Рефетека.ру / География

Курсовая работа: Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом

Оглавление


Введение

1. Радиофизические характеристики атмосферы и их связь с метеопараметрами

2. Радиорефракция

2.1 Виды радиорефракции

2.2 Методы учета радиорефракции

2.2.1 Метод эквивалентного радиуса Земли

2.2.2 Метод приведенного коэффициента преломления

3. Исходные материалы и методика их обработки

4. Вертикальные профили радиометеорологических величин

4.1 Вертикальный профиль средней температуры июля

4.2 Вертикальные профили средней относительной влажности и средней упругости водяного пара июля

4.3 Вертикальный профиль среднего показателя преломления воздуха в июле

4.4 Повторяемость различных видов рефракции в июле

Заключение

Список использованной литературы

Приложения


Введение


Влияние метеорологических условий на распространение радиоволн различных диапазонов было установлено еще на заре современной радиофизики, однако теоретическая сложность и экспериментальные трудности изучения этого влияния в течение длительного времени ограничивали результаты исследований лишь некоторыми, большей частью качественными выводами.

Широкое развитие технических средств радиолокации в годы войны и последующее их применение в науке и технике, возникновение телевидения, космической радиосвязи, телеуправления поставили исследователей перед острой необходимостью изучить закономерности распространения радиоволн с учетом влияния всех слоев атмосферы как среды с переменным показателем преломления.

В применении к тропосфере это означало в первую очередь развитие широких теоретических и экспериментальных исследований закономерностей распространения ультракоротких волн (УКВ) в зависимости от метеорологических условий. Поскольку в обычных условиях УКВ не отражаются ионосферой, изменчивость характеристик принятого поля объясняют изменчивостью условий их распространения в нижней атмосфере, в частности вариациями показателя преломления воздуха.

Все существующие теории принимают показатель преломления за основной параметр, определяющий особенности распространения УКВ в тропосфере. Зависимость показателя преломления воздуха от высоты над земной поверхностью вызывает искривление траектории волны, излученной горизонтально. В нормальных условиях эта траектория искривляется в направлении к Земле, и кривизна ее составляет около одной четверти кривизны земной поверхности. При некоторых особых метеорологических условиях энергия волны может быть сосредоточена в узких слоистых областях вблизи поверхности Земли, так что далеко за пределами радиогоризонта наблюдается аномально высокая напряженность поля. В других условиях переходный слой между воздушными массами может вызвать отражение энергии радиоволн. В дополнение к эффектам, связанным со слоистостью, атмосфера всегда в большей или меньшей степени турбулентна, что приводит к рассеянию радиоволн и уширению диаграмм направленности антенн.

Изучение атмосферы с точки зрения влияния ее на распространение УКВ является задачей радиометеорологии. Ее составными элементами являются некоторые области радиофизики (распространение радиоволн, техника сверхвысоких частот) и метеорология. Радиометеорологические исследования активно проводятся несколько десятилетий. Однако до сих пор актуальными являются исследования, посвященные пространственно-временным изменениям коэффициента преломления (определяемого метеорологическими величинами) в различных районах и на разных высотах в атмосфере [1].

Курсовая работа посвящена исследованию метеорологических величин и коэффициента преломления, рассчитанного по данным о температуре воздуха, влажности и атмосферному давлению, в нижнем слое атмосферы в городе Хабаровск за июль. Целью данной работы является определение влияния метеорологических условий в летний период на распространение УКВ в выбранном районе.


1. Радиофизические характеристики атмосферы и их связь с метеопараметрами


Радиофизическими характеристиками атмосферы являются диэлектрическая проницаемость и коэффициент преломления, которые между собой однозначно связаны. В общем случае диэлектрическая проницаемость и коэффициент преломления являются величинами комплексными [2].

Предполагая выполнимость закона Дальтона о парциальных давлениях, можно получить выражение для диэлектрической проницаемости (Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом) смеси полярных и неполярных газов. Для тропосферы необходим, в частности, учет влияния СО2, сухого воздуха (неполярные молекулы) и водяного пара (полярные молекулы):


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (1)


где Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом - постоянные величины,

Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом - давление сухого воздуха,

Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом - парциальное давление водяного пара в гПа,

Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом - парциальное давление СО2,

Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом– температура в °К [1].

Значения диэлектрической проницаемости воздуха незначительно превышают единицу. Для волн длиной более 1 см электропроводность нижней части атмосферы (тропосферы) очень мала, и диэлектрическую проницаемость можно считать величиной действительной [2].

При этом коэффициент преломления (n) определяется выражением:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом (2)

где Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом - магнитная проницаемость (для воздуха ее полагают равной единице). Поскольку


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом (3)


можно использовать аппроксимацию:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом. (4)


В силу малости величины n – 1 коэффициент преломления удобно выражать в N – единицах:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (5)

где К1, К2, К3, К4 – постоянные.

Постоянные коэффициенты равны [1]:

К1=77,607 Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом 0,13 °К/мб

К2=71,6 Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом 8,5 °К/мб

К3=(3,747 Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом 0,031) · 105 (°К)2/мб.

Итак, окончательное уравнение для показателя преломления, если ограничиться для констант тремя значащими цифрами, имеет вид:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом (6)


Значения постоянных в этой формуле рекомендованы Смитом и Вейнтраубом для вычисления N с точностью 0,5%.

Уравнение упрощается, если положить


P = Pd + e:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом. (7)


Для практического использования в радиометеорологии это соотношение можно упростить, представив его в виде двучлена:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (8)


что дает значение N с точностью порядка 0,02% для интервала температур от Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом 50°C до + 40°C.

Обычно уравнение (8) записывают в виде:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом. (9)


Значения коэффициента преломления, рассчитанные по формуле (9), зависят от точности измерения метеорологических элементов. При радиозондировании измеряется не парциальное давление (упругость водяного пара) е, а относительная влажность f, которая легко может быть пересчитана в парциальное давление е. Для этого используется следующая формула:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (10)


где t – температура в °C,

f – относительная влажность воздуха в % [1].

В реальной атмосфере вследствие изменений температуры, давления и влажности происходят сложные пространственно – временные изменения коэффициента преломления. Различают сезонные и суточные изменения коэффициента преломления в тропосфере, а также случайные изменения, обусловленные атмосферной турбулентностью. Сезонные изменения обусловлены, главным образом, годовым ходом влажности с максимумом в теплое полугодие. Наибольшие изменения коэффициента преломления имеют место в нижнем трехкилометровом слое атмосферы, что обусловлено большими изменениями в этом слое температуры и влажности. Суточные изменения коэффициента преломления атмосферы наиболее значительны в нижнем километровом слое и могут достигать 10 – 15N – ед. Они также обусловлены большим суточным ходом температуры и влажности воздуха. Случайные флюктуации коэффициента преломления связаны с атмосферной турбулентностью и могут достигать значения 10N – ед.

Обычно учитывают изменение коэффициента преломления атмосферы только по высоте, пренебрегая горизонтальной изменчивостью.

Для характеристики вертикальной изменчивости коэффициента преломления пользуются понятием вертикального градиента:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (11)


или


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (12)


где n1 и n2 – значения коэффициента преломления на нижней и верхней границе слоя,

H1 и H2 – высоты нижней и верхней границ слоя.

Вертикальный градиент dn/dH имеет размерность 1/м, а градиент dN/dH – N - ед/м. Из соотношения (11) следует, что реальной атмосфере, для которой коэффициент преломления уменьшается с высотой, соответствуют отрицательные значения градиента.

В радиометеорологии для решения ряда задач пользуются параметрами стандартной, или нормальной, атмосферы. Нормальной считается атмосфера, в которой имеют место линейное уменьшение температуры воздуха с высотой, равное 6,5°C на 1 км, уменьшение давления по барометрическому закону:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом, (13)


и убывание влажности воздуха по эмпирическому соотношению:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(14)

где Р0 и РH – давление на нижнем и верхнем уровнях,

g – ускорение свободного падения,

R – универсальная газовая постоянная,

Т – температура столба воздуха между указанными уровнями,

H – высота в км,

q – удельная влажность в г/м3,

b, с – коэффициенты (0,1112Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летомbРаспределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом0,2181; 0,0286Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летомсРаспределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом0,0375).

Удельная влажность с парциальным давлением водяных паров связана соотношением:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом.(15)


В стандартной атмосфере коэффициент преломления изменяется с высотой по линейному закону, а в реальной атмосфере изменение N с высотой в среднем происходит по экспоненциальному закону [2].


2. Радиорефракция


Радиорефракцией называется искривление траектории электромагнитных волн при распространении в атмосфере. Плотность реальной атмосферы убывает с высотой, поэтому радиолуч, направленный с земной поверхности вверх, будет переходить из области с большим значением плотности в области с малыми значениями плотности.

Если электромагнитный луч будет распространяться в плоскослоистой атмосфере, в которой коэффициент преломления изменяется постепенно, то будет происходить плавное искривление траектории луча. Радиус кривизны будет определяться величиной градиента коэффициента преломления в соответствии с выражением:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(16)


где dn/dH – градиент коэффициента преломления.

Представляет практический интерес случай критической рефракции, когда радиус кривизны радиолуча, направленного вдоль земной поверхности, равен радиусу Земли и луч огибает земной шар. Условием критической рефракции будет:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(17)


где RЗ – радиус Земли.


2.1 Виды радиорефракции


Рассмотрим различные виды радиорефракции и соответствующие им значения градиента коэффициента преломления. В зависимости от характера искривления радиолуча различают три основных типа радиорефракции:

Отрицательную;

Нулевую;

Положительную.

Такое деление радиорефракции отражает ее влияние на дальность радиосвязи в диапазоне СВЧ или на дальность радиолокационного наблюдения обьектов.

При нулевой рефракции (нулевое значение градиента коэффициента преломления) радиолуч остается прямолинейным. Отрицательная рефракция (вызывающая уменьшение дальности радиосвязи) имеет место, если луч направлен выпуклостью вниз, т.е. луч из менее плотной среды переходит в более плотную. Это может быть только при положительных значениях градиента коэффициента преломления. Положительная рефракция возникает при отрицательных значениях градиента коэффициента преломления и делится в свою очередь на:

пониженную;

нормальную;

повышенную;

критическую;

сверхрефракцию.

Нормальная радиорефракция соответствует рефракции в нормальной (стандартной) атмосфере, имеющей градиент коэффициента преломления –4·10-8 1/м. Радиорефракция при значениях градиента коэффициента преломления от 0 до –4·10-8 1/м называется положительной пониженной рефракцией. Радиорефракция при – 15,7·10-8 Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом – 4·10-8 1/м называется положительной повышенной рефракцией. При значении градиента Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом= – 15,7·10-8 1/м наблюдается критическая рефракция. При значениях градиента коэффициента преломления менее – 15,7·10-8 1/м имеет место сверхрефракция. Радиус кривизны луча меньше радиуса земного шара, вследствие чего луч испытывает многократное отражение от земной поверхности.

Критическая рефракция и сверхрефракция характеризуются сверхдальним распространением радиоволн. Такое явление связывают с образованием так называемых атмосферных волноводов, которые могут быть как приземными, так и приподнятыми (отражение в этом случае имеет место не от земной поверхности, а от слоя атмосферы, приподнятого над землей). Атмосферные волноводы существенно повышают дальность радиосвязи на СВЧ и дальность радиолокационного наблюдения объектов.


2.2 Методы учета радиорефракции


Явление рефракции в атмосфере приводит к ошибкам измерения координат объектов радиотехническими и оптическими методами. Регулярную составляющую таких ошибок можно учитывать путем введения соответствующих поправок в результаты измерений. В зависимости от изменчивости вертикального градиента коэффициента преломления различают два способа введения поправок:

Метод эквивалентного радиуса Земли;

Метод приведенного коэффициента преломления.


2.2.1 Метод эквивалентного радиуса Земли

Он сводит задачу криволинейного распространения радиоволн к задаче с прямолинейным распространением. Криволинейную траекторию луча «разгибают», увеличивая радиус Земли до тех пор, пока траектория луча не окажется прямолинейной. Радиус Земли, соответствующий прямолинейному лучу, называют эквивалентным радиусом и используют для расчетов. Эквивалентный радиус Земли будет равен:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(18)


где RЭ – эквивалентный радиус Земли,

KP – коэффициент пропорциональности,

RЗ – радиус Земли.

Коэффициент пропорциональности определяется формулой:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(19)


где n0 – значение коэффициента преломления на уровне земной поверхности.

Для нормальной атмосферы, полагая Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом= – 4·10-8 1/м, RЗ=6370·103 м, n0=1, получаем KP=1,33 и RЭ=8460 км.

При расчетах, связанных с обеспечением радиовидимости, следует оперировать с эквивалентным радиусом Земли так же, как и с обычным радиусом Земли при отсутствии рефракции.


2.2.2 Метод приведенного коэффициента преломления

Он состоит в том, что влияние кривизны земной поверхности (а следовательно, и кривизны сферической слоистой атмосферы) заменяют влиянием дополнительного значения коэффициента преломления атмосферы. Для этого криволинейную траекторию луча вместе с земной поверхностью «разгибают» до тех пор, пока сферическая поверхность Земли не превратиться в плоскую, а луч при этом будет иметь другую кривизну. Соответствующий новой рефракции коэффициент преломления атмосферы называется приведенным коэффициентом преломления.

Приведенный коэффициент преломления равен:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(20)


или в N – единицах:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом.(21)


Приведенный коэффициент преломления используется так же, как и обычный коэффициент преломления в задачах распространения над плоской Землей [2].


3. Исходные материалы и методика их обработки


Для изучения закономерности распределения метеовеличин и показателя преломления воздуха летом были использованы результаты, полученные в июле 1977г. на высотной метеорологической мачте (ВММ) в городе Хабаровск (данные были взяты из «Материалов высотных метеорологических наблюдений» [3]). Эти результаты содержат данные измерений температуры и относительной влажности атмосферы на ВММ (из справочника были взяты средние за сутки значения температуры и относительной влажности на высотах 0, 24, 40, 112, 180 м). Температура воздуха на этой мачте регистрировалась термоградиентографом с погрешностью 0,2ч0,3°C. Влажность воздуха измерялась с помощью пленочного датчика с погрешностью 7%.

Данные по давлению были взяты из «Климатического атласа СССР» [4] для уровня 0 м. Для остальных высот (24, 40, 112, 180 м) давление было рассчитано по барометрической формуле:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(22)


где P – давление на высоте z,

P0 – давление на исходном уровне,

g – ускорение свободного падения,

z – высота в м,

R – универсальная газовая постоянная (287, 05 Дж/кг·К),

T – температура в °K.

Обработка материалов велась с помощью процессора Exel. Данные вводились по датам; для каждой даты значения температуры, влажности и давления вводились на пяти высотах (0, 24, 40, 112, 180 м). Для того, чтобы рассчитать показатель преломления N, еще были необходимы значения упругости водяного пара на всех высотах по суткам. Парциальное давление е было рассчитано по формуле (10). Далее были рассчитаны значения показателя преломления N по формуле (9) и вертикальные градиенты Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом по формуле (12) (см. приложение таблица 1).

После проведения расчетов были выполнены еще дополнительные действия:

Из общего массива данных через автофильтр находились отдельно данные по каждой высоте за месяц; На этих высотах были посчитаны среднемесячные значения t, f, e, P, N, dN/dH и их среднеквадратические отклонения (см. приложение таблицы 2, 3, 4, 5, 6);

По среднемесячным значениям t, f, e, N на каждой высоте были построены графики вертикальных профилей этих величин (см. анализ графиков и сами графики в главе 4);

Была посчитана повторяемость различных видов рефракции по значениям вертикального градиента dN/dH (см. таблицы 2,3).

После проведения всех расчетов, был сделан анализ полученных результатов (см. главу 4).


4. Вертикальные профили радиометеорологических величин


Для изучения закономерности распределения метеовеличин и показателя преломления воздуха в нижнем слое атмосферы летом был выбран город Хабаровск. Он расположен в юго – восточной части нашей страны (48°35′ с.ш. и 135°в.д.). Хабаровск относится к умеренному климатическому поясу, к области муссонного климата смешанных лесов Дальнего Востока. Средние температуры июля и января составляют + 16°C и – 24°C соответственно [5].

Как уже было сказано раньше, по среднемесячным значениям t, f, e, N на каждой высоте были построены графики вертикальных профилей этих величин (таблица 1).


Таблица 1 – Среднемесячные значения радиометеорологических величин на разных высотах

Высота, м Средняя t°C Средняя f% Средняя е, гПа Средний N, N - ед/м
0 21,9 82 21,6 355,4
24 22 78 20,8 351
40 23,1 73 20,9 349,4
112 23,2 72 20,6 345,6
180 21,5 67 17,2 331,7

Далее приведен анализ полученных графиков.


4.1 Вертикальный профиль средней температуры июля


В умеренном поясе на суше в северном полушарии самым теплым месяцем является июль (именно этот месяц и был рассмотрен в данной работе).

Как уже известно, температура воздуха с высотой в среднем изменяется по линейному закону:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(23)


где Th – абсолютная температура на верхней границе слоя,

T0 – абсолютная температура у основания слоя толщиной h,

gt – вертикальный градиент температуры.

Если принять в соответствии с международной стандартной атмосферой температуру воздуха у земной поверхности (на «нулевой высоте») равной 15°C (288°K), а градиент температуры до высоты 11км равным 6,5°C на километр подъема, то получится «стандартная» зависимость температуры от высоты (в километрах):


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом.(24)


С годовыми и суточными изменениями приземного значения температуры связаны характер кривой высотного распределения температуры и градиенты пограничного слоя тропосферы. Так, например, летом высотные зависимости температуры от дня к ночи изменяют свой характер, а градиенты изменяют знак с положительного (уменьшение t с высотой) на отрицательный (рост t с высотой – инверсия). В этом смысле стандартное линейное падение температуры с высотой не отражает процессов, происходящих в пограничном слое тропосферы.

В летний период на высотах до 100 м существует (в среднем сезонном профиле) инверсия температуры, являющаяся следствием ночных приземных инверсий. Выше 100 м наблюдается убывание t с высотой [6].

В рассмотренном мною случае, в среднемесячном вертикальном профиле температуры также имеется слой инверсии и слой падения t (см. рисунок 1).

Из графика видно, что инверсия наблюдается до высоты 80 м. В слое от 0 до 24 м слабо выраженная инверсия (градиент равен – 0,004°C/м). Выше 24 м идет резкое увеличение температуры с высотой и продолжается до 40 м (градиент в этом слое составляет – 0,069°C/м). В слое от 40 до 80 м наблюдается уменьшение интенсивности инверсии (градиент слоя равен – 0,005°C/м) – в этом слое инверсия практически такая же как и в слое от 0 до 40 м (различие составляет 0,001°C). На 80 м наблюдается максимальное среднемесячное значение t = 23,3°C. Начиная с 80 м идет уменьшение температуры с высотой (можно сказать, что на уровне 80 м происходит изгиб кривой в сторону уменьшения температуры – это критическая точка). В слое от 80 до 112 м идет слабое падение t (градиент составляет 0,003°C/м). А вот начиная со 112 м и до 180 м наблюдается резкое падение температуры (здесь градиент равен 0,025°C/м). На 180 м наблюдается минимальное среднемесячное значение t = 21,5°C.


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом

Рисунок 1 – Вертикальный профиль средней температуры июля


4.2 Вертикальные профили средней относительной влажности и средней упругости водяного пара июля


Как мы знаем, основной вклад в изменения коэффициента преломления вносят изменения значений влажности. В тропосфере северного полушария независимо от сезона года влажность воздуха уменьшается с высотой, достигая минимумы вблизи тропопаузы. В стандартной атмосфере влажность воздуха убывает с высотой по эмпирическому соотношению (14).

Среднегодовые и сезонные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей. «Мгновенные» профили обладают значительно более сложной конфигурацией с различного рода изгибами и изломами и характеризуются большой изменчивостью во времени [6].

Вертикальный профиль средней относительной влажности июля не имеет больших изломов, а ведет себя довольно сглажено (см. рисунок 2). Падение f с высотой совсем небольшое. В слоях от 0 до 40 м и от 112 до 180 м более выраженное уменьшение влажности. А вот в слое от 40 до 112 м ее падение практически не наблюдается. Вообще разница f между нулевым уровнем и высотой 180 м составляет всего 15%.


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом

Рисунок 2 – Вертикальный профиль средней относительной влажности июля


Вертикальный профиль средней упругости водяного пара июля практически повторяет ход вертикального профиля f (см. рисунок 3). В слоях от 0 до 24 м и от 112 до 180 м наблюдается более выраженное падение, а в слое от 24 до 112 м изменений в упругости водяного пара практически не наблюдается (отличие состоит в том, что относительная влажность практически не меняется с 40 м, а упругость водяного пара с 24 м). Разница е между нулевым уровнем и высотой 180 м составляет всего 4,4 гПа. Из графиков видно, что, действительно, среднемесячные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей.


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом

Рисунок 3 – Вертикальный профиль средней упругости водяного пара июля


4.3 Вертикальный профиль среднего показателя преломления воздуха в июле


Вследствие большой изменчивости показатель преломления удобно характеризовать средними (усредненными за определенный период времени) величинами. Конкретные профили коэффициента преломления, полученные во время одного зондирования, существенно отличаются от усредненных высотных распределений N и от стандартной радиоатмосферы. Эти отличия обусловлены нерегулярным характером высотного распределения температуры и влажности, которое изменяется во времени и зависит от погоды и климата [6].

Представление о закономерностях среднего изменения с высотой коэффициента преломления атмосферы можно получить из анализа выражения (9). Из этого выражения следует, что увеличение Р и е вызывает рост N, в то время как увеличение Т приводит к уменьшению N. Если взять частные производные соотношения (9) последовательно по Р, е и Т, то получится выражение для оценки величины вклада, вносимого каждым метеорологическим параметром в изменение N. Для средних летних условий это выражение примет вид:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(25)


где ∆T, ∆P, ∆e – приращения средних значений температуры, давления, упругости водяного пара соответственно.

Из выражения (25) видно, что изменения величины N в одной точке в основном зависят от изменения температуры и влажности, причем влияние влажности заметно превосходит влияние температуры, т.к. величины ∆e и ∆T при выбранной системе единиц примерно одного порядка; влияние давления в этом случае настолько мало, что им можно даже пренебречь [7].

По средним значениям N на высотах 0, 24, 40, 112, 180 м был построен график вертикального профиля показателя преломления воздуха в июле (см. рисунок 4). Из графика видно, что показатель преломления убывает с высотой. Это происходит потому, что (если опять же анализировать выражение (9) ) Р и е с высотой уменьшаются, а Т увеличивается до определенного уровня, а потом уменьшается. В слое от 0 до 24 м идет достаточно выраженное падение N (градиент здесь равен – 0,183 N – ед/м). В слое от 24 до 40 м немного уменьшается интенсивность падения N, но не сильно (градиент составляет – 0,100 N–ед/м). А вот от 40 до 112 м наблюдается самое маленькое (незначительное) уменьшение N с высотой (градиент слоя составляет всего – 0,053 N – ед/м). Начиная со 112 и до 180 м наблюдается самое сильное падение N с высотой (градиент здесь самый большой и равен – 0,204 N – ед/м). Разница между нулевым уровнем и высотой 180 м составляет 23,7 N – ед/м (такая небольшая разница скорее всего обусловлена сглаженным среднемесячным ходом влажности – изменения ее тоже очень маленькие по вертикали).

Данный, среднемесячный профиль N близок к стандартной линейной зависимости. И поэтому можно аппроксимировать этот профиль линейной зависимостью (на графике аппроксимация показана черной линией).

Уравнение этой линии выглядит следующим образом:


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом,(26)


где у – значение N,

х – значение высоты.

Величина достоверности аппроксимации составляет: R2 = 0,9356.


Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом

Рисунок 4 – Вертикальный профиль среднего показателя преломления воздуха в июле


Видно, что эта характеристика составляет приблизительно 94%. Это говорит о том, что аппроксимация вполне достоверна.


4.4 Повторяемость различных видов рефракции в июле


В ряде приложений широко применяются данные не о самом коэффициенте преломления, а о величине его вертикального градиента. Для стандартной атмосферы с нормальной (стандартной) рефракцией вертикальный градиент равен: Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом N – ед/м. Однако в приземном слое градиенты, близкие к стандартному, наблюдаются сравнительно редко вследствие большой изменчивости профиля N на этих высотах. К стандартной величине градиента близки лишь средние значения градиента в достаточно толстом слое воздуха – в слое 0 – 1000 м и более, причем время усреднения тоже должно быть достаточно большим – усреднение за месяц, за сезон и т.п.

Как и приземные значения показателя преломления, градиенты подвержены сезонным изменениям, причем сезонный ход среднемесячных значений градиента связан с сезонным ходом самого коэффициента преломления. С увеличением высоты слоя воздуха сезонные колебания градиентов уменьшаются, и на высотах более 600 м ими можно пренебречь [6].

Детальное рассмотрение многочисленных N – профилей, полученных в разную погоду в разное время суток, показало в основном большинстве случаев наличие критических и сверхкритических градиентов величины N в самом нижнем 25 – метровом слое атмосферы. Для слоя 25 – 121 м – характерна повышенная рефракция. Слой выше 120 м выглядит самым стабильным, он приближается к стандартной атмосфере.

Как следует из выражения (9), появление больших градиентов N должно иметь место в тех слоях атмосферы, где наиболее резко выражена инверсия температуры и происходит падение с высотой абсолютной влажности воздуха. Летом именно в слое до 100 м наиболее резко выражены ночные инверсии температуры, а днем наблюдается значительное падение влажности с высотой. Оба эти фактора и обусловливают сверхкритическую и повышенную рефракции в нижнем 120 метровом слое атмосферы [7].

По полученным значениям N на разных высотах (во все дни июля) определялись вертикальные градиенты dN/dH для слоев 0 – 24, 24 – 40,

40 – 112, 112 – 180 м. Градиенты были разбиты на 4 интервала:

1. Отрицательный (Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом);

2. Пониженный (Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом);

3. Повышенный (Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом);

4. Сверхкритический (Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом).

В соответствии с этой разбивкой для каждого вида рефракции были посчитаны их повторяемости. (см. таблицы 2, 3).


Таблица 2 – Повторяемость различных видов рефракции в июле

Вид рефракции Число случаев Повторяемость в %
Отрицательная 22 18
Пониженная 11 9
Повышенная 24 19
Сверхрефракция 67 54

Таблица 3 – Повторяемость различных видов рефракции в каждом слое

Слой, м Отрицательная Пониженная Повышенная Сверхрефракция
0 - 24 5 2 3 21
24 - 40 8 - 5 18
40 - 112 8 9 10 4
112 - 180 1 - 6 24

Отрицательная рефракция наблюдалась в общем случае за месяц всего в 18% из 100%. Она была отмечена во всех слоях. От 0 – 24, 24 – 40, 40 – 112 м чаще всего (повторяемость рефракции в этих слоях практически одинаковая, но наблюдалась она в разные дни), и лишь 1 раз в слое 112 – 180 м (9 июля).

Положительная пониженная рефракция наблюдалась меньшее количество раз за месяц и составила всего 9%. Была отмечена она в основном в слое

40 – 112 м, а вот в слое 0 – 24 м наблюдали ее всего 2 раза (16 и 24 июля).

За месяц чаще всего наблюдали положительную повышенную рефракцию и сверхрефракцию, которые составили соответственно 19% и 54%. Повышенная рефракция чаще отмечалась в слоях 24 – 40, 40 – 112,

112 – 180 м; меньше всего в слое 0 – 24 м (всего 3 раза). Полученные результаты соответствуют выводам, сделанным в работе [7] о том, что для слоя 25 – 121 м характерна повышенная рефракция. Сверхрефракция составила самый большой процент повторяемости за месяц (наблюдалась она во всех слоях). Наиболее часто она встречалась в слоях 0 – 24 и 112 – 180 м (повторяемость ее в этих слоях практически одинаковая). Меньше всего раз сверхрефракция была отмечена в слоях 24 – 40 и 40 – 112 м. Это так же соответствует выводам в работе [7] о том, что сверхрефракция в большинстве случаев наблюдается в нижнем 25 – метровом слое.

Из полученных результатов можно сделать вывод о том, что наибольшую повторяемость в июле повышенной и сверхкритической рефракций в нижнем 180 – метровом слое атмосферы обусловливают 2 фактора:

Резко выраженная инверсия температуры воздуха;

Падение с высотой влажности воздуха.


Заключение


В результате проделанной работы можно сделать следующие выводы:

В летний период в умеренном климатическом поясе на высотах до

80 м существует (в среднем месячном профиле) инверсия

температуры, являющаяся следствием ночных приземных инверсий.

Выше 80 м наблюдается убывание температуры с высотой;

Сглаженный ход (падение) среднемесячных вертикальных профилей относительной влажности и упругости водяного пара обусловлен тем, что эти профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей, которые обладают значительно более сложной конфигурацией с различного рода изгибами и изломами и характеризуются большой изменчивостью во времени;

Изменения величины N в основном зависят от изменения температуры и влажности, причем влияние влажности заметно превосходит влияние температуры, влияние давления мало;

Показатель преломления убывает с высотой из – за того, что давление и упругость водяного пара с высотой уменьшаются, температура увеличивается до определенного уровня, а потом уменьшается;

Среднемесячный профиль N близок к стандартной линейной зависимости;

Наибольшую повторяемость летом повышенной (19%) и сверхкритической (54%) рефракций в нижнем 180 – метровом слое атмосферы обусловливают 2 фактора:

резко выраженная инверсия температуры воздуха;

падение с высотой влажности воздуха;

Летом в умеренном климатическом поясе образуются весьма благоприятные метеоусловия для появления сверхрефракции, которая в свою очередь повышает (из – за волноводов) дальность радиосвязи на СВЧ и дальность радиолокационного наблюдения объектов.

И в заключении можно сказать о том, что исследование вертикального профиля показателя преломления радиоволн (и его градиентов), особенно в нижнем слое атмосферы до высоты 300 – 500 м над поверхностью земли, имеет большое значение для обеспечения надежной работы радиорелейных линий, станций слежения за спутниками и некоторых других современных радиосистем. Однако данных о пространственно – временном распределении показателя преломления радиоволн в нижнем слое атмосферы явно недостаточно – эта проблема остается очень актуальной в наше время.


Список использованной литературы


Бин Б.Р., Даттон Е.Дж. Радиометеорология: Пер. с англ. /Под ред. А.А. Семенова. – Л.: ГМИ, 1971. – 363с.

Павлов Н.Ф. Аэрология, радиометеорология и техника безопасности. – Л.: ГМИ, 1980. – 432с.

Материалы высотных метеорологических наблюдений – Часть 2, вып. 4. – М.: ЦВГМО, 1978. – 195с.

Климатический атлас СССР/ Гл.ред. Т.П. Сидоренкова. – М.: ПКО “Картография”, 1972. – 610с.

Атлас по географии России: (с компл. контур. карт) / Сост. и под. к изд. ПКО “Картография” в 1996г.; Отв. ред. В.И. Щербакова. – Испр. в 1998г. – М-бы разн. – М.: Роскартография, 2000. – 1атл.(56с.)

Казаков Л.Я., Ломакин А.Н. Неоднородности коэффициента преломления воздуха в тропосфере. – М.: Наука, 1976. – 168с.

Вяльцева Э.Е. Изменчивость коэффициента преломления атмосферы для УКВ в пограничном слое // Метеорология и гидрология. – 1972. - №2. – С. 8 – 14.


Приложение


Таблица 1 – Среднесуточные значения радиометеорологических величин на разных высотах

Число Высота, м Средняя t°C Средняя f% Среднее P, гПа Средняя е, гПа Средний N, N - ед dN/dH, N -ед/м
1 0 23,1 81 1000,0 22,8 359,0 -0,147
1 24 23 79 997,3 22,1 355,5 0,623
1 40 26,5 75 995,5 25,9 365,4 -0,167
1 112 24,3 75 987,3 22,7 353,4 -0,222
1 180 22,5 70 979,6 19,0 338,3
2 0 21,7 89 1000,0 23,0 362,1 -0,265
2 24 20,4 89 997,2 21,3 355,7 0,070
2 40 22,6 82 995,4 22,4 356,8 0,009
2 112 22,7 84 987,2 23,1 357,5 -0,298
2 180 20,3 76 979,4 18,1 337,2
3 0 21,2 82 1000,0 20,6 352,3 -0,256
3 24 21,8 75 997,2 19,5 346,1 -0,112
3 40 22,7 71 995,4 19,5 344,3 -0,033
3 112 23,3 69 987,3 19,7 342,0 -0,294
3 180 20,8 60 979,4 14,7 322,0
4 0 21,6 78 1000,0 20,1 349,4 -0,185
4 24 21,8 74 997,2 19,3 345,0 0,113
4 40 23,7 70 995,4 20,5 346,8 -0,133
4 112 23,7 64 987,3 18,7 337,3 -0,205
4 180 21,3 60 979,5 15,2 323,3
5 0 20,5 92 1000,0 22,1 360,0 -0,231
5 24 19,6 91 997,2 20,7 354,4 0,320
5 40 23,5 81 995,4 23,4 359,6 -0,155
5 112 20,8 83 987,2 20,3 348,4 -0,209
5 180 19,4 76 979,3 17,1 334,2
6 0 21,9 86 1000,0 22,5 359,6 -0,196
6 24 22,3 81 997,2 21,8 354,9 0,838
6 40 26,5 77 995,5 26,6 368,3 -0,177
6 112 24,5 76 987,3 23,3 355,5 -0,291
6 180 22,1 69 979,5 18,3 335,8
7 0 22,8 86 1000,0 23,8 363,6 -0,290
7 24 23 80 997,3 22,4 356,7 0,173
7 40 25,2 75 995,5 24,0 359,4 -0,084
7 112 24,9 73 987,3 22,9 353,3 -0,258
7 180 22,1 69 979,5 18,3 335,8
8 0 24,1 91 1000,0 27,3 376,1 -0,445
8 24 24,4 82 997,3 25,0 365,4 0,088
8 40 27,4 73 995,5 26,6 366,8 -0,170
8 112 25,5 72 987,4 23,4 354,6 -0,203
8 180 24,2 67 979,7 20,2 340,8
9 0 20 89 1000,0 20,8 354,8 -0,203
9 24 19,2 88 997,2 19,5 349,9 -0,178
9 40 21 79 995,4 19,6 347,1 -0,042
9 112 20,2 81 987,1 19,1 344,0 0,092
9 180 19,5 92 979,3 20,8 350,3
10 0 21,6 81 1000,0 20,8 352,8 -0,202
10 24 21,1 79 997,2 19,7 347,9 -0,074
10 40 22,4 74 995,4 20,0 346,7 0,002
10 112 22,7 75 987,2 20,6 346,9 -0,209
10 180 20,5 71 979,4 17,1 332,7
11 0 18,3 95 1000,0 19,9 353,7 -0,286
11 24 17,4 92 997,2 18,2 346,9 -0,310
11 40 17,9 85 995,3 17,4 341,9 0,014
11 112 18,3 87 987,0 18,3 342,9 -0,223
11 180 17 77 979,2 14,9 327,8
12 0 16,7 84 1000,0 15,9 338,4 -0,322
12 24 16,3 77 997,2 14,2 330,7 -0,121
12 40 16,7 74 995,3 14,0 328,7 -0,025
12 112 17,2 73 987,0 14,3 327,0 -0,147
12 180 15,3 69 979,0 12,0 317,0
13 0 17,2 88 1000,0 17,2 343,4 -0,296
13 24 17,1 81 997,2 15,8 336,3 -0,246
13 40 17,1 77 995,3 15,0 332,4 0,010
13 112 17,5 79 987,0 15,8 333,1 -0,155
13 180 16,3 73 979,1 13,5 322,5
14 0 20,6 80 1000,0 19,4 347,9 -0,178
14 24 21,4 74 997,2 18,8 343,6 -0,199
14 40 21,9 70 995,4 18,3 340,4 -0,024
14 112 22,7 68 987,2 18,7 338,7 -0,195
14 180 20,5 64 979,4 15,4 325,4
15 0 23,7 73 1000,0 21,3 351,7 -0,158
15 24 24,2 69 997,3 20,8 347,9 -0,107
15 40 24,9 66 995,5 20,7 346,2 0,005
15 112 25,9 65 987,4 21,7 346,6 -0,208
15 180 23,6 62 979,6 18,0 332,5
16 0 24,6 76 1000,0 23,5 359,3 -0,012
16 24 25,3 74 997,3 23,8 359,0 -0,129
16 40 26,2 70 995,5 23,8 356,9 -0,020
16 112 27,7 66 987,4 24,5 355,5 -0,313
16 180 25,3 59 979,7 19,0 334,2
17 0 22,5 79 1000,0 21,5 354,1 -0,439
17 24 21,4 74 997,2 18,8 343,6 0,087
17 40 23,2 70 995,4 19,9 345,0 -0,002
17 112 24,4 68 987,3 20,7 344,8 -0,262
17 180 23 59 979,6 16,5 327,0
18 0 19,2 89 1000,0 19,8 351,6 -0,277
18 24 18,9 84 997,2 18,3 345,0 -0,265
18 40 19,5 78 995,4 17,6 340,7 0,013
18 112 20,4 78 987,1 18,6 341,6 -0,227
18 180 19 69 979,3 15,1 326,2
19 0 22,1 86 1000,0 22,8 360,5 -0,159
19 24 23 80 997,3 22,4 356,7 -0,175
19 40 23,6 76 995,4 22,1 353,8 -0,018
19 112 24,4 74 987,3 22,6 352,5 -0,252
19 180 22 69 979,5 18,2 335,4
20 0 27,2 72 1000,0 25,9 365,5 0,027
20 24 27,8 71 997,3 26,5 366,2 -0,271
20 40 28,3 67 995,5 25,7 361,8 0,011
20 112 29,6 65 987,5 26,9 362,6 -0,318
20 180 27,2 59 979,9 21,2 341,0
21 0 23,5 85 1000,0 24,6 365,6 -0,267
21 24 23,6 80 997,3 23,2 359,2 -0,286
21 40 24,1 75 995,4 22,5 354,7 -0,024
21 112 24,8 73 987,3 22,8 352,9 -0,250
21 180 23,9 64 979,6 18,9 336,0
22 0 23,8 71 1000,0 20,9 349,6 -0,243
22 24 25,2 63 997,3 20,1 343,8 -0,217
22 40 25,5 60 995,5 19,5 340,3 -0,219
22 112 26 49 987,4 16,4 324,6 -0,140
22 180 25,2 45 979,7 14,4 315,1
23 0 25,9 81 1000,0 27,0 372,1 -0,067
23 24 26 80 997,3 26,8 370,5 -0,319
23 40 26,5 75 995,5 25,9 365,4 -0,094
23 112 26,1 73 987,4 24,6 358,6 -0,167
23 180 25,2 69 979,7 22,1 347,3
24 0 25,7 80 1000,0 26,4 369,7 -0,029
24 24 25,7 80 997,3 26,4 369,0 -0,431
24 40 25,8 75 995,5 24,9 362,1 0,050
24 112 26,7 76 987,4 26,6 365,7 -0,249
24 180 24,6 72 979,7 22,2 348,8
25 0 26,2 69 1000,0 23,4 356,7 0,000
25 24 26,7 68 997,3 23,8 356,7 -0,352
25 40 26,5 65 995,5 22,5 351,1 -0,004
25 112 27,3 64 987,4 23,2 350,8 -0,209
25 180 25,2 61 979,7 19,5 336,6
26 0 19,3 58 1000,0 13,0 321,8 0,060
26 24 19,4 60 997,2 13,5 323,2 -0,231
26 40 18,4 59 995,4 12,5 319,6 -0,047
26 112 20,1 54 987,1 12,7 316,2 -0,114
26 180 18,2 52 979,3 10,8 308,4
27 0 21,2 70 1000,0 17,6 339,3 0,056
27 24 21,5 71 997,2 18,2 340,6 -0,246
27 40 21,8 67 995,4 17,5 336,7 -0,095
27 112 22,9 60 987,2 16,7 329,9 -0,175
27 180 21,8 54 979,5 14,1 318,0
28 0 17,4 89 1000,0 17,6 345,0 0,108
28 24 19,1 86 997,2 19,0 347,6 -0,408
28 40 19,9 77 995,4 17,8 341,1 -0,007
28 112 19,8 79 987,1 18,2 340,6 -0,131
28 180 18,9 75 979,3 16,3 331,6
29 0 22,3 84 1000,0 22,6 359,0 -0,055
29 24 22,7 82 997,3 22,6 357,7 -0,244
29 40 23,3 77 995,4 22,0 353,8 -0,058
29 112 23,1 76 987,3 21,4 349,7 -0,193
29 180 22 70 979,5 18,5 336,6
30 0 23,6 94 1000,0 27,3 377,2 -0,253
30 24 22,8 93 997,3 25,7 371,1 -0,299
30 40 23,9 85 995,4 25,2 366,4 -0,080
30 112 24,2 81 987,3 24,4 360,6 -0,237
30 180 22,9 74 979,6 20,6 344,5
31 0 18,7 85 1000,0 18,3 345,9 -0,490
31 24 18,8 73 997,2 15,8 334,2 -0,163
31 40 19,4 69 995,4 15,5 331,6 -0,060
31 112 18,3 70 987,0 14,7 327,3 -0,120
31 180 17,7 65 979,2 13,1 319,1

Таблица 2 – Значения радиометеорологических величин на высоте 0 м за месяц

Число Высота, м Средняя t°C Средняя f% Среднее P, гПа Средняя е, гПа Средний N, ед
1 0 23,1 81 1000,0 22,8 359,0
2 0 21,7 89 1000,0 23,0 362,1
3 0 21,2 82 1000,0 20,6 352,3
4 0 21,6 78 1000,0 20,1 349,4
5 0 20,5 92 1000,0 22,1 360,0
6 0 21,9 86 1000,0 22,5 359,6
7 0 22,8 86 1000,0 23,8 363,6
8 0 24,1 91 1000,0 27,3 376,1
9 0 20 89 1000,0 20,8 354,8
10 0 21,6 81 1000,0 20,8 352,8
11 0 18,3 95 1000,0 19,9 353,7
12 0 16,7 84 1000,0 15,9 338,4
13 0 17,2 88 1000,0 17,2 343,4
14 0 20,6 80 1000,0 19,4 347,9
15 0 23,7 73 1000,0 21,3 351,7
16 0 24,6 76 1000,0 23,5 359,3
17 0 22,5 79 1000,0 21,5 354,1
18 0 19,2 89 1000,0 19,8 351,6
19 0 22,1 86 1000,0 22,8 360,5
20 0 27,2 72 1000,0 25,9 365,5
21 0 23,5 85 1000,0 24,6 365,6
22 0 23,8 71 1000,0 20,9 349,6
23 0 25,9 81 1000,0 27,0 372,1
24 0 25,7 80 1000,0 26,4 369,7
25 0 26,2 69 1000,0 23,4 356,7
26 0 19,3 58 1000,0 13,0 321,8
27 0 21,2 70 1000,0 17,6 339,3
28 0 17,4 89 1000,0 17,6 345,0
29 0 22,3 84 1000,0 22,6 359,0
30 0 23,6 94 1000,0 27,3 377,2
31 0 18,7 85 1000,0 18,3 345,9
Средние значения 21,9 82 1000,0 21,6 355,4
Ср.квад.отклонение 2,7 8,3 0,0 3,4 11,6

Таблица 3 – Значения радиометеорологических величин на высоте 24 м за месяц

Число Высота, м Средняя t°C Средняя f% Среднее P, гПа Средняя е, гПа Средний N, N - ед
1 24 23 79 997,3 22,1 355,5
2 24 20,4 89 997,2 21,3 355,7
3 24 21,8 75 997,2 19,5 346,1
4 24 21,8 74 997,2 19,3 345,0
5 24 19,6 91 997,2 20,7 354,4
6 24 22,3 81 997,2 21,8 354,9
7 24 23 80 997,3 22,4 356,7
8 24 24,4 82 997,3 25,0 365,4
9 24 19,2 88 997,2 19,5 349,9
10 24 21,1 79 997,2 19,7 347,9
11 24 17,4 92 997,2 18,2 346,9
12 24 16,3 77 997,2 14,2 330,7
13 24 17,1 81 997,2 15,8 336,3
14 24 21,4 74 997,2 18,8 343,6
15 24 24,2 69 997,3 20,8 347,9
16 24 25,3 74 997,3 23,8 359,0
17 24 21,4 74 997,2 18,8 343,6
18 24 18,9 84 997,2 18,3 345,0
19 24 23 80 997,3 22,4 356,7
20 24 27,8 71 997,3 26,5 366,2
21 24 23,6 80 997,3 23,2 359,2
22 24 25,2 63 997,3 20,1 343,8
23 24 26 80 997,3 26,8 370,5
24 24 25,7 80 997,3 26,4 369,0
25 24 26,7 68 997,3 23,8 356,7
26 24 19,4 60 997,2 13,5 323,2
27 24 21,5 71 997,2 18,2 340,6
28 24 19,1 86 997,2 19,0 347,6
29 24 22,7 82 997,3 22,6 357,7
30 24 22,8 93 997,3 25,7 371,1
31 24 18,8 73 997,2 15,8 334,2
Средние значения 22,0 78 997,2 20,8 351,0
Ср.квад.отклонение 2,9 8,0 0,0 3,5 11,5

Таблица 4 – Значения радиометеорологических величин на высоте 40 м за месяц

Число Высота, м Средняя t°C Средняя f% Среднее P, гПа Средняя е, гПа Средний N, N - ед
1 40 26,5 75 995,5 25,9 365,4
2 40 22,6 82 995,4 22,4 356,8
3 40 22,7 71 995,4 19,5 344,3
4 40 23,7 70 995,4 20,5 346,8
5 40 23,5 81 995,4 23,4 359,6
6 40 26,5 77 995,5 26,6 368,3
7 40 25,2 75 995,5 24,0 359,4
8 40 27,4 73 995,5 26,6 366,8
9 40 21 79 995,4 19,6 347,1
10 40 22,4 74 995,4 20,0 346,7
11 40 17,9 85 995,3 17,4 341,9
12 40 16,7 74 995,3 14,0 328,7
13 40 17,1 77 995,3 15,0 332,4
14 40 21,9 70 995,4 18,3 340,4
15 40 24,9 66 995,5 20,7 346,2
16 40 26,2 70 995,5 23,8 356,9
17 40 23,2 70 995,4 19,9 345,0
18 40 19,5 78 995,4 17,6 340,7
19 40 23,6 76 995,4 22,1 353,8
20 40 28,3 67 995,5 25,7 361,8
21 40 24,1 75 995,4 22,5 354,7
22 40 25,5 60 995,5 19,5 340,3
23 40 26,5 75 995,5 25,9 365,4
24 40 25,8 75 995,5 24,9 362,1
25 40 26,5 65 995,5 22,5 351,1
26 40 18,4 59 995,4 12,5 319,6
27 40 21,8 67 995,4 17,5 336,7
28 40 19,9 77 995,4 17,8 341,1
29 40 23,3 77 995,4 22,0 353,8
30 40 23,9 85 995,4 25,2 366,4
31 40 19,4 69 995,4 15,5 331,6
Средние значения 23,1 73 995,4 20,9 349,4
Ср.квад.отклонение 3,1 6,3 0,0 3,9 12,5

Таблица 5 – Значения радиометеорологических величин на высоте 112 м за месяц

Число Высота, м Средняя t°C Средняя f% Среднее P, гПа Средняя е, гПа Средний N, N - ед
1 112 24,3 75 987,3 22,7 353,4
2 112 22,7 84 987,2 23,1 357,5
3 112 23,3 69 987,3 19,7 342,0
4 112 23,7 64 987,3 18,7 337,3
5 112 20,8 83 987,2 20,3 348,4
6 112 24,5 76 987,3 23,3 355,5
7 112 24,9 73 987,3 22,9 353,3
8 112 25,5 72 987,4 23,4 354,6
9 112 20,2 81 987,1 19,1 344,0
10 112 22,7 75 987,2 20,6 346,9
11 112 18,3 87 987,0 18,3 342,9
12 112 17,2 73 987,0 14,3 327,0
13 112 17,5 79 987,0 15,8 333,1
14 112 22,7 68 987,2 18,7 338,7
15 112 25,9 65 987,4 21,7 346,6
16 112 27,7 66 987,4 24,5 355,5
17 112 24,4 68 987,3 20,7 344,8
18 112 20,4 78 987,1 18,6 341,6
19 112 24,4 74 987,3 22,6 352,5
20 112 29,6 65 987,5 26,9 362,6
21 112 24,8 73 987,3 22,8 352,9
22 112 26 49 987,4 16,4 324,6
23 112 26,1 73 987,4 24,6 358,6
24 112 26,7 76 987,4 26,6 365,7
25 112 27,3 64 987,4 23,2 350,8
26 112 20,1 54 987,1 12,7 316,2
27 112 22,9 60 987,2 16,7 329,9
28 112 19,8 79 987,1 18,2 340,6
29 112 23,1 76 987,3 21,4 349,7
30 112 24,2 81 987,3 24,4 360,6
31 112 18,3 70 987,0 14,7 327,3
Средние значения 23,2 72 987,3 20,6 345,6
Ср.квад.отклонение 3,1 8,5 0,1 3,6 12,1

Таблица 6 – Значения радиометеорологических величин на высоте 180 м за месяц

Число Высота, м Средняя t°C Средняя f% Среднее P, гПа Средняя е, гПа Средний N, N - ед
1 180 22,5 70 979,6 19,0 338,3
2 180 20,3 76 979,4 18,1 337,2
3 180 20,8 60 979,4 14,7 322,0
4 180 21,3 60 979,5 15,2 323,3
5 180 19,4 76 979,3 17,1 334,2
6 180 22,1 69 979,5 18,3 335,8
7 180 22,1 69 979,5 18,3 335,8
8 180 24,2 67 979,7 20,2 340,8
9 180 19,5 92 979,3 20,8 350,3
10 180 20,5 71 979,4 17,1 332,7
11 180 17 77 979,2 14,9 327,8
12 180 15,3 69 979,0 12,0 317,0
13 180 16,3 73 979,1 13,5 322,5
14 180 20,5 64 979,4 15,4 325,4
15 180 23,6 62 979,6 18,0 332,5
16 180 25,3 59 979,7 19,0 334,2
17 180 23 59 979,6 16,5 327,0
18 180 19 69 979,3 15,1 326,2
19 180 22 69 979,5 18,2 335,4
20 180 27,2 59 979,9 21,2 341,0
21 180 23,9 64 979,6 18,9 336,0
22 180 25,2 45 979,7 14,4 315,1
23 180 25,2 69 979,7 22,1 347,3
24 180 24,6 72 979,7 22,2 348,8
25 180 25,2 61 979,7 19,5 336,6
26 180 18,2 52 979,3 10,8 308,4
27 180 21,8 54 979,5 14,1 318,0
28 180 18,9 75 979,3 16,3 331,6
29 180 22 70 979,5 18,5 336,6
30 180 22,9 74 979,6 20,6 344,5
31 180 17,7 65 979,2 13,1 319,1
Средние значения 21,5 67 979,5 17,2 331,7
Ср.квад.отклонение 2,9 8,9 0,2 2,9 10,2
Рефетека ру refoteka@gmail.com