Рефетека.ру / Коммуникации и связь

Реферат: Теория оптимального приема сигналов

1 Основные положения теории оптимального приема сигналов


Прием сигналов – одна из наиболее сложных теоретических и инженерных задач передачи сообщений. Сложность состоит в том, что в пункте приема сообщения необходимо извлекать из модулированных сигналов-переносчиков, которые в процессе прохождения по линии связи не только ослабляются, но и подвергаются воздействиям различных искажающих факторов и помех.

Весьма желательно располагать методами приема, которые были бы наилучшими (оптимальными) в данных конкретных условиях. Направление, связанное с отысканием таких методов, называется теорией оптимального приема.

Теоретической основой решения задач оптимального приема является теория Байеса.

Пусть некоторая случайная физическая величина, которую назовем причиной, может принимать множество значений(исходов) П с плотностью вероятностей р(П), которая считается априорной(заранее известной). Пусть причина вызывает появление другой случайной величины – следствия С, которое также может принимать множество значений. Плотность вероятностей этих значений зависит от конкретных исходов причины. Поэтому ситуация описывается множеством условных плотностей вероятностей р(С/П).

Статистическим решением называют процедуру, которая состоит в том, чтобы, наблюдая конкретное следствие Теория оптимального приема сигналов, указывать вызвавшую его причину Теория оптимального приема сигналов. Так как наблюдаемое следствие Теория оптимального приема сигналов может быть вызвано любым исходом причины П, то можно определить плотность вероятностей всех возможных исходов, которые могли вызвать данное следствие, т.е. определить функцию р(П/Теория оптимального приема сигналов). Эта функция называется апостериорной (послеопытной, установленной на основе имевшего место опыта или наблюдения) плотностью вероятностей причин.

Основой для принятия статистического решения является теорема Байеса


Теория оптимального приема сигналов(1)


где р(С/П) – условная плотность распределения следствий;

р(С) – безусловная плотность распределения следствий С, определяемая как


Теория оптимального приема сигналов.


Значение этого интеграла не зависит от П, поскольку интегрирование по этой переменной ведется по всей области ее существования Г.

Из (1) следует, что апостериорная плотность вероятностей причины р(П/С) зависит от априорной плотности вероятностей причины р(П) и условной плотности вероятностей следствий р(С/П). плотность р(С/П) является функцией П, ее называют функцией правдоподобия.

В теории статистических решений показано, что при принятии решения о конкретном значении действовавшей причины Теория оптимального приема сигналов, вызвавшей наблюдаемое (или заданное) следствие Теория оптимального приема сигналов, наименьшую ошибку можно совершить, если выносить решение в пользу того значения причины, при которой условное распределение р(П/Теория оптимального приема сигналов) имеет наибольшее значение. Такое правило принятия решения называется байесовским.

Если априорная плотность р(П) неизвестна, то самое большее, что можно сделать – предположить равномерность ее распределения. Тогда решение будет выноситься в пользу того значения причины Теория оптимального приема сигналов, при котором функция правдоподобия р(С/П) для наблюдаемого следствия Теория оптимального приема сигналов принимает наибольшее значение. Это означает, что такое значение причины считается наиболее правдоподобным среди других возможных значений. Подобная процедура принятия решения называется правилом максимального правдоподобия.

Применим изложенный подход к решению задачи оптимального приема сигналов.

Суть процедуры оптимального приема. Установлено, что между колебаниями и векторами можно установить взаимно-однозначное соответствие. Поэтому вместо колебаний можно рассматривать соответствующие векторы. Исходя из этого, будем считать причиной П случайный вектор х, соответствующий передаваемым сообщениям (или однозначно связанный с ним вектор сигналов s, переносящих эти сообщения), а следствием С – случайный вектор у, соответствующий смеси сигнала шума на входе приемника. С учетом сказанного (1) можно записать либо в виде


Теория оптимального приема сигналов(2)


либо в эквивалентном выражению (2) виде


Теория оптимального приема сигналов(3)


где x,s,y – векторы в многомерных пространствах, соответствующие сообщениям x(t), сигналам s(t)=s[x(t),t] и входным реализациям y(t)=s(t)+n(t).

При передаче дискретных сообщений множество сообщений x(t) может принимать только конечное число дискретных значенийТеория оптимального приема сигналов, которому однозначно соответствует конечное число различающихся сигналов Теория оптимального приема сигналов

Оптимальная процедура приема состоит в определении величин р(s/ y) для всех М значений Теория оптимального приема сигналов, сравнения этих величин между собой и выборе наибольшей из них. Значение Теория оптимального приема сигналов, которому соответствует максимальная величина р(Теория оптимального приема сигналов/y)

считается переданным сигналом и в соответствии с этим на выходе приемника воспроизводится сообщение Теория оптимального приема сигналов.

Основная трудность при решении такой задачи связана с нахождением апостериорного распределения р(s/ y). Наиболее детально задача решена для помехи типа гауссовского белого шума и набора сигналов, заранее известных в точке приема. Если при этом все сообщения Теория оптимального приема сигналов равновероятны и независимы, то выражение для р(s/y) можно привести к виду


Теория оптимального приема сигналов(4)


где Теория оптимального приема сигналов - односторонняя спектральная плотность мощности белого гауссовского шума;

А – некоторая константа.

Нахождение сигнала Теория оптимального приема сигналов, максимизирующего величину(4) при наблюдении на входе приемника некоторой реализации y(t), эквивалентно минимизации показателя экспоненты. Следовательно, оптимальный приемник должен выносить решение о приеме того сигналаТеория оптимального приема сигналов, при котором функция р(Теория оптимального приема сигналов/ y) достигает максимума, а величина


Теория оптимального приема сигналов(5)


соответственно становится минимальной.

Учитывая свойства векторного представления функций времени, от выражения(5), можно перейти к эквивалентному ему выражении.


Теория оптимального приема сигналов(6)


Выражение(5) или (6) представляет собой алгоритм работы оптимального приемника дискретных сообщений. Работая по этому алгоритму, оптимальный приемник должен вычислить значения величины Теория оптимального приема сигналов для всех М, используемых в системе сигналов Теория оптимального приема сигналов(где j-1,2,…,М), сравнить их между собой, выбрать наименьшее значение и воспроизвести на выходе соответствующее ему дискретное сообщение.

Иными словами, оптимальный приемник всегда воспроизводит на выходе сообщение, переносимое тем сигналом, к которому наиболее близка входная реализация y(t). В геометрической интерпретации это означает, что оптимальный приемник всегда относит вектор входной реализации y к ближайшему вектору сигнала.

Очевидно, что прием сигналов в присутствии шума может приводить к ошибкам, поскольку вектор входной реализации случаен и с некоторой вероятностью может попасть в любую точку пространства. Допустим, что вектор y, образованный из переданного сигнала Теория оптимального приема сигналов и шума n, попал в точку, наиболее близко расположенную к вектору сигнала Теория оптимального приема сигналов.

Если i=j, то приемник примет правильное решение, если же Теория оптимального приема сигналов, то решение приемника окажется ошибочным и вместо переданного сообщения Теория оптимального приема сигналов он ошибочно воспроизведет сообщение Теория оптимального приема сигналов.

Несмотря на то, что оптимальный приемник дискретных сообщений может допускать ошибочные решения, их вероятность у этого приемника минимальна по сравнению с любыми реальными приемниками таких сообщений.

Исследования показывают, что алгоритм может быть представлен в более удобном для схемной реализации виде и позволяет получить структурные схемы оптимальных приемников и выражения для расчета помехоустойчивости.


2 Оптимальный когерентный прием дискретных сигналов и его помехоустойчивость


В задаче распознавания сигналов, не содержащих случайных параметров(т.е. точно известных), «причинами» являются поступающие на вход сигналы Теория оптимального приема сигналов, вероятности которых равны, очевидно, вероятности появления соответствующих элементов Теория оптимального приема сигналов. «Следствиями» являются реализации суммы сигнала и помехи.

Количественно описание ситуации удобно производить с помощью рассмотрения векторов соответствующих колебаний. Вместо сигналов Теория оптимального приема сигналов будем оперировать однозначно соответствующими им векторами Теория оптимального приема сигналов, а вместо реализаций y(t) – векторами Теория оптимального приема сигналов, координаты которых определяются выражением, которое в нашем случае запишем так:


Теория оптимального приема сигналов(1)


В соответствии с теоремой Байеса


Теория оптимального приема сигналов(2)


Как было отмечено, решение обычно выносится в пользу сигнала, имеющего наибольшую апостериорную вероятность. Так как знаменатель не зависит от номера I, то решающее правило(алгоритм решения) определяется так:


Теория оптимального приема сигналов(3)


Следует обратить внимание на то, что в этих выражениях Теория оптимального приема сигналов-- плотности вероятностей, так как компоненты вектора y, как видно из (1), являются непрерывными случайными величинами.

В выражении (3) априорные вероятности Теория оптимального приема сигналов передачи элементов Теория оптимального приема сигналов должны быть заданы. Следовательно, необходимо определить только правдоподобия Теория оптимального приема сигналов. Это можно сделать исходя из того, что помеха аддитивна. Так как


Теория оптимального приема сигналов,


то плотность вероятности некоторого значения вектора Теория оптимального приема сигналов равна плотности вероятности, что вектор помехи n примет значение Теория оптимального приема сигналов. Отсюда следует, что еслиТеория оптимального приема сигналов- известная нам плотность вероятности вектора помехи, то


Теория оптимального приема сигналов(4)


Последний переход справедлив потому, что сигнал и помехи – независимые процессы.

Для дальнейшей конкретизации алгоритма необходимо задать определенный вид помехи. В большинстве случаев имеют место нормальные (гауссовские) или близкие к ним помехи. Вычисления в этом случае оказываются наиболее простыми. При гауссовских помехах каждая компонента вектора Теория оптимального приема сигналов распределена по нормальному закону


Теория оптимального приема сигналов(5)


В ряде случаев, в частности, при равномерном распределении энергии помехи по полосе рассматриваемых частот, компоненты вектора Теория оптимального приема сигналов являются независимыми случайными величинами. Тогда, как известно,


Теория оптимального приема сигналов(6)


При зависимых компонентах Теория оптимального приема сигналов выражение для Теория оптимального приема сигналов существенно усложняется и этот случай здесь рассматривать не будем.

Отметим, что Теория оптимального приема сигналов,т.е. является квадратом длины(нормы) вектора помехи.

Следовательно,


Теория оптимального приема сигналов (7)


Отбросив множители, не зависящие от номера сигнала i, решающее правило(3) можно представить в виде


Теория оптимального приема сигналов (8)

Приемник, работающий по алгоритму(8), называется байесовским или приемником максимальной апостериорной вероятности. Если апостериорные вероятности элементов Теория оптимального приема сигналов одинаковы, то решающее правило упрощается:


Теория оптимального приема сигналов (9)


Соответствующий приемник называется приемником максимального правдоподобия. Правило(9) раскрывает механизм работы оптимального приемника.

Получив вектор y, с помощью обработки реализации y(t) необходимо вычислить расстояние от его конца до концов векторов всех возможных сигналов Теория оптимального приема сигналов и вынести решение в пользу того сигнала, для которого величина Теория оптимального приема сигналов будет минимальной, так как именно в этом случае функция (9) достигнет максимума. Коротко можно сказать, что оптимальный приемник выносит решение в пользу сигнала «ближайшего» к y(t).

Выражение(9) достигает максимума при минимуме показателя экспоненты. Следовательно, правило (9) можно записать в ином виде:


Теория оптимального приема сигналов


или, учитывая векторное представление


Теория оптимального приема сигналов(10)


Здесь первый член в скобках не зависит от номера i. Последний член – есть энергия i-того сигнала. Если энергии всех сигналов одинаковы, что обычно имеет место, то этот член также не зависит от номера i. Таким образом, решающее правило можно записать так:


Теория оптимального приема сигналов(11)


Справедливость такого перехода обусловлена тем, что второй член в (10) имеет знак минус и выражение (10) минимизируется, если этот член достигает максимума. Выражение(11) уже позволяет определить структуру оптимального приемника. Однако удобнее это выражение представить в другом виде. Действительно, учтем, что


Теория оптимального приема сигналов(12)


Тогда окончательно получим


Теория оптимального приема сигналов(13)


Эта структура называется оптимальным корреляционным приемником, так как основная операция, лежащая в его основе, это операция корреляции y(t) со всеми возможными сигналами Теория оптимального приема сигналов.

Из проведенного рассмотрения следует, что в состав оптимального приемника должны входить генераторы, вырабатывающие образцы сигналовТеория оптимального приема сигналов, тождественные тем, которые используются на передатчике. Кроме того, между работой генераторов передатчика и приемника должна соблюдаться синхронность и синфазность, т.е. обеспечиваться идеальная синхронизация.

3 Оптимальный некогерентный прием дискретных сигналов и его помехоустойчивость


Ранее было показано, что если импульсный отклик линии представляет собой Теория оптимального приема сигналов-функцию, то такая линия только ослабляет передаваемый сигнал, не изменяя его формы. Пусть ослабление сигнала а — медленно изменяющаяся случайная величина, практически постоянная на интервалах длительностью Тс. Если бы а была постоянной и известной величиной, то осуществлялся бы прием точно известных сигналов с решающим правилом


Теория оптимального приема сигналов(1)


При случайном значении а следует усреднить результат по закону распределения р(а); тогда при равновероятностных сигналах решающее правило примет вид


Теория оптимального приема сигналов(2)


Из соотношения (2) следует, что при таком подходе структура оптимального приемника останется прежней (инвариантной к случайным значениям а). Вероятность же ошибок (при прочих равных условиях) возрастает. При случайном значении а эти выражения необходимо усреднить по р(а). В частности, для противоположных сигналов усредненное значение вероятности ошибки Р0ш должно определяться в соответствии с выражением


Теория оптимального приема сигналов(3)

Для распределения р(а), подчиняющегося закону Рэлея можно показать, что


Теория оптимального приема сигналов(4)


где Теория оптимального приема сигналов. Нетрудно видеть, что при одинаковых значениях а вероятность ошибок, рассчитанная по формуле (4), значительно превышает вероятность ошибок. Физическая причина увеличения вероятности ошибок ясна: возрастание а приводит к некоторому уменьшению вероятности ошибок, однако падение а приводит к значительному возрастанию этой вероятности вследствие отмеченного выше «порогового эффекта».

Рассмотрим далее случай, когда линия вносит в сигналы только случайный сдвиг начальной фазы, имеющий место в подавляющем большинстве реальных ситуаций. При этом, если


Теория оптимального приема сигналов


то сигналы на выходе линии (входе приемника)


Теория оптимального приема сигналов(5)


Выходные сигналы (5) можно представить в виде двух составах со случайными амплитудами, но постоянными фазами:


Теория оптимального приема сигналов(6)


где а и Ь могут, в отличие от предыдущего случая, принимать и положительные и отрицательные значения.

Из (6) видно, что действие линии можно свести к появлению в точке приема двух составляющих сигнала: косинусоидальной и синусоидальной. Анализ этого случая, связанный с выполнением усреднения по обоим случайным параметрам а и Ь, довольно громоздок.

Приведем конечное выражение для решающего правила:


Теория оптимального приема сигналов(7)


Из него следует, что оптимальный приемник производит корреляцию принятой реализации у(t) с образцами обоих слагаемых сигнала. Возведение результатов в квадраты перед сложением и выбором максимума вызвано тем, что величины а и Ь могут быть как положительными, так и отрицательными.

Этот алгоритм можно реализовать и с помощью согласованных фильтров. Здесь содержатся детекторы огибающих выходных колебаний согласованных фильтров, после которых и производится отсчет. Физика процессов также ясна: если на вход согласованного с сигналомТеория оптимального приема сигналов фильтра подать сдвинутый по фазе сигнал, то в силу линейности фильтра произойдет запаздывание колебания и на выходе фильтра. Поэтому отсчет в момент t= TС не совпадет с максимумом напряжения. В силу случайности этого сдвига наилучшей стратегией оказывается отсчет огибающей, а не мгновенного значения колебания.

Сравним случай приема сигналов при отсутствии случайной фазы (т. е. точно известных по форме сигналов) и при наличии случайной фазы. Первый случай принято называть когерентным, а второй — некогерентным приемом (именно этот случай чаще всего имеет место на практике).


Теория оптимального приема сигналов(8)

Сравнивая выражения для когерентного и некогерентного приема при одинаковом значении вероятности ошибки, можно установить, какой энергетический проигрыш дает применение некогерентного приема по сравнению с когерентным. Расчеты показывают, что для обеспечения Теория оптимального приема сигналов при некогерентном приеме требуется увеличение энергии сигнала на 15-30% по сравнению с когерентным, т. е. проигрыш невелик.

В более общем случае неидеальность линии обусловливает случайные изменения амплитуды и фазы. Вероятность ошибок от этого увеличивается, так как независимо действуют оба рассмотренных фактора. Можно показать, что в этом случае вероятность ошибок при распознавании бинарных ортогональных сигналов равна


Теория оптимального приема сигналов(9)


где Теория оптимального приема сигналов - среднее значение энергии принимаемых сигналов.


4 Оптимальный и квазиоптимальный прием непрерывных сигналов и его помехоустойчивость


Перейдем к рассмотрению особенностей оптимального приема при передаче непрерывных сообщений. В этом случае передаваемое сообщение х(t) может иметь очень большое (практически бесконечное) число возможных реализаций, каждая из которых представляет собой непрерывную функцию времени. Поэтому в геометрической интерпретации сообщениям и сигналам соответствуют не отдельные точки (или векторы с фиксированной длиной) в многомерных пространствах(как это было при передаче дискретных сообщений), а континуум линий сообщений и сигналов, описываемых концами векторов х и s. Исследования показывают, что в этой ситуации оптимальный прием связан с формированием на приемной стороне такого сигнала s(t), который бы обеспечивал максимум максиморум апостериорной плотности вероятности, определяемой выражением.

Применительно к каналу с гауссовским белым шумом и равновероятными сообщениями указанное условие сводится к минимизации величины


Теория оптимального приема сигналов(1)


Чтобы сформировать сигнал s(t), на приемной стороне нужно использовать принятое сообщение х(t), которое представляет собой результат обработки входной реализации у(t) приемником. Сообщение х(t) называют оценкой переданного сообщения х(t). Формирование сигнала s(t) представляет собой модуляцию несущей сигнала колебанием х(t) по тому же закону и с теми же параметрами, что и на передающей стороне.

Сформированный в приемнике сигнал s(t) используется при обработке входной реализации у(t) и последующем формировании оценки сообщения х(t), которая, в свою очередь, необходима для создания сигнала s(t). Нетрудно понять, что указанная процедура может быть выполнена только в устройстве следящего типа, с использованием обратной связи по формируемой оценке сообщения х(t).

В геометрической интерпретации минимизация выражения означает, что оптимальный приемник всегда относит входную текущую реализацию у к ближайшей линии сигналов и в соответствии с этим формирует на выходе оценку сообщения х(t). Из-за влияния шума оценка х(t) отличается от переданного сообщения х(t). Это отличие обычно характеризуют величиной среднеквадратической ошибки (см. л. 1.3). Оптимальный прием обеспечивает минимальное значение этой ошибки по сравнению с любым другим способом приема.

Теория оптимального приема непрерывных сообщений, часто называемая также теорией оптимальной демодуляции аналоговых видов модуляции, или теорией нелинейной фильтрации, представляет важный раздел общей теории связи, основы которой были заложены в работах А.Н. Колмогорова, В.А. Котельникова, Н. Винера, К. Шеннона и ряда других отечественных и зарубежных ученых.

Задачей приемного устройства являются извлечение переданного сообщения х(t) из входного колебания у(t). Однако из-за помех и искажений эта процедура не может быть выполнена точно, и восстановить сообщение на выходе приемника можно только приближенно. Такое приближенное сообщение называют оценкой и обозначают х(t).

Критерием близости х(t) и х(t) в теории и технике связи принята СКО, в соответствии с которой


Теория оптимального приема сигналов(2)


где скобки <.> означают операцию усреднения реализации по времени.

Оптимальный приемник непрерывных сообщений обеспечивает наименьшую возможную в заданных условиях величину СКО. Определим эту ошибку.

Основываясь на теории ортогональных разложений передачу любого непрерывного сообщения можно заменить передачей совокупности числовых коэффициентов (параметров). Пусть непрерывное сообщение х(t) представлено рядом


Теория оптимального приема сигналов(3)


При известной системе базисных функций передача сообщений x(t) эквивалентна передаче п значений коэффициентов Теория оптимального приема сигналовСледовательно, передаваемый сигнал можно рассматривать как функцию времени и коэффициентов Теория оптимального приема сигналов, т. е.


Теория оптимального приема сигналов(4)


Влияние помех приведет к тому, что каждый коэффициент Теория оптимального приема сигналов, будет принят с некоторой погрешностью. В результате оценка сообщения примет вид


Теория оптимального приема сигналов(5)


где колебание Теория оптимального приема сигналов нужно рассматривать как помеху на выходе приемника.

Если единственной причиной появления этой помехи является белый гауссовский шум на входе приемника, то нетрудно убедиться в том, что помеха Теория оптимального приема сигналов имеет нормальное распределение. В.А.Котельников показал, что в режиме надпорогового оптимального приема спектральная плотность такой помехи определяется выражением


Теория оптимального приема сигналов(6)


Средний квадрат ошибки при оптимальном приеме непрерывных сообщений с учетом (2) можно найти по формуле


Теория оптимального приема сигналов(7)

Для выбранного (или заданного) вида модулированных сигналов помехоустойчивость оптимального приема будет наиболее высокой по сравнению с любым возможным реальным способом приема этих же сигналов. Поэтому такую помехоустойчивость часто называют потенциальной (предельно возможной для данного вида сигналов).

При анализе потенциальной помехоустойчивости полезно различать прямые виды модуляции, у которых передаваемое сообщение x(t) непосредственно входит в выражение для сигнала Теория оптимального приема сигналови интегральные, у которых сигнал — функция интеграла от передаваемого сообщения, т.е. Теория оптимального приема сигналов.

Рассмотрим особенности расчета потенциальной помехоустойчивости для некоторых случаев.

Помехоустойчивость сигналов с амплитудной модуляцией. Пусть для передачи непрерывных сообщений используется АМ сигнал. В этом случае


Теория оптимального приема сигналов(8)

Теория оптимального приема сигналов(9)

Теория оптимального приема сигналов(10)


В (8) учтено, что соs2а = 0,5(1+соs2а) и интеграл распадается на две составляющих, одна из которых (с частотой 2w0) близка к нулю и отброшена.

Из (9) следует, что при АМ сигнале спектральная плотность помехи на выходе оптимального приемника постоянна. Эта особенность характерна не только для АМ, но и всех других сигналов с прямыми видами модуляции.

Приняв во внимание, что средние мощности сигнала и шума на входе приемника

Теория оптимального приема сигналов Теория оптимального приема сигналов


где Теория оптимального приема сигналов- ширина спектра АМ сигнала, определяющая полосу пропускания приемника, имеем


Теория оптимального приема сигналов(11)


В соответствии с (11) потенциальная помехоустойчивость АМ сигналов в основном определяется отношением сигнала к шуму на входе приемника. Для получения малых значений ошибки это отношение должно быть весьма большим.

Помехоустойчивость сигналов с угловой модуляцией. Пусть для передачи непрерывных сообщений используются сигналы с угловой модуляцией. Сначала рассмотрим случай фазовой модуляции.

Из(13) следует, что при ФМ сигнале, как и при АМ, спектральная плотность помехи на выходе постоянна, поскольку ФМ принадлежит к сигналам с прямой модуляцией.

При ЧМ сигнале спектральная плотность помехи на выходе имеет квадратичную зависимость от частоты. Такая зависимость характерна для всех интегральных видов модуляции. В этом случае


Теория оптимального приема сигналов(12)

Теория оптимального приема сигналов(13)


Из (13) следует, что при ФМ сигнале, как и при АМ, спектральная плотность помехи на выходе постоянна, поскольку ФМ принадлежит к сигналам с прямой модуляцией.

Теория оптимального приема сигналов(14)


где Теория оптимального приема сигналов и Теория оптимального приема сигналов-- средние мощности шума и сигнала на входе приемника; Теория оптимального приема сигналов -- полоса частот, занимаемая спектром ФМ сигнала.

Проведем теперь рассмотрение для ЧМ сигнала. Он относится к интегральному виду модуляции.


Теория оптимального приема сигналов(15)


где Теория оптимального приема сигналов - текущая частота, принимающая значения в интервале Теория оптимального приема сигналов

Спектральная плотность помехи на выходе оптимального приемника ЧМ сигналов равна


Теория оптимального приема сигналов(16)


Эта формула показывает, что при ЧМ сигнале спектральная плотность помехи на выходе имеет квадратичную зависимость от частоты. Такая зависимость характерна для всех интегральных видов модуляции.

Средний квадрат ошибки при приеме ЧМ сигналов можно записать так:


Теория оптимального приема сигналов(17)


где Теория оптимального приема сигналов - индекс частотной модуляции.

Проанализируем полученные результаты. Из (14) и (17) следует, что при ФМ и ЧМ помехоустойчивость приема можно повысить только за счет увеличения индекса модуляцииТеория оптимального приема сигналов (не увеличивая при этом среднюю мощность сигнала Рс). Однако увеличение Теория оптимального приема сигналов приводит к расширению спектра ФМ и ЧМ сигналов и соответственно к необходимости использовать более широкую полосу частот. Это уменьшает отношение сигнала к шуму на входе приемникаТеория оптимального приема сигналовПри некотором значении индекса Теория оптимального приема сигналоввеличина qс снизится до пороговой величины,Теория оптимального приема сигналов , при которой условия надпорогового приема нарушаются и начинает резко возрастать вероятность аномальных ошибок Теория оптимального приема сигналов. В этом случае формулами (14) и (17) пользоваться уже нельзя.

Похожие работы:

  1. • История развития теории оптимального приема многопозиционных ...
  2. • Закономерность изменения эффективности накопления сигнала ...
  3. • Теория электрической связи
  4. • Прикладная теория информации
  5. • Помехоустойчивость систем связи
  6. • Теории электрической связи: Расчет приемника, оптимальная ...
  7. • Индивидуальный прием программ спутникового вещания
  8. • Система наведения ракеты ФКР-1
  9. • Теория оптимального фуражирования
  10. • Технология цифровой связи
  11. • Модель радиотехнической передачи информации. Источник ...
  12. • Расчет линии связи для системы телевидения
  13. • Исследование методов разнесенного приема в ...
  14. • ТЭС - расчет канала
  15. • Д74. Самолетные средста РЭБ
  16. • Оптимальная фильтрация сигналов
  17. • Теория электрической связи
  18. • Взаимодействие анализаторов при приеме информации человеком
  19. • Радиоприемное устройство для приема сигналов типа ...
Рефетека ру refoteka@gmail.com