.

Примем Проектирование электрической части подстанций равным 0,92. По формуле находим токи Проектирование электрической части подстанций и по таблицам /2/ выбираем экономически целесообразные сечения проводов в зависимости от типа опор, климатической зоны, номинального напряжения линии и количества цепей.

Расчетный ток для выбора питающих линии от ТЭЦ:

Проектирование электрической части подстанцийА

Проектирование электрической части подстанцийА

Принимаем провод АС – 120.

Полученные сечения необходимо проверить по длительно допустимому току. Для этого рассчитывается послеаварийный режим.

Длительно допустимый ток определяется в зависимости от выбранного сечения по справочнику /3/ Данный ток указан при температуре 200 С и одном проводнике. для различных условий прокладки. Поэтому допустимый ток:


Проектирование электрической части подстанций (14)


где Проектирование электрической части подстанций- допустимый ток, А;

Проектирование электрической части подстанций-длительно допустимый ток, А;

Проектирование электрической части подстанций-коэффициент, учитывающий изменение тока в зависимости от температуры;

Выбранное сечение удовлетворяет условию послеаварийного режима, если ток меньше или равен Проектирование электрической части подстанций А.

Проектирование электрической части подстанций

Проектирование электрической части подстанций А.

Условие выполняется, усиления линии не требуется


4. Выбор принципиальной схемы подстанции


Выбор главной схемы является определяющим при проектировании электрической части подстанций, так как он определяет состав элементов и связей между ними.

Главная схема электрических соединений подстанций зависит от следующих факторов: типа подстанции, числа и мощности установленных силовых трансформаторов, категорийности потребителей электрической энергии по надежности электроснабжения, уровней напряжения, количества питающих линий и отходящих присоединений, величин токов короткого замыкания, экономичности, гибкости и удобства в эксплуатации, безопасности обслуживания

Если к подстанции подходят две линии напряжением до 110 кВ включительно, применяется схема «мостик», для промышленных подстанций – с выключателями в цепях трансформаторов. На напряжение 220 кВ и выше, с мощностью подключаемых трансформаторов 63 МВА и выше применяется схема «четырёхугольник»; до 40 МВА – «мостик».

На высокой стороне подстанции установлено два блока с выключателями и неавтоматической перемычкой со стороны линий.

На стороне низкого напряжения установлена одна секционированная система шин.


5. Определение токов короткого замыкания


Проектирование электрической части подстанций

Рисунок 1 – Принципиальная схема


Проектирование электрической части подстанций

Рисунок 2 – Схема замещения


В качестве базисных величин принимаем мощность и напряжение. Тогда значения оставшихся зависимых величин легко можно найти. За базисную мощность принимаем мощность равную 100 МВА, т.е. Sб = 100 МВА. За базисное напряжение возьмём напряжение ступени, где произошло короткое замыканиеПроектирование электрической части подстанцийкВ.

Базисный ток первой ступени:

Проектирование электрической части подстанций кА

Имеющуюся схему замещения необходимо привести к расчетной схеме, которая будет представлена

Определяем параметры схемы замещения.

ТЭЦ:


Проектирование электрической части подстанций о.е.


Сопротивление генераторов:


Проектирование электрической части подстанций о.е.


Сопротивление тр-ров Т3 иТ4:


Проектирование электрической части подстанций о.е.


ГРЭС:

Для генераторов мощностью более 100 МВА ЭДС генератора и сопротивление упрощённо принимаем:

Проектирование электрической части подстанцийо.е.; Проектирование электрической части подстанций.

Сопротивление генераторов:


Проектирование электрической части подстанций о.е.

Сопротивление тр-ров Т1 иТ2:


Проектирование электрической части подстанцийо.е.


Система:

Сопротивление системы равняется нулю, т. к. мощность системы неограниченна.

ЭДС системы: Проектирование электрической части подстанций

Линии:

Сопротивления линий:


Проектирование электрической части подстанций о.е.


Проектирование электрической части подстанцийо.е.


Проектирование электрической части подстанцийо.е.


Проектирование электрической части подстанцийо.е.


ГПП:

Сопротивление тр-ров Т5 иТ6:


Проектирование электрической части подстанцийо.е.


Приведем схему к виду приведённом на рисунке 3 с помощью последовательно параллельных преобразований:


Проектирование электрической части подстанций

Рисунок 3 – Схема замещения


Проектирование электрической части подстанцийо.е.


Проектирование электрической части подстанцийо.е.


Проектирование электрической части подстанцийо.е.

В максимальном режиме линии будут работать в параллель. Далее преобразуем схему с помощью коэффициентов потокараспределения. Имеем:

Суммарное сопротивление:


Проектирование электрической части подстанцийо.е.


Результирующие сопротивление:


Проектирование электрической части подстанцийо.е.

где Проектирование электрической части подстанций- эквивалентное сопротивление линий.

Коэффициенты потокораспределения:


Проектирование электрической части подстанций;Проектирование электрической части подстанций;Проектирование электрической части подстанций.


Результирующие сопротивления:


Проектирование электрической части подстанций;Проектирование электрической части подстанций;Проектирование электрической части подстанций.


Получили схему:


Проектирование электрической части подстанций

Рисунок 4 – Схема замещения


Определим периодическую составляющую тока трёхфазного короткого замыкания в начальный момент времени от каждого источника:

ГРЭС:


Проектирование электрической части подстанцийкА


ТЭЦ:

Проектирование электрической части подстанцийкА


Система:


Проектирование электрической части подстанцийкА


Суммарный ток: Проектирование электрической части подстанцийкА

Апериодическая составляющая тока трёхфазного короткого замыкания в начальный момент времени:


Проектирование электрической части подстанцийкА


Апериодическая составляющая тока трёхфазного короткого замыкания в заданный момент времени:


Проектирование электрической части подстанцийкА


где Проектирование электрической части подстанций – время отключения КЗ;

Проектирование электрической части подстанций- постоянная времени затухания апериодической составляющей (определённая по справочным данным[1]).

Ударный ток короткого замыкания:

Проектирование электрической части подстанцийкА

Определим ток трёхфазного КЗ в точке К2 (за трансформатором). Для этого необходимо найти результирующие сопротивления от каждого источника с помощью коэффициентов потокараспределения, как было показано выше.

Получили схему:

Проектирование электрической части подстанций

Рисунок 5 – Схема замещения


Определим периодическую составляющую тока трёхфазного короткого замыкания в начальный момент времени от каждого источника:

ГРЭС:


Проектирование электрической части подстанцийкА


ТЭЦ:


Проектирование электрической части подстанцийкА


Система:


Проектирование электрической части подстанцийкА


Суммарный ток: Проектирование электрической части подстанцийкА

Апериодическая составляющая тока трёхфазного короткого замыкания в начальный момент времени:


Проектирование электрической части подстанцийкА

Апериодическая составляющая тока трёхфазного короткого замыкания в заданный момент времени:


Проектирование электрической части подстанцийкА


Ударный ток короткого замыкания:

Проектирование электрической части подстанцийкА


6. Выбор электрических аппаратов


6.1Общие сведения


В процессе курсового проектирования электрической части станций производится выбор следующих токоведущих частей и аппаратов:

– высоковольтных выключателей, разъединителей и другой коммутационной аппаратуры (выключателей нагрузки, короткозамыкателей, отделителей и т.п.) для всех основных цепей;

– измерительных трансформаторов тока и напряжения;

– сборных шин на всех напряжениях;

– токоведущих частей (шин), связывающих основное оборудование с распределительными устройствами и основными аппаратами;

– контрольных кабелей;

– устройств для защиты от перенапряжений.

Выбранные токоведущие части и электрические аппараты должны обеспечивать надёжную работу электроустановок не только в нормальном режиме, но и в аварийном. При выборе следует учитывать конкретные условия, а именно: географическое расположение электростанции, т.е. климатические условия, род установки (наружный или внутренний). В РУ 35 кВ и выше целесообразно устанавливать однотипное оборудование, хотя отдельные аппараты могут отличаться своими параметрами.


6.2 Выбор выключателей


Выключатели высокого напряжения при одних и тех же параметрах могут быть выбраны масленые, элегазовые, вакуумные, электромагнитные и т.д.

На стороне 110 кВ выберем элегазовые выключатели, а на стороне 10 кВ вакуумные.

Выбор выключателей производят по следующим параметрам:

– по напряжению установки:


Uуст Ј Uном; (12)


– по длительному току:

Iнорм Ј Iном


Iмах Ј Iном; (13)


– по отключающей способности:


Iпо Ј Iоткл ном; (14)


На стороне 110 кВ выбираем элегазовые выключатели типа ВГТЗ-110II-40/1000 У1.

Проведем проверку данного выключателя:

1.по термической устойчивости выключателя:


Проектирование электрической части подстанцийкА2с,


где Проектирование электрической части подстанций– собственное время отключения выключателя, принимаем Проектирование электрической части подстанций=0.055с;


Проектирование электрической части подстанций,


где Проектирование электрической части подстанций- ток термической стойкости (справочная величина);

Проектирование электрической части подстанций – время протекания КЗ (справочная величина).

2. Для проверки возможности отключения выключателем апериодической составляющей тока КЗ необходимо определить номинальное допускаемое значение апериодической составляющей в отключаемом токе для времени t:


Проектирование электрической части подстанцийкА


где bн – номинальное значение относительного содержания апериодической составляющей в отключаемом токе, для данного выключателя bн=40%;

Проектирование электрической части подстанций– номинальный ток отключения.

3. Проверим по отключающей способности:

а) на отключение периодической составляющей расчётного тока КЗ:

Проектирование электрической части подстанций

б) на отключение полного расчётного тока КЗ


Проектирование электрической части подстанций


Проектирование электрической части подстанций

Проектирование электрической части подстанцийкА

4. По динамической стойкости:

Проектирование электрической части подстанций

Ударный ток берётся на основании расчетов короткого замыкания для точки К1. Условия выбора сводятся к тому, что значения параметров выключателя должны быть больше значений, полученных при расчете.

Сопоставление приведено в таблице 2.

Таблица 1 – Выбор и проверка выключателя на 110 кВ

Расчетные данные Справочные данные Условия выбора и проверки Дополнительно
Выбор
Uуст=110 кВ Uном=110 кВ Uуст<Uном 110=110 кВ
Imax.р=195,76 А Iном=1000 А Imax.р<Iном 195,76<1000 А
Проверка
Iп.t=11,22 кА Iном.откл=40 кА Iп.t< Iном.откл 11,22<40 кА
ik.t=19,76 кА iном.откл=79,2 кА ik.t< iном.откл 19,76<79,2 кА
iуд=28,57 кА iпр.скв=102 кА iуд<iпр.скв 28,57<102 кА
Bk=13,22 кА*с2 ВT=4800 кА*с2 Bk<BT 13,2<4800 кА*с2

По данным сравнения выбранная марка выключателя подходит.


6.2.1 Выбор комплектных распределительных устройств

Комплектное распределительное устройство (КРУ) – это распределительное устройство, состоящее из закрытых шкафов со встроенными в них аппаратами, измерительными и защитными приборами и вспомогательными устройствами.

В нашем курсовом проекте рационально принять КРУ серии K-63.

Общие сведения:

Комплектные распределительные устройства напряжением 6–10 кВ серии К-63 предназначены для приема и распределения электрической энергии переменного трехфазного тока промышленной частоты 50 и 60 Гц напряжением 6 и 10 кВ. КРУ серии К-63 применяются в качестве распределительных устройств 6–10 кВ, в том числе распределительных устройств трансформаторных подстанций, включая комплектные трансформаторные подстанции (блочные) 220/110/35/6–10 кВ, 110/6–10 кВ, 110/35/6–10 кВ, для электрических станций и систем электрификации железнодорожного транспорта. КРУ серии К-63 могут поставляться для расширения уже действующих распредустройств других производителей, соединяться они могут через переходные шкафы, входящие в состав КРУ. КРУ серии К-63 соответствуют требованиям ГОСТ 14693–90 и стандарту МЭК-238.

Состав КРУ определяется конкретным заказом. В общем случае КРУ поставляется отдельными ячейками с элементами стыковки ячеек в распредустройство. По требованию заказчика, КРУ поставляются транспортными блоками, каждый из которых состоит из трех ячеек со смонтированными соединениями главных и вспомогательных цепей. В состав КРУ могут входить:

– шинные мосты между двумя рядами ячеек

– шинные вводы

– кабельные блоки для ввода силовых кабелей

– кабельные лотки для подводки к ряду КРУ контрольных кабелей

блоки панелей для размещения общеподстанционной аппаратуры и ввода контрольных кабелей.

– переходные шкафы для стыковки с КРУ других серий По желанию заказчика, шкафы КРУ, наряду с устройствами релейной защиты и автоматики на электромеханических реле, могут комплектоваться микропроцессорными устройствами:

– На низкой стороне выбрал КРУ внутренней установки 10 кВ марки К-63 со встроенными выключателями марки ВВ/Тel-10.


Таблица 3 – Основные параметры шкафа КРУ серии K-63

ТЕХНИЧЕСКИЕ ДАННЫЕ
Наименование параметра. Значение параметра, исполнение
1. Номинальное напряжение (линейное), кВ:при частоте 50 Гц 6,0; 10
2. Наибольшее раб. напряжение (линейное), кВ 7.2; 12
3. Номинальный ток главных цепей ячеек КРУ, А:для исполнений УЗ 630; 1000; 1600
4. Номинальный ток сборных шин, А 1000; 1600; 2000; 3150
5. Номинальный ток отключения выключателя, встроенного в КРУ, кА: 12,5; 16; 20; 25; 31,5
6. Ток термической стойкости при времени протекания 3 с, кА 20; 31.5
7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51,81
8 Вид линейных высоковольтных подсоединении Кабельные, шинные
9 Условия обслуживания С двухсторонним обслуживанием
10 Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей
11 Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования

-выключателями высокого напряжения

– с разъединяющими контактами

– с трансформаторами напряжения

– с силовыми трансформаторами

– комбинированные

– с разрядниками или ОПН

– со статическими конденсаторами

12 Вид управления Местное, дистанционное
Габаритные размеры высоковольтных ячеек без шинопровода, высота / глубина / ширина, мм, не более 2268/1250 (1450)/750

На стороне 10 кВ выбираем КРУ К-63 с вакуумными выключателями типа ВВ/Тel-10–12,5–20/2500УХЛ2 – для вводной ячейки. На других ячейках устанавливаем выключатели такой же марки, но с другим номинальным током.

Проведем проверку по термической устойчивости выключателя:

Проектирование электрической части подстанцийкА2с;

где Проектирование электрической части подстанций- собственное время отключения выключателя, принимаем Проектирование электрической части подстанций =0,045с;


Проектирование электрической части подстанций кА2с


Проектирование электрической части подстанцийкА

где Проектирование электрической части подстанций – номинальное значение относительного содержания апериодической составляющей в отключаемом токе, для данного выключателя bн = 40%;

Проектирование электрической части подстанций – номинальный ток отключения.


Проектирование электрической части подстанций


Проектирование электрической части подстанций

Проектирование электрической части подстанцийкА

Сопоставление приведено в таблице 4.


Таблица 4 – Сопоставление каталожных и расчетных данных

Расчетные данные Справочные данные Условия выбора и проверки Дополнительно
Выбор
Uуст=12,5 кВ Uном=10 кВ Uуст>Uном 12,5>10 кВ
Imax.р=2153 А Iном=2500 А Imax.р<Iном 2153<2500 А
Проверка
Iп.t=22,53 кА Iном.откл=40 кА Iп.t< Iном.откл 22,53<40 кА
ik.t=38,6 кА iном.откл=39,59 кА ik.t< iном.откл 38,6<39,59 кА
iуд=47,8 кА iпр.скв=51,18 кА iуд<iпр.скв 47,8<51,18 кА
Bk=45,68 кА*с2 ВT=1600 кА*с2 Bk<BT 45,6<1600 кА*с2

По данным сравнения выбранная марка выключателя подходит.

В секционной ячейке устанавливаем выключатель марки ВВ/Тel-10–20–20/2500УХЛ2, т. к. наибольший рабочий ток в два раза меньше чем для вводной ячейки:


Проектирование электрической части подстанцийА

На отходящих присоединениях устанавливаем выключатель марки ВВ/Тel-10–12,5–20/2000УХЛ2.


6.3Выбор ограничителей перенапряжений и высокочастотных заградителей


Нелинейные ограничители перенапряжения предназначены для защиты изоляции электрооборудования от атмосферных и коммутационных перенапряжений. В отличие от традиционных вентильных разрядников с искровыми промежутками и карборундовыми резисторами ограничители перенапряжения не содержат искровых промежутков и состоят только из колонки металлооксидных нелинейных резисторов (варисторов) на основе окиси цинка, заключенных в полимерную или фарфоровую покрышку.

Благодаря своей высокой нелинейности ограничители перенапряжения обеспечивают более глубокое ограничение перенапряжений по сравнению с вентильными разрядниками и выдерживают без ограничения времени рабочее напряжение сети. Отсутствие искрового промежутка обеспечивает постоянное подключение ОПН к защищаемому оборудованию.

На сторонах трансформатора различного класса напряжений, производим установку разрядников марки ОПН и PEXLIM. На стороне 110 кВ PEXLIM R, 10 кВ ОПН-PT\Tel-10\11.5. На высокой стороне в нейтрале трансформатора устанавливаем заземлитель типа ЗОН-110-У1. Его технические характеристики: Проектирование электрической части подстанций=16 кA, ток термической стойкости, кА /и допустимое время его действия, с 6,3/3.

Высокочастотные заградители устанавливаем на стороне 110 кВ типа ВЗ-630–0.5У1 (Проектирование электрической части подстанций) с конденсаторами связи СМП-110/√3 – 6.4, с фильтром присоединения серии ФПМ.


6.4Выбор разъединителей


Разъединитель представляет собой коммутационный аппарат для напряжения свыше 1кВ, основное назначение которого – создавать видимый разрыв и изолировать части системы, электроустановки, отдельные аппараты от смежных частей, находящихся под напряжением, для безопасного ремонта.

Разъединители выбирают по конструктивному выполнению, роду установки и номинальным характеристикам: напряжению, длительному току, стойкости при токах КЗ, т.е. выбор разъединителей производится так же, как выключателей, но без проверок на отключающую способность, т. к. они не предназначены для отключения цепей, находящихся под нагрузкой.

Выбираем на стороне 110 кВ разъединитель РНДЗ.1–110\630 У1.

Проверка на термическую стойкость к токам КЗ:


Проектирование электрической части подстанций


Проектирование электрической части подстанций


Проверка на динамическую стойкость к токам КЗ:

Ударный ток подсчитан в разделе токов КЗ.

Проектирование электрической части подстанций кА


Таблица 5 – Сопоставление каталожных и расчетных данных

Справочные данные Расчётные данные Условия выбора

Uуст = 110 кВ

Iном =630 А

Проектирование электрической части подстанций=80 кA

Вк.ном =3969 кА2с

U ном = 110 кВ

Iрmax = 195,7 А

Iуд = 28,57 кА

Вк. =13,22 кА2с

Uуст ≥ U ном

Iном ≥ Iрmax

Проектирование электрической части подстанций≥ iуд

Вк.ном ≥ Вк


6.5Выбор трансформаторов тока


Трансформаторы тока выбираются:

– по напряжению установки:


Uуст Ј Uном, (15)


– по току:


Iнорм Ј I1ном Iмах Ј I1ном (16)


Номинальный ток должен быть как можно ближе к рабочему току установки, так как недогрузка первичной обмотки приводит к увеличению погрешностей;

– по конструкции и классу точности;

– по электродинамической стойкости;


iуд = КэдПроектирование электрической части подстанцийПроектирование электрической части подстанций Проектирование электрической части подстанцийI1ном, (17)


где Кэд – кратность электродинамической стойкости, величина справочная;

I1ном – номинальный первичный ток трансформатора тока;

– по термической стойкости:


Вк Ј (КтПроектирование электрической части подстанций I1ном)2Проектирование электрической части подстанций tт, (18)


где Кт – кратность термической стойкости, величина справочная,

tт – время термической стойкости, величина справочная;

– по вторичной нагрузке:

Z2 Ј Z2НОМ,


где Z2 – вторичная нагрузка трансформатора тока,

Z2НОМ – номинальная, допустимая нагрузка трансформатора тока в вы-

бранном классе точности.

Индуктивное сопротивление токовых цепей невелико, поэтому Z2 » r2. Вторичная нагрузка R2 состоит из сопротивления приборов rприб, соединительных проводов rпр и переходного сопротивления контактов rК:


r2 = rприб + rпр + rК (19)


Прежде чем преступить к выбору трансформаторов тока, необходимо определить число и тип измерительных приборов, включенных во вторичную цепь и иметь данные о длине соединенных проводов. В качестве соединительных проводов применяют многожильные контрольные кабели с бумажной, резиновой, полихлорвиниловой или специальной теплостойкой оболочке. Согласно ПУЭ, по условию прочности сечение не должно быть меньше 4 мм2 для алюминиевых жил и 2,5 мм2 для медных жил.

Выбираем трансформатор тока на стороне 110 кВ:


Таблица 6 – Вторичная нагрузка трансформаторов тока

Прибор Тип Нагрузка, В*А, фазы


А В С
Амперметр Э-335
0,5

Выберем марку трансформатора тока ТГФ-110

Термическую и динамическую стойкость проверяем по параметрам тока КЗ в точке К1.


Проектирование электрической части подстанций кА2с

Проектирование электрической части подстанций


Мощность вторичной обмотки S2Н=20 ВА

Определяем номинальное сопротивление вторичной обмотки, Ом


Проектирование электрической части подстанций


Общее сопротивление приборов:


Проектирование электрической части подстанций


где SПРИБ – мощность, потребляемая приборами;

I2 – вторичный номинальный ток прибора = 5 А.

Выбираем провод сечение q=4 мм2 АКРВГ с алюминиевыми жилами и удельным сопротивлением ρ=0,0283. Длину проводов примем l=60 м


Проектирование электрической части подстанцийОм,


где rКОНТ – сопротивление контактов (rКОНТ = 0,05 Ом)

Проектирование электрической части подстанций

Сопоставление каталожных и расчетных данных приведено в таблице 7.


Таблица 7 – Выбор трансформатора тока ТГФ-110 У1

Каталожные данные Расчетные денные Условия выбора
UН = 110 кВ UН = 110 кВ UН ≥ UР
IН = 200А IР = 195,76 А IН ≥ Iрmax
Z2Н = 0,8 Ом ZНр =0,49 Ом Z2Н ≥ ZНр
ВКн = 768 кА2с ВКр = 13,22кА2с ВКн ≥ Вкр
IДИН = 45 кА IУД = 28,57 кА IДИН≥ IУД

Выбираем трансформатор тока для вводной ячейки на стороне 10 кВ.


Таблица 8 – Вторичная нагрузка трансформаторов тока

Прибор Тип Нагрузка, В*А, фазы


А В С
Амперметр Э-335
0,5
Счетчик АЭиРЭ(Альфа) Альфа

0,12

0,12


0,12

0.12

Ватметр Д-335 0,5
0,5
Варметр Д-335 0,5
0,5
Итог
1,24 0,5 1,24

Из табл. 8 видно что наиболее загружены фазы А и С.

Выберем марку трансформатора тока ТЛ 10.

Термическую и динамическую стойкость проверяем по параметрам тока КЗ в точке К2.


Проектирование электрической части подстанций


Проектирование электрической части подстанций


Мощность вторичной обмотки S2Н=20 ВА

Определяем номинальное сопротивление вторичной обмотки, Ом


Проектирование электрической части подстанций


Общее сопротивление приборов:

Проектирование электрической части подстанций


где SПРИБ – мощность, потребляемая приборами;

I2 – вторичный номинальный ток прибора = 5 А.

Выбираем провод сечение q=4 мм2 АКРВГ с алюминиевыми жилами и удельным сопротивлением ρ=0,0283. Длину проводов примем l=5 м


Проектирование электрической части подстанций Ом,


где rКОНТ – сопротивление контактов (rКОНТ = 0,01 Ом)

Проектирование электрической части подстанций

Сопоставление каталожных и расчетных данных приведено в табл. 9.


Таблица 9 – Выбор трансформатора тока ТЛ 10

Каталожные данные Расчетные денные Условия выбора
UН = 10 кВ UН = 10 кВ UН ≥ UР
IН = 2000А Iрmax = 1076 А IН ≥ Iрmax
Z2Н = 0,8 Ом ZНр =0,094 Ом Z2Н ≥ ZНр
ВКн = 4800 кА2с ВКр = 45,68 кА2с ВКн ≥ Вкр
IДИН = 128 кА IУД = 47,8 кА IДИН≥ IУД

Выбираем трансформатор тока для отходящего присоединения на стороне 10 кВ.


Таблица 10 – Вторичная нагрузка трансформаторов тока

Прибор Тип Нагрузка, В*А, фазы


А В С
Амперметр Э-335
0,5
Счетчик АЭиРЭ(Альфа) Альфа

0,12

0,12


0,12

0.12

Итог
0,24 0,5 0,24

Из табл. 10 видно, что наиболее загружена фаза А.

Выберем марку трансформатора тока ТОЛ 10–1.

Термическую и динамическую стойкость проверяем по параметрам тока КЗ в точке К2.


Проектирование электрической части подстанций


Проектирование электрической части подстанций


Мощность вторичной обмотки S2Н=10 ВА

Определяем номинальное сопротивление вторичной обмотки, Ом


Проектирование электрической части подстанцийё


Общее сопротивление приборов:


Проектирование электрической части подстанций


где SПРИБ – мощность, потребляемая приборами;

I2 – вторичный номинальный ток прибора = 5 А.

Выбираем провод сечение q=4 мм2 АКРВГ с алюминиевыми жилами и удельным сопротивлением ρ=0,0283. Длину проводов примем l=5 м


Проектирование электрической части подстанцийОм,


где rКОНТ – сопротивление контактов (rКОНТ = 0,01 Ом)

Проектирование электрической части подстанций

Сопоставление каталожных и расчетных данных приведено в таблице 11.


Таблица 11 – Выбор трансформатора тока ТОЛ 10–1

Каталожные данные Расчетные денные Условия выбора
UН = 10 кВ UН = 10 кВ UН ≥ UР
IН = 100А Iрmax = 87 А IН ≥ Iрmax
Z2Н = 0,8 Ом ZНр =0,065 Ом Z2Н ≥ ZНр
ВКн = 468 кА2с ВКр = 45,68 кА2с ВКн ≥ Вкр
IДИН = 52 кА IУД = 47,8 кА IДИН≥ IУД

6.6 Выбор трансформаторов напряжения


Трансформаторы напряжения выбираются:

– по напряжению установки:

Uуст Ј Uном;

– по конструкции и схеме соединения;

– по классу точности;

– по вторичной нагрузке:


S2Σ Ј Sном,


где Sном – номинальная мощность в выбранном классе точности;

S2Σ – нагрузка всех измерительных приборов и реле, присоединенных к трансформатору напряжения.

Трансформаторы напряжения устанавливаются в распределительных устройствах трансформаторных подстанций для питания обмоток приборов учета и контроля, аппаратов релейной защиты и подстанционной автоматики.

По аналогии с выбором трансформаторов тока для проверки на соответствие классу точности, необходимо составить схему включения обмоток напряжения измерительных приборов, составить таблицу нагрузок и определить расчетную нагрузку во вторичной цепи S2Σ. Приближенно, без учета схемы включения приборов, S2Σ можно определить по выражению:


Проектирование электрической части подстанций (20)


Для упрощения расчетов нагрузку приборов можно не разделять по фазам

За Sном принимается для трехфазного трансформатора, мощность всех трех фаз, приведенная в паспортных данных при работе в соответствующем классе точности; а для схемы с двумя НОМ – удвоенная мощность одного НОМ.


Таблица 12 – Вторичная нагрузка трансформаторов напряжения (10 кВ)

Прибор Тип Потребляемая мощность одной катушки, В*А Число катушек Соs j Sin j Общая потребляемая мощность






P, Вт Q, В*А
1 2 3 4 5 6 7 8
Вольтметр Э-335 2 1 1 0 2 -
Ватметр Д-335 1,5 2 1 0 3 -

Счетчик АЭ

Счетчик РЭ

Альфа

Альфа

3,6

3,6

6

6

0,38

0,38

0,925

0,925

21,6

21,6

52,58

52,58

Итого - - - - - 48,2 105,2

Вторичная нагрузка трансформатора по формуле (20) составит:


S2е = 115,7 В*А.


Выбираем трансформатор напряжения З НОЛ. 0,6–10У3.

Сравнение каталожных и расчетных данных приведено в таблице.

Таблица 13 – Сопоставление каталожных и расчетных данных

Расчетные данные Каталожные данные Условия выбора

UН = 10 кВ

SР = 115,7 В*А

UНТ = 10 кВ

SН =300 В*А

10 і 10

300 і 115.7


6.7 Выбор предохранителей для защиты ТСН и ТН


Выбор предохранителей производиться по следующим параметрам:

– по напряжению установки: Uуст Ј Uном;

– по длительному току:


Iнорм Ј Iном, Iмах Ј Iном;


Проверяют предохранители по отключающей способности:

Iпо Ј Iоткл ном;

Ток максимального режима:


Проектирование электрической части подстанцийА


Ток КЗ был посчитан в пятом пункте: Проектирование электрической части подстанцийкА

Примем предохранитель типа ПКТ101–10–2–8–40У1.


Таблица 14 – Сопоставление каталожных и расчетных данных

Справочные данные Расчётные данные Условия выбора

Uуст = 10 кВ

Iном =2 А

Iоткл = 40 кА

U ном = 10 кВ

Iрmax =1,44 А

Iпо= 22,53 кА

Uуст ≥ U ном

Iном ≥ Iрmax

Iоткл ≥ Iпо


Данный тип предохранителя подходит. Для защиты трансформатора напряжения примем следующий тип предохранителя: ПКН001–10У3.

6.8Целесообразность установки дугогасящего реактора (ДГР)


При токе замыкания на землю меньше 20 А необходимость в установке ДГР отпадает.

Рассчитаем ток замыкания на землю (ЗНЗ):


Проектирование электрической части подстанцийА (21)


Дугогасящий реактор не устанавливаем.


6.9Выбор и проверка сечений КЛ–10 кВ на термическую стойкость


Для выбора сечений жил кабелей по нагреву определяется расчетный ток и по таблицам /1/ выбирается стандартное сечение, соответствующее ближайшему большему току. Во всех случаях выбора сечений жил кабеля необходимо анализировать полученные результаты расчета нагрузок.

Расчетный ток определяется по формуле:


Iнб =Проектирование электрической части подстанций (22)


Выбирается стандартное сечение по длительно допустимому току. Для кабелей проложенных в земле учитываются следующие поправки в соответствии с ПУЭ. Далее определяется длительно допустимый ток для КЛ по выражению:


Iдоп = Iдоп. табл.ЧК1 Ч К2 Ч К3, (23)


где К1 – коэффициент, учитывающий число работающих кабелей проложенных в земле;

К2 – коэффициент, учитывающий температуру окружающей среды и допустимую температуру кабеля;

К3 – коэффициент допустимой перегрузки кабеля (1,3 – для нового кабеля).

Условие допустимости по нагреву для КЛ-10 кВ:

Iдоп Проектирование электрической части подстанций Iнб.

Осуществляется проверка по условию работы КЛ в послеаварийном режиме при отключении одного кабеля,

Iдоп Проектирование электрической части подстанций Iнб Ч1,35

Выбираем трехжильный кабель с алюминиевыми жилами сечением 25 мм2 с длительно допустимым током 90 А.

Iнб = Проектирование электрической части подстанций А;

С учетом поправок определяем длительно допустимый ток для КЛ:

Iдоп = 115 Ч 1 Ч 1,11Ч1,3 = 166 А

166 А > 97 А.

Следовательно, выбранный кабель удовлетворяет условию допустимого нагрева в нормальном и послеаварийном режиме.

В соответствии с расчетными данными для прокладки КЛ-10 кВ принимаются кабели ААПлУ.


7. Выбор шинных конструкций


7.1Выбор гибких шин на стороне 110 кВ


В РУ 35 кВ и выше применяют гибкие шины, выполненные проводами АС. Гибкие провода применяются для соединения блочных трансформаторов с ОРУ.

Проверка сечения на нагрев:

Проектирование электрической части подстанцийПроектирование электрической части подстанций

Принимаем сечение по допустимому току АС-120/27; Проектирование электрической части подстанциймм.

Проектирование электрической части подстанцийА, Проектирование электрической части подстанцийА, условие выполняется.

Проверка на термическое действие КЗ не производится, т. к. шины выполнены голыми проводами на открытом воздухе.

Проверка по условиям коронирования:

Разряд в виде короны возникает при максимальном значении начальной критической напряженности электрического поля:


Проектирование электрической части подстанций, (24)


где m – коэффициент, учитывающий шероховатость поверхности провода. (для многопроволочных проводов принимается 0.82);

Проектирование электрической части подстанций – радиус провода в см.

Проектирование электрической части подстанцийкВ/см.

Напряженность электрического поля около поверхности нерасщеплённого провода определяется:


Проектирование электрической части подстанцийкВ/см, (25)


где Проектирование электрической части подстанций – среднее геометрическое расстояние между проводами фаз, см. При горизонтальном расположение фазПроектирование электрической части подстанций; здесь Проектирование электрической части подстанций-расстояние между соседними фазами, см.

Условие образования короны:

1,07Проектирование электрической части подстанцийЕ≤0,9Проектирование электрической части подстанцийЕ0,

22,1≤29,97.

Проверка по экономической плотности тока:

Проектирование электрической части подстанций

где Jэ – нормированная плотность тока.

Примем провод АС 120.

Минимальное сечение по условию термической стойкости:


Проектирование электрической части подстанций


7.2Выбор жестких шин на стороне 10 кВ


Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6–10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных полимерных изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин.

В РУ 6–10 кВ применяется жёсткая ошиновка.

Расчётный ток продолжительного режима:

Проектирование электрической части подстанцийА


Выбираем сечение шин по допустимому току. Принимаем двухполюсные алюминиевые шины прямоугольного сечения 2 (80ґ10) мм2,марки АДЗ1Т-из алюминиевого сплава, закаленные и естественно состаренные; Проектирование электрической части подстанцийА.

По условию нагрева в продолжительном режиме шины проходят:Проектирование электрической части подстанций А<Проектирование электрической части подстанций

Проверка на термическую стойкость:

Минимальное сечение по условию термической стойкости:


Проектирование электрической части подстанций


Шины термически стойкие.

Проверяем шины на механическую прочность. Определяем пролёт Проектирование электрической части подстанций при условии, что частота собственных колебаний будет больше 200 Гц:


Проектирование электрической части подстанций


Если шины расположены плашмя, а полосы в пакете жёстко связаны между собой, то по таблице 6.1 /4/ момент инерции:


Проектирование электрической части подстанций


Проектирование электрической части подстанций; Проектирование электрической части подстанцийм

Принимаем расположение пакета шин плашмя; пролёт 1,4 м; расстояние между фазами Проектирование электрической части подстанцийм.

Определяем расстояние между прокладками:


Проектирование электрической части подстанцийм;


Проектирование электрической части подстанцийм,


где Проектирование электрической части подстанций- расстояние между осями полос, Проектирование электрической части подстанций;


Проектирование электрической части подстанций- момент инерции полосы, см4;


Проектирование электрической части подстанций-коэффициент формы (рис. 6.5 /4/);

Проектирование электрической части подстанций- модуль упругости материала шин (табл. 6.2 /4/);

Проектирование электрической части подстанций- масса полосы на 1 м определяется по справочнику /3/.

Принимаем меньшее значение Проектирование электрической части подстанций м, тогда число прокладок в пролётеПроектирование электрической части подстанций. ПринимаемПроектирование электрической части подстанций.

Определяем силу взаимодействия между полосами:


Проектирование электрической части подстанцийН/м


Напряжение в материале полос:


Проектирование электрической части подстанцийМПа,

где Проектирование электрической части подстанцийсм3 –момент сопротивления.

Напряжение в материале шин от взаимодействия фаз:


Проектирование электрической части подстанцийМПа,


где Проектирование электрической части подстанцийсм3.

Проектирование электрической части подстанцийМПа.


Таблица 15 – Сопоставление расчётных и каталожных данных

Расчётные данные Справочные данные Условия выбора

Imax = 1864 А

sрасч = 21,13 МПа

qmin = 2,43мм2

I.доп = 2410 А

sдоп=75 МПа

q=1600 мм2

2410≥1864

75≥21,13

1600≥2,43


7.3 Выбор изоляторов


7.3.1 Выбор подвесных изоляторов

Для большей надежности выбираем полимерный изолятор типа ЛК 70/110. Этот изолятор беру как для промежуточных, так и для анкерных опор.

По коэффициенту запаса n1 при наибольшей нагрузке и n2 при отсутствии ветра и гололеда проверяю, подходит ли этот изолятор.


Проектирование электрической части подстанций; (26)


Проектирование электрической части подстанций, (27)


где Р – электромеханическая разрушающая нагрузка изолятора, кг

р7, р1 – единичные нагрузки от собственного веса провода и от веса провода с гололедом при ветре, кг/м;


р7=γ7·F=111,3·0,093=10,3 н/м (31)


р1=γ1·F=111,3·0,034=3,78 н/м (32)


lвес – весовой пролет, м;

Gг – вес гирлянды, кг.

Проектирование электрической части подстанций

Проектирование электрической части подстанций

Итак, выбранный тип изолятора соответствует условиям.


7.3.2 Выбор опорных изоляторов

Выбираем опорные изоляторы марки ИОСК 4 -10/80 УХЛ1 с параметрами: Fразр =4000 Н.

Проверяем изоляторы на механическую прочность на изгиб.

Допустимая нагрузка на головку изолятора:

Максимальная сила, действующая на изгиб /4/.


Проектирование электрической части подстанцийН


Допустимая нагрузка на головку изолятора:

Проектирование электрической части подстанций

Проектирование электрической части подстанцийН

Проектирование электрической части подстанций

Таблица 16 – Сопоставление расчётных и каталожных данных

Расчётные данные Справочные данные Условия выбора
Uр = 10 кВ UН = 10 кВ 10=10
FРАСЧ = 1385H FДОП = 3600 H 1386>205,15

7.3.3 Выбор проходных изоляторов

Выбираем изолятор ИП-10/1600–2500УХЛ1, Imax=1740А, Fразр=12500 Н

Проектирование электрической части подстанцийH

Проектирование электрической части подстанцийН


Таблица 17 – Сопоставление расчётных и каталожных данных

Расчётные данные Справочные данные Условия выбора
Uр = 10 кВ Uн = 10 кВ 10=10
FРАСЧ = 1386H FДОП = 7500 H 7500>1386
Iр=1740 А Iн=2500 А 2500>1740

Заключение


Курсовой проект по дисциплине «Электропитающие системы и сети часть 2» развивает навыки практического использования знаний, способствует их закреплению и обобщению. Выполняя курсовое проектирование, студент учится пользоваться справочной литературой, ГОСТами, едиными нормами и расценками, таблицами, приобретает навыки составления технико-экономических записок, подготавливается к дипломному проектированию.

В процессе выполнения курсового проекта был произведен расчёт и выбор мощности и количества трансформаторов ГПП. Решены вопросы компенсации реактивной мощности. Составлена схема электроснабжения ГПП. Рассчитаны токи короткого замыкания на шинах ГПП, с помощью которых выбрано и проверено основное оборудование ГПП (выключатели, трансформаторы тока и напряжения, разъединители, проходные и опорные изоляторы, сборные шины).


Библиографический список


1. Справочник по проектированию электроснабжения / Под ред. Ю.Г. Барыбина и др. – М.: Энергоатомиздат, 1990. – 576 с.

2. Герасимова В.Г., Дьякова А.Ф., Попова А.И. Электротехнический справочник Т.3. Кн. 1. Производство, передача и распределение электрической энергии/ В.Г. Герасимова, А.Ф. Дьякова, А.И. Попова и др. – М.: МЭИ, 2002. – 964 с.

3. Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования. М.: Энергоатомиздат, 1989. – 608 с.

4. Мясоедов Ю.В., Савина Н.В., Роточёва А.Г. Проектирование электрической части электростанций и подстанций: Учебное пособие. Благовещенск: Амурский гос. ун-т, 2002. – 139 с.

5. Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций/ Л.Д. Рожкова, В.С. Козулин. – М.: Энергоатомиздат, 1987. – 648 с.

Похожие работы:

  1. • Проектирование электрической части подстанции
  2. • Расчет электрической подстанции
  3. • Разработка закрытой двухтрансформаторной подстанции ...
  4. • Проектирование электрической подстанции 110/10 кВ ...
  5. • Проектирование подстанции 110/6 кВ с решением ...
  6. • Проектирование электрической сети
  7. • Проектування електричної частини КЕС-1500
  8. • Проектирование районной электрической сети
  9. • Розвиток електричної мережі ВАТ "Львівобленерго"
  10. • Реконструкция котла - утилизатора КСТ-80
  11. • Реконструкция электрической части подстанции 3510 кВ ...
  12. • Проектирование электрической части атомных ...
  13. • Проектирование электрической части ТЭЦ 180 МВт
  14. • Проектирование главной схемы электрических соединений ...
  15. • Проектирование электрической тяговой подстанции ...
  16. • Проектирование электрических сетей
  17. • Создание электрической подстанции "Шершнёвская" ЗАО ...
  18. • Усиление надёжности схемы электроснабжения ПС ...
  19. • Проектирование внутрицехового электроснабжения
Рефетека ру refoteka@gmail.com