Рефетека.ру / Коммуникации и связь

Курсовая работа: Определение спектра амплитудно-модулированного колебания

Пензенский государственный университет

Кафедра «РТ и РЭС»


КУРСОВОЙ ПРОЕКТ


по курсу «Радиотехнические цепи и сигналы»

на тему

«Определение спектра

амплитудно-модулированного колебания»


Задание выполнил студент

группы 01РР2

Чернов С. В.

Задание проверил

Куроедов С. К.


Пенза 2003

Содержание

1. Формулировка задания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Шифр задания и исходные данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. Аналитическая запись колебания UW(t) . . . . . . . . . . . . . . . . . . . . . . . . . 3

4. Определение коэффициентов аn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5. Определение коэффициентов bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6. Определение постоянной составляющей А0 . . . . . . . . . . . . . . . . . . . . . 6

7. Определение амплитуд An и начальных фаз Yn . . . . . . . . . . . . . . . . . . 7

8. Временная диаграмма колебания, представляющего собой сумму

найденной постоянной составляющей и первых пяти гармоник

колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

9. Построение графиков АЧХ и ФЧХ ограниченного спектра

колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

10. Аналитическая запись АМ колебания . . . . . . . . . . . . . . . . . . . . . . . . . 9

11. Построение графиков АЧХ и ФЧХ АМ колебания . . . . . . . . . . . . . . 11

12. Определение ширины спектра АМ колебания. . . . . . . . . . . . . . . . . . . 12

1. Формулировка задания

Определить спектр АМ колебания u(t) =Um(t)cos(w0t+y0), огибающая амплитуды которого связана линейной зависимостью с сигналом сообщения Uc(t), т.е. Um(t).=U0+ Uc(t)

(коэффициент пропорциональности принят равным единице).

Сигнал сообщения Uc(t) представляет собой сумму первых пяти гармоник периодического колебания uW(t) (см. раздел 3). Найденный аналитически спектр сигнала сообщения и АМ колебания должен быть представлен в форме амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик. Необходимо кроме того определить парциальные коэффициенты глубины модуляции mn. Несущая частота определяется как w0=20W5, где W5 – частота пятой гармоники в спектре колебания uW(t). Значение амплитуды U0 несущей частоты w0 принимается равным целой части удвоенной суммы Определение спектра амплитудно-модулированного колебания, где Un – амплитудное значение гармоники спектра колебания uW(t).

2. Шифр задания и исходные данные

Шифр задания: 17 – 3

Исходные данные приведены в таблице 1.

Таблица 1.

U1, В


U2, В


T, мкс


t1, мкс


3


3


250


60



Временная диаграмма исходного колебания


Определение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебания


Определение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебания


3. Аналитическая запись колебания UW(t)

Сначала выполним спектральный анализ заданного колебания uΩ(t). Для этого, пользуясь графической формой колебания и заданными параметрами, запишем его аналитически. Весь период Т колебания разбиваем на три интервала: [0;t1], [t1;t2] и [t2; T] (точка Определение спектра амплитудно-модулированного колебания является серединой интервала [t1; T]). Первый интервал представлен синусоидой, второй и третий – линейными функциями. В общем виде аналитическая запись сигнала будет выглядеть так:

Определение спектра амплитудно-модулированного колебания Определение спектра амплитудно-модулированного колебания при Определение спектра амплитудно-модулированного колебания,

uΩ(t)= Определение спектра амплитудно-модулированного колебания при Определение спектра амплитудно-модулированного колебания, (1)

Определение спектра амплитудно-модулированного колебания при Определение спектра амплитудно-модулированного колебания.

Частота синусоиды Определение спектра амплитудно-модулированного колебания (в знаменателе записан период этой синусоиды).

Значения k1 и b1 определяем из системы уравнений

Определение спектра амплитудно-модулированного колебания;

Определение спектра амплитудно-модулированного колебания,

получаемой путем подстановки во второе уравнение системы (1) значений времени t1 и Определение спектра амплитудно-модулированного колебания и соответствующих им значений колебания uΩ(t) (uΩ(t1)=0, uΩ(t)=-U2). Решение указанной системы уравнений дает Определение спектра амплитудно-модулированного колебания, Определение спектра амплитудно-модулированного колебания. Аналогично определяем k2 и b2. В третье уравнение системы (1) подставляем значения t2 и T и соответствующие им значения колебания uΩ(t) (uΩ(t2)=-U2, uΩ(T)=0).

Определение спектра амплитудно-модулированного колебания;

Определение спектра амплитудно-модулированного колебания.

Решив систему, получаем Определение спектра амплитудно-модулированного колебания, Определение спектра амплитудно-модулированного колебания

В результате изложенного система уравнений (1) принимает вид

Определение спектра амплитудно-модулированного колебания Определение спектра амплитудно-модулированного колебания при Определение спектра амплитудно-модулированного колебания,

uΩ(t)= Определение спектра амплитудно-модулированного колебания при Определение спектра амплитудно-модулированного колебания, (2)

Определение спектра амплитудно-модулированного колебания при Определение спектра амплитудно-модулированного колебания.


Для дальнейших расчетов определим:

Определение спектра амплитудно-модулированного колебания мкс;

Определение спектра амплитудно-модулированного колебания рад/с

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания рад/с

Для разложения сигнала в ряд Фурье вычислим значения аn, bn, Аn и φn первых пяти гармоник.

4. Определение коэффициентов an

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Посчитаем каждый из интегралов отдельно:

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания;

Определение спектра амплитудно-модулированного колебания,

первый интеграл интегрируем по частям:

Определение спектра амплитудно-модулированного колебания, Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания, Определение спектра амплитудно-модулированного колебания.

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания;

аналогично интегрируем:

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания.

Запишем выражение для аn, как функции порядкового номера n гармоник колебания UW(t):

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания.

Подставляя ранее вычисленные значения k1 b1, k2, b2, заданное значение U1 и значения n=1,2,…, находим численные значения пяти коэффициентов an:

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ.

Заносим полученные результаты в таблицу 2.

5. Определение коэффициентов bn

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания.

Расчет каждого из интегралов произведём отдельно:

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания;

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания, Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания, Определение спектра амплитудно-модулированного колебания.

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания;

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания.

Запишем выражение для bn, как функции порядкового номера n гармоник колебания UW(t):

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания


Определение спектра амплитудно-модулированного колебания.

Подставляя ранее вычисленные значения k1 b1, k2, b2, заданное значение U1 и значения n=1,2,…, находим численные значения пяти коэффициентов bn:

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ

Определение спектра амплитудно-модулированного колебанияВ.

Занесём полученные данные в таблицу 2.

6. Определение постоянной составляющей А0

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебанияВ.

7. Определение амплитуд An и начальных фаз Yn

Значения An и Ψn вычисляем с помощью полученных ранее коэффициентов an и bn.

Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания.

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ;

Определение спектра амплитудно-модулированного колебаниярад,

Определение спектра амплитудно-модулированного колебаниярад,

Определение спектра амплитудно-модулированного колебаниярад,

Определение спектра амплитудно-модулированного колебаниярад,

Определение спектра амплитудно-модулированного колебаниярад.

Полученные результаты заносим в таблицу 2.


Таблица 2

n 1 2 3 4 5
an 1.641 0.033 -0.368 -0.237 -0.128
bn 1.546 0.548 0.442 0.028 -0.093
An 2.254 0.549 0.575 0.239 0.159
Ψn 0.756 1.511 2.264 3.023 -2.512

8. Временная диаграмма колебания, представляющего собой сумму найденной постоянной составляющей и первых пяти гармоник

Определение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебания

u(t) – заданное колебание,

S(t)=S1(t)+ S2(t)+ S3(t)+ S4(t)+ S5(t)+A0,

S1(t) – первая гармоника,

S2(t) – вторая гармоника,

S3(t) – третья гармоника,

S4(t) – четвертая гармоника,

S5(t) – пятая гармоника,

A0 – постоянная составляющая.


9. Построение графиков АЧХ и ФЧХ ограниченного спектра колебания uW(t)

Пользуясь данными таблицы 2, строим АЧХ и ФЧХ сигнала сообщения uc(t), представляющего собой, в соответствии с заданием, сумму первых пяти гармоник колебания uW(t).

АЧХ колебания uW(t)

Определение спектра амплитудно-модулированного колебания


ФЧХ колебания uW(t)

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания


10. Аналитическая запись АМ колебания

В качестве модулирующего колебания (сигнала сообщения) используем только первые пять гармоник спектра колебания uW(t) (постоянную составляющую А0 отбрасываем). В соответствии с этим искомое амплитудно-модулированное колебание запишем как

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания рад/с – несущая частота.

Значение амплитуды U0 несущей частоты w0 принимается равным целой части удвоенной суммы Определение спектра амплитудно-модулированного колебания, где Un – амплитудное значение гармоники спектра колебания UW(t).

Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебанияВ.

Определение спектра амплитудно-модулированного колебания – начальная фаза несущего колебания.

Определение спектра амплитудно-модулированного колебания – парциальные коэффициенты глубины модуляции.

Вычислим значения парциальных коэффициентов:

Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания,

Определение спектра амплитудно-модулированного колебания.

Полученные результаты заносим в таблицу 3.

Представим АМ колебание в форме суммы элементарных гармоник

Определение спектра амплитудно-модулированного колебанияОпределение спектра амплитудно-модулированного колебания

Определение спектра амплитудно-модулированного колебания.

Вычислим значения Определение спектра амплитудно-модулированного колебания:

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ,

Определение спектра амплитудно-модулированного колебанияВ.

Полученные результаты заносим в таблицу 3.


Таблица 3.

n 1 2 3 4 5
mn 0.3221 0.0784 0.0822 0.0341 0.0227
Bn, В 1.127 0.274 0.288 0.119 0.079

11. Построение графиков АЧХ и ФЧХ АМ колебания

Воспользовавшись численными значениями U0, ω0, Bn, Ω, Ψ0, Ψn, построим графики АЧХ и ФЧХ амплитудно-модулированного колебания.

АЧХ АМ колебания

Определение спектра амплитудно-модулированного колебания


ФЧХ АМ колебания

Определение спектра амплитудно-модулированного колебания

12. Определение ширины спектра АМ колебания

Ширина спектра АМ колебания равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Определение спектра амплитудно-модулированного колебания рад/с.

Рефетека ру refoteka@gmail.com