МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра ПТ
Расчетное задание по дисциплине
«Источники и системы теплоснабжения предприятия».
Выполнил: Галиев И.Э.
Группа: ЭКП-2-06
Вариант: 2
Преподаватель:
Горбунова Т.Г.
КАЗАНЬ 2010
Задание 1
Определить для условий г. Воронеж расчетные тепловые потоки на отопление, вентиляцию и горячее водоснабжение пяти кварталов района города.
F1 = 17 га;
F2 = 22 га;
F3 = 25 га;
F4 = 28 га;
F5 = 30 га.
Расчетная температура наружного воздуха для проектирования систем отопления t0 = -26 0C. Плотность населения Р = 370 чел/га. Общая площадь жилого здания на одного жителя fобщ=18 м2/чел. Средняя за отопительный период норма расхода горячей воды на одного жителя в сутки а=105 л/сутки.
Решение:
Расчет тепловых потоков сводим в таблицу 1. В графы 1, 2, 3 таблицы заносим соответственно номера кварталов. Их площади FКВ в гектарах, плотность населения.
Число жителей в кварталах m, определяем по формуле:
.чел.
чел,
чел,
чел,
чел,
чел.
Общую площадь жилых зданий кварталов А, определяем по формуле:
,
м2
,
м2,
,
м2,
,
м2,
,
м2,
,
м2.
Величину удельного показатель теплового потока на отопление жилых зданий q = 87 Вт/м2 , при t0 = -26 0C, находим расчетные тепловые потоки на отопление жилых и общественных зданий кварталов по формуле:
,
МВт
при К1=0,25
,
МВт
,
МВт
,
МВт
,
МВт
,
МВт.
Максимальные тепловые потоки на вентиляцию общественных зданий кварталов определяем по формуле:
МВт,
при К1 = 0,25, К2 = 0,6
, МВт
, МВт
, МВт
, МВт
, МВт.
Показатель теплового потока на горячее водоснабжение с учетом общественных зданий при норме одного жителя, а=105 л/сутки составит qhm=376 Вт.
Среднечасовые тепловые потоки на горячее водоснабжение жилых и общественных зданий кварталов определяем по формуле:
,
МВт
,
МВт
МВт
,
МВт
,
МВт
,
МВт
Суммарный тепловой поток по кварталам QΣ, определяем суммированием расчетных тепловых потоков на отопление, вентиляцию и горячее водоснабжение:
,
МВт
,
МВт
,
МВт
,
МВт
,
МВт
,
МВт
,
МВт.
Таблица 1. Расчет тепловых потоков.
№ квар тала |
Площадь квартала, FКВ, га |
Плотность населения, Р, чел/га |
Кол-во жителей, m, чел |
Общая площадь, А, м2 | Тепловой поток, МВт | |||
Q0 | Qv | QHM | QΣ | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 17 | 370 | 6290 | 113220 | 12,3 | 1,5 | 2,37 | 16,17 |
2 | 22 | 370 | 8140 | 146520 | 15,9 | 1,9 | 3,06 | 20,86 |
3 | 25 | 370 | 9250 | 166500 | 18,1 | 2,2 | 3,48 | 23,78 |
4 | 28 | 370 | 10360 | 186480 | 20,3 | 2,4 | 3,9 | 26,6 |
5 | 30 | 370 | 11100 | 199800 | 21,7 | 2,6 | 4,17 | 28,47 |
Σ | 88,3 | 10,6 | 16,98 | 115,88 |
Задание 2
Для климатических условий г. Воронеж выполняем расчет и построение графиков часовых расходов теплоты на отопление вентиляцию и горячее водоснабжение, а также годовых графиков теплопотребления по продолжительности тепловой нагрузки и по месяцам. Расчетные тепловые потоки района города ΣQ0 = 88,3 МВт, на вентиляцию ΣQV = 10,6 МВт, на горячее водоснабжение ΣQHM=16,98 МВт. Расчетная температура наружного воздуха для проектирования систем отопления t0 = -26 0C.
Решение:
Определим часовые расходы на отопление:
,
МВт
t0 (-26 0 C
):
,
МВт
t0 (-14 0 C
):
,
МВт
t0 (-3,4 0C
):
,
МВт
t0 (0 0 C
):
,
МВт
t0 (+8 0C
):
,
МВт.
Определим часовые расходы на вентиляцию:
,
МВт
t0 (-26 0 C
):
,МВт
t0 (-14 0 C
):
,МВт
t0 (-3,4 0C
):
,МВт
t0 (0 0 C
):
,МВт
t0 (+8 0C
):
,МВт.
Для построения
часового графика
расхода теплоты
на горячее
водоснабжение,
определим,
используя
формулу пересчета,
среднечасовой
расход теплоты
на горячее
водоснабжение
для неотопительного
периода (=0,8,
tЛ=15 0C,
tЗ=50C):
,
МВт.
Отложив на графике значения Q0 и QV при tн = + 8 0C, а также значения ΣQ0 и ΣQV при tН=t0=-26 0C и соединив их прямой, получим графики Q0=f(tH) и QV=f(tH).
График среднечасового расхода теплоты на горячее водоснабжение не зависит от температуры наружного воздуха, и будет представлять собой прямую, параллельную оси абсцисс с ординатой 16,98 МВт для отопительного периода и с ординатой 10,87 МВт для неотопительного периода. Просуммировав ординаты часовых графиков на отопление, вентиляцию и горячее водоснабжение для диапазон температур tН=+8ч-26 0C и соединив их с прямой получим суммарный часовой график QΣ=f(tH). Для построения годового графика теплоты по продолжительности тепловой нагрузки и находим продолжительность отопительного периода для г. Воронеж. Данные сводим в таблицу 3.
Таблица 2.
Число часов за отопительные период со среднегодовой наружного воздуха, равной
Продолжительность стояния | Температура наружного воздуха | ||||||||
-35 | -30 | -25 | -20 | -15 | -10 | -5 | 0 | +8 | |
n | - | 7 | 34 | 144 | 470 | 1020 | 1850 | 3380 | 4780 |
График по
продолжительности
тепловой нагрузки
строится на
основании
суммарного
часового графика
QΣ=f(tH).
Для этого из
точек на оси
температур
(+8, 0, -5, -10, -15, -20, -25; -30; -35) восстанавливаем
перпендикуляры
до пересечения
с линией суммарного
часового графика
и из точек
пересечения
проводим
горизонтальные
прямые до пересечения
с перпендикулярами,
восстановленных
из точек на оси
продолжительности.
Соответствующих
данных температурам.
Соединив найденные
точки плавной
кривой, получим
график по
продолжительности
тепловой нагрузки
за отопительный
период в течение
5210 часов. Затем
построим график
по продолжительности
тепловой нагрузки
за неотопительный
период. Для
чего проведем
прямую параллельную
оси абсцисс
с ординатой
равной
=10,87
МВт до расчетной
продолжительности
работы системы
теплоснабжения
в году равной
8760 часов.
Для построения
годового графика
теплового
потребления
по месяцам
находим среднемесячные
температуры
наружного
воздуха. Затем
используя
формулы пересчета,
определяем
часовые расходы
теплоты на
отопление и
вентиляцию
для каждого
месяца со
среднемесячной
температурой
ниже +80С. Определим
суммарные
расходы теплоты
для месяцев
отопительного
периода как
сумму часовых
расходов на
отопление,
вентиляцию
и горячее
водоснабжение.
Для месяцев
неотопительного
периода (с
>+8)
суммарный
расход теплоты
будет равен
среднечасовому
расходу теплоты
на горячее
водоснабжение
=10,87
МВт.
Выполним расчеты по месецам:
,
МВт
МВт
МВт
МВт
МВт
МВт
МВт.
,
МВт
МВт
МВт
МВт
МВт
МВт
МВт.
,
МВт.
Аналогично выполняем расчёты для всех месяцев отопительного периода. Расчеты вводим в таблицу 3. исходя из полученных данных, строим годовой график теплового потребления по месяцам.
Таблица 3. Среднемесячные расходы теплоты по месяцам года
Средне-часовые расходы теплоты по месяцам |
Среднемесячная температура наружного воздуха | |||||||||||
Январь | Февраль | Март | Апрель | Май | Июнь | Июль | Август | Сентябрь | Октябрь | Ноябрь | Декабрь | |
-9,3 | -9,2 | -4,1 | +5,9 | +14 | +18 | - | - | +12,8 | +5,6 | -1,1 | -6,7 | |
Q0, МВт | 56,24 | 56,05 | 46,26 | 27,07 | - | - | - | - | - | 27,64 | 40,50 | 51,25 |
QV, МВт | 6,39 | 6,36 | 5,07 | 2,55 | - | - | - | - | - | 2,63 | 4,32 | 5,73 |
QHM, МВт | 16,98 | 16,98 | 16,98 | 16,98 | 10,87 | 10,87 | 10,87 | 10,87 | 10,87 | 16,98 | 16,98 | 16,98 |
QΣ, МВт | 79,61 | 79,39 | 68,31 | 46,6 | 10,87 | 10,87 | 10,87 | 10,87 | 10,87 | 47,25 | 61,8 | 73,96 |
Задание 3
Построить для закрытой системы теплоснабжения график центрального качественного регулирования отпуска теплоты по совмещённой нагрузке отопления и горячего водоснабжения (повышенный или скорректированный температурный график). Приняты расчётные температуры сетевой воды в подающей магистрали в τ1=150 0С, обратной магистрали τ2=70 0С, после элеватора τ3=95 0С. Расчётная температура наружного воздуха для проектирования отопления t0=-26 0C. Расчётная температура воздуха внутри помещения ti=20 0C. Расчётные тепловые потоки принимаем ΣQ0 = 88,3 МВт, ΣQV = 10,6 МВт, ΣQHM=16,98 МВт. Температура горячей воды в системах горячего водоснабжения tН = 60 0C, температура холодной воды tС=50C. Балансовый коэффициент для нагрузки горячего водоснабжения αБ=1,2. Схема включения водоподогревателей систем горячего водоснабжения двухступенчатая последовательная.
Решение:
Предварительно выполним расчёт и построение отопительно-бытового графика температур с температурой сетевой воды в подающем трубопроводе для точки излома τ2=70 0С. Значение температур сетевой воды для систем отопления τ10; τ20; τ30 определим, используя расчётные зависимости для температур наружного воздуха tН= +8; 0; -3,4; -14; -26 0C.
Определяем, значение величин ∆t, ∆τ, θ:
tH= +8 0C:
0С
0С
0С
tH= 0 0C:
0С
0С
0С
tH= -3,4 0C:
0С
0С
0С
tH= -14 0C:
0С
0С
0С
tH= -26 0C:
0С
0С
0С
Используя
расчётные
данные и приняв
минимальную
температуру
сетевой воды
в подающем
трубопроводе
0С,
построим
отопительно-бытовой
график температур.
Точке излома
температурного
графика будут
соответствовать
температуры
сетевой воды
0С,
0С,
0С
температура
наружного
воздуха
0
0С. Полученные
значения температур
сетевой воды
для отопительно-бытового
графика сведём
в таблицу 4. Далее
приступаем
к расчёту повышенного
температурного
графика. Задавшись
величиной
недогрева ∆tH=7
0С определим
температуру
нагреваемой
водопроводной
воды
после водоподогревателя
первой ступени
0С
Балансовая
нагрузка горячего
водоснабжения
:
МВт
Суммарный перепад температур сетевой воды δ в обеих ступенях водоподогревателей:
0С
Перепад
температур
сетевой воды
в водоподогревателе
первой ступени
для диапазона
температур
наружного
воздуха от
tH=+8 0С до tH=-3,4
0С
0С.
Для указанного
диапазона
температур
наружного
воздуха перепад
температур
сетевой воды
во второй ступени
водоподогревателя
.
0С
Величины
δ1
и δ2
для диапазона
температур
наружного
воздуха tH от
0С
и
0С.
tH= +2,5 0C:
0С
0С.
tH= -3,4 0C:
0С
0С.
tH= -14 0C:
0С
0С.
tH= -26 0C:
0С
0С.
Полученные значения величин δ1 и δ2 сведем в таблицу 4.
Температуры сетевой воды τ1п и τ2п в подающем и обратном трубопроводах для повышенного температурного графика:
tH= +8ч+2,50C:
0С
0С
tH= -3,4 0C:
0С
0С
tH= -14 0C:
0С
0С
tH= -26 0C:
0С
0С
Полученные значения величин τ1п и τ2п сведем в таблицу 4.
Для построения
графика температуры
сетевой воды
в обратном
трубопроводе
после калориферов
систем вентиляции
в диапазоне
температур
наружного
воздуха tH=
+8ч+2,5 0C:
Определяем значение τ2v для tH= +8 0C. Предварительно зададимся значением τ2v= 170С. Определяем температурные напоры в калорифере ∆tk и ∆tk/ cоответственно для tH= +8 0C и tH= +2,5 0C:
0С
0С
Вычисляем левые и правые части уравнения:
Левая часть:
Правая часть:
.
Поскольку численное значение правой и левой частей уравнения близки по значению, примем значение τ2v= 170С, как окончательное.
Для систем вентиляции с рециркуляцией воздуха, температуру сетевой воды после калориферов τ2v для tH= t0 = -26 0C .
Здесь значения
;
;
соответствуют
tH=tм=-140C.
Поскольку
данное выражение
решается методом
подбора, предварительно
зададимся
значением
τ2v=51
0С.
Определим
значения
и
.
0С
0С
Далее вычислим левую часть:
Левая часть:
Поскольку левая часть выражения близка по значению правой, принятое предварительно значение τ2v=51 0С будем считать окончательным. Используя данные таблицы 4 построим отопительно-бытовой и повышенный температурные графики регулирования (рис. 3).
Таблица 4. Расчет температурных графиков регулирования для закрытой системы теплоснабжения
tH | τ10 | τ20 | τ30 | δ1 | δ2 | τ1п | τ2п | τ2v |
+8 | 70,0 | 37,84 | 46,8 | 7,4 | 9,8 | 79,1 | 26,55 | 17 |
+2,5 | 70,0 | 37,84 | 46,8 | 7,4 | 9,8 | 79,1 | 26,55 | 37,84 |
-3,4 | 84,73 | 44,9 | 57,34 | 5,3 | 11,9 | 90,03 | 45,4 | 44,9 |
-14 | 115,51 | 56,74 | 75,1 | 1,8 | 15,4 | 116,9 | 41,34 | 56,74 |
-26 | 130,0 | 70,0 | 95,0 | 2,12 | 19,32 | 132,12 | 50,68 | 51 |