Рефетека.ру / Промышленность и пр-во

Курсовая работа: Проектирование привода коробки скоростей металлорежущего станка

Министерство образования и науки Украины

Донецкий Национальный Технический

Университет

кафедра " Металлорежущие станки и инструмент "


КУРСОВОЙ ПРОЕКТ

по дисциплине: " Металлообрабатывающее оборудование"

на тему: "Проектирование привода коробки скоростей металлорежущего станка"


Выполнил:

ст. гр. МС-99 а

Прохорова Н.В.

Проверил Петтик Ю.В.


Донецк 2002

ЗАДАНИЕ


Спроектировать привод коробки скоростей металлорежущего станка по исходным данным:

1. Тип станка – вертикально-сверлильный.

2. Основной размер – d = 20мм.

3. Разрабатываемый привод – главного движения.

4. Предельные значения – nmin = 18об/мин; nmax = 1000об/мин.

5. Знаменатель прогресии – 1,41.

6. Примечания – ЧПУ.


РЕФЕРАТ


Пояснительная записка содержит: стр.29, рис. 12 , табл. 4 , источников 10, приложения 3.

В работе приведен анализ возможностей вертикально-сверлильного станка, особенности и требования, предъявляемые к коробкам скоростей. Проанализированы кинематические схемы привода и выбран оптимальный вариант компоновки кинематической схемы привода станка.

Приведен кинематический и силовой расчет привода, расчет на прочность основных деталей проектируемого узла.

Выбран материал валов и зубчатых колес. Приведен выбор шлицевых соединений, подшипников, описана система смазки и управления.

Объект проектирования - коробка скоростей вертикально-сверлильного станка.

Цель работы - проектирование оптимального привода станка.

ПРИВОД, СТРУКТУРНАЯ СЕТКА, ЗУБЧАТАЯ ПЕРЕДАЧА, ВАЛ, ПОДШИПНИК, НАПРЯЖЕНИЕ.


СОДЕРЖАНИЕ


ВВЕДЕНИЕ

ОБЩАЯ ХАРАКТЕРИСТИКА И НАЗНАЧЕНИЕ ВЕРТИКАЛЬНО-СВЕРЛИЛЬНЫХ СТАНКОВ

Общие сведения о вертикально-сверлильных станках

Особенности привода скоростей вертикально-сверлильного станка

КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА СТАНКА

Выбор диапазона регулирования и числа ступеней передач коробки скоростей

Разработка и построение структурной сетки и графика чисел оборотов

Подбор чисел зубьев

Разработка кинематической схемы привода

Расчет погрешностей кинематических цепей станка

СИЛОВОЙ РАСЧЕТ КОРОБКИ СКОРОСТЕЙ

Расчет коэффициента полезного действия станка и мощности главного электродвигателя

Расчет крутящих моментов на валах

3.3Расчет на прочность зубчатых колес

3.4 Расчет геометрических параметров зубчатых колес

3.5 Уточненный расчет вала

ВЫБОР ПОДШИПНИКОВ

ВЫБОР ШПОНОК

ВЫБОР СИСТЕМЫ СМАЗКИ

ВЫБОР СИСТЕМЫ УПРАВЛЕНИЯ

ЗАКЛЮЧЕНИЕ

ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


ВВЕДЕНИЕ


Приводы металлорежущих станков выполняют широкий спектр движений: рабочих, вспомогательных, установочных и т.д.

При этом перемещается инструмент или заготовка. Кинематические и силовые характеристики коробки скоростей должны обеспечить требуемые значения величины скоростей при обработке на станке различных деталей из различных деталей с различными физико-механическими свойствами.

Движение на коробку скоростей передается от электродвигателя через клиноременную передачу.

К приводам станков, с учетом технологического назначения станка предъявляются специальные требования – по передаче усилий, обеспечению постоянства скоростей, быстродействию, габаритным размерам, удобства управления.


1. ОБЩАЯ ХАРАКТЕРИСТИКА И НАЗНАЧЕНИЕ ВЕРТИКАЛЬНО-СВЕРЛИЛЬНЫХ СТАНКОВ


Общие сведения о вертикально-сверлильных станках

Группа сверлильных и расточных станков включает в себя следующие типы:

Настольно и вертикально- сверлильные станки.

Одношпиндельные полуавтоматы.

Многошпиндельные полуавтоматы.

Координатно-расточные станки.

Радиально и координатно-сверлильные станки.

Расточные станки.

Отделочно-расточные станки.

Горизонтально-сверлильные станки.

Разные.

Основными формообразующими движениями на этих станках является главное движение – вращательное, и движение подачи шпинделя или стола.

Отверстие получается методом двойного следа


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 1.1.1 – Схема формообразующих движений.


Посредством органов настройки устанавливаются частота и подача.

Операции выполняемые на станках сверлильно-расточной группы:

сверление;

рассверливание;

зенкерование;

развертывание и другие.

Расточные станки могут также производить фрезерование, нарезание резьб и другие.

По расположению шпинделя различают вертикально и горизонтально-расточные станки, а также станки с постоянным положением шпинделя и радиально-сверлильные, допускается перемещение шпинделя , а иногда и наклон.

По числу шпинделей различают одно-шпиндельные и многошпиндельные.

Для глубокого сверления применяют горизонтально-шпиндельные станки (если глубина сверления > 10-ти диаметров – сверление глубокое).

Различают следующие расточные станки:

горизонтально-расточные станки;

координатно-расточные станки;

алмазно-расточные станки;

специализированные.

Горизонтально-расточные станки предназначены для обработки отверстий с точными расстояниями между всеми осями в деталях и отличаются большой универсальностью.

Координатно-расточные станки с вертикальным расположением шпинделя имеют большую жесткость конструкции, имеют специальное измерительное устройство и предназначены для обработки отверстий с особо точным расстоянием между осями.

Алмазно-расточные станки применяют для тонкого отделочного растачивания отверстий алмазным или твердосплавным резцом при высокой скорости резания. При обработке применяют малые подачи и малые глубины резания.

В данной курсовой работе проектируется привод для вертикально-сверлильного станка.


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 1.1.2 – Общий вид станка.

Органы управления:

1. Рукоятка перемещения стола.

2. Штурвал для подъема и опускания шпинделя.

Основные узлы станка:

3. Стол.

4. Шпиндельная бабка с коробкой подач.

5. Коробка скоростей.

6. Станина (колонна).

7. Основание станины.


Данный станок предназначен для обработки деталей небольшой массы.

Область использования: основные производственные цеха в условиях единичного и мелкосерийного производства. Также станок используется в ремонтно-механических и инструментальных цехах.

На фундаментной плите 7 смонтирована колонна 6, в ее верхней части размещается коробка скоростей 5 с электродвигателем. На вертикальных направляющих установлена шпиндельная бабка 4 внутри которой размещается привод подач, осуществляющий вертикальное перемещение шпинделя. Поднимать и опускать шпиндель можно механически или вручную с помощью штурвала 2. Для установки и закрепления приспособлений с заготовкой имеется стол 3, его можно устанавливать на различную высоту в зависимости от размеров заготовки или приспособления.

Особенность вертикально-сверлильного станка – для обработки отверстия необходимо совместить центр будущего отверстия с осью вращения инструмента.


2. КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА СТАНКА


2.1 Выбор диапазона регулирования и числа ступеней передач коробки скоростей


Основными техническими характеристиками вертикально-сверлильного станка, определяющими его технологические возможности являются:

- предельные значения частот вращения nmin = 18об/мин; nmax = 1000об/мин,

- знаменатель ряда частот вращения φ=1,41.

Определяем диапазон регулирования:


Проектирование привода коробки скоростей металлорежущего станка


Определяем число ступеней скорости :Проектирование привода коробки скоростей металлорежущего станка


Проектирование привода коробки скоростей металлорежущего станка, принимаем z=14.


2.2 Разработка и построение структурных сеток и графика чисел оборотов


По заданному числу z=14 определяем возможные типы схем сложенных структур , т.к. простые множительные структуры не используем.

Для z=18 и φ=1,41 сведем основные возможные варианты в таблицу 2.1.

Исходя из принципа оптимизации, в основу которого положено минимальное число элементов привода (количество валов, шестерен, блоков и муфт) и максимального количества ступеней передач по скоростной цепи, выбираем в качестве оптимальной структуры – структуру типа А1-2, вид структурной формулы z=14=2(i0+i΄·2·3).


Таблица 2.2.1 – Варианты коробок скоростей со сложенной структурой для z=18 и φ=1,41.

Структурная формула Вид структуры Основные показатели привода


Кол-во шестерен Кол-во валов Кол-во блоков Кол-во передач по короткой цепи Кол-во муфт
2(i0+i'·2·3) АⅠ 18 5 4 1 нет
2(1+i·2+2·2) БⅡ 18 5 4 1 1
2(0+3+i"· i"·4) БⅢ 22 5 3 2 нет
2(i0+i'· i'·3+i"· i"·3) БⅠ 26 7 4 2 нет

2(1+i'·2+i'·2+i"·2)

и т.д.

ВⅡ 16 6 3 1 2

Общий вид типовой схемы сложенной структуры вида АⅠ- 2 приведен на рис. 2.2.1


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 2.1 -Типовая схема сложенной структуры вида АⅠ- 2


В принятой структурной формуле определяем характеристики групп x1=1, x2=1, x3=2, x4=6.

Структурная сетка коробки скоростей приведена на рис. 2.2.2


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 2.2.2 - Структурная сетка.


При построении графиков чисел оборотов на основе выбранной структурной сетки учитывается то, что с точки зрения работы шестерен желательно, чтобы передаточные отношения в цепях главного движения находились в пределах Проектирование привода коробки скоростей металлорежущего станка, так как ускорительные передачи работают хуже замедлительных.

Графиков чисел оборотов приведен на рис. 2.2.3.


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 2.3 - Графиков чисел оборотов вертикально-сверлильного станка


Подбор чисел зубьев


Для подбора чисел зубьев воспользуемся графиком чисел оборотов (рис.2.3) и значениями передаточных отношений I между звеньями коробки главного движения.

Передаточные отношения:


Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;


Подбираем числа зубьев [5,стр.121,табл.3]:


z1 = 23; z5 = 80; z9 = 30; z13 = 60; z17 = 33;

z2 = 46; z6 = 21; z10 = 60; z14 = 30; z18 = 67;

z3 = 28; z7 = 67; z11 = 45; z15 = 20;

z4 = 41; z8 = 34; z12 = 45; z16 = 80;

2.4 Разработка кинематической схемы привода


На основании графика частот вращения и найденных значений чисел зубьев составляем принципиальную кинематическую схему привода главного движения станка (рис.2.4.1).


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 2.4.1 - Кинематическая схема привода главного движения станка


2.5 Расчет погрешностей кинематических цепей станка


Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка,

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка


В результате проверки всех основных цепей можно сделать вывод, что числа зубьев колес подобраны правильно и погрешности цепей не превышают допустимую погрешность.


3. СИЛОВОЙ РАСЧЕТ


3.1 Расчет коэффициента полезного действия станка и мощности главного электродвигателя


Мощность электродвигателя определяем, используя зависимость


Проектирование привода коробки скоростей металлорежущего станка


где Мкр – максимальный момент.

Для d = 12 рассчитываем крутящий момент используя следующие данные:

S, d, Cn (материал Проектирование привода коробки скоростей металлорежущего станка=750 МПа, НВ = 170 конструкционная сталь).

Используя формулу для определения сил резания:


Проектирование привода коробки скоростей металлорежущего станка

S = 0,35 мм; q = 2,0;

См = 0,0345; y = 0,8;

Kp = 1; D = 20мм;

Mkp = 10 · 0,0345 · 122,0 · 0,350,8 · 1 = 59,58 Н/м.


Определение скорости резания


Проектирование привода коробки скоростей металлорежущего станка


Стойкость инструмента принимаем минимальную.


Т = 45; m = 0,2;

Сv = 9,8; y = 0,5;

q = 0,4; Kv = 1;

Проектирование привода коробки скоростей металлорежущего станкам/мин;

n = Проектирование привода коробки скоростей металлорежущего станка;


Принимаем по графику ближайшую меньшую n = 355 об/мин;


N = Проектирование привода коробки скоростей металлорежущего станкакВт;


Для силового расчета нам необходимо знать мощность холостого хода (Nxx).

Ее определяют по формуле Левита


Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станкакВт;

Nдв = Nэф + Nxx =2,15 + 0,196 = 2,35 кВт.


Принимаем Nдв=3 кВт.

(Технические характеристики электродвигателя (по ГОСТ 19523-74))

Тип двигателя - 4A90L2У3

Номинальная мощность Pном. = 3 кВт

Частота вращения = 2840 об/мин.

КПД = 84.5%

COS(ф) = 0.88

Отношение минимального момента крутящего к номинальному Мmin/Мном. = 1.6

Отношение пускового момента к номинальному моменту Мп/Мном = 2.1

Отношение критического момента к номинальному Мкр/Мном = 2.5

Отношение пускового тока к номинальному Iп/Iном = 6.5

Маховой момент J = 0,35·10-2 кгс·м2.

Основные размеры и масса электродвигателя

Число полюсов - 2

Габаритные размеры, мм.

l30 = 350; h31 = 243; d30 = 208.

Установочно-присоединительные размеры, мм.

l1 = 50; l10 = 125; l31 = 56; d1 = 24; d10 = 10; b10 = 140; h = 90.

Масса, кг = 28.7

Присоединительные размеры для двигателей с фланцем

d20 = 215; d22 = 15; d25 = 180;


3.2 Расчет крутящих моментов на валах


Мкр.вал = 9740Проектирование привода коробки скоростей металлорежущего станка [Н·м];

Mkp.1 = 9750·Проектирование привода коробки скоростей металлорежущего станкаН·м;

Mkp.2 = 9750·Проектирование привода коробки скоростей металлорежущего станкаН·м;

Mkp.4 = 9750·Проектирование привода коробки скоростей металлорежущего станкаН·м;

Mkp.5 = 9750·Проектирование привода коробки скоростей металлорежущего станкаН·м;

Mkp.3 = 9750·Проектирование привода коробки скоростей металлорежущего станкаН·м;

Определение диаметров валов (проектный расчет).


Проектирование привода коробки скоростей металлорежущего станка[м]; Проектирование привода коробки скоростей металлорежущего станка= 30 Мпа (для стали 40)

Проектирование привода коробки скоростей металлорежущего станкапринимаем d=30 мм,

Проектирование привода коробки скоростей металлорежущего станка принимаем d=30 мм,

Проектирование привода коробки скоростей металлорежущего станка принимаем d=30 мм,

Проектирование привода коробки скоростей металлорежущего станка принимаем d=30 мм,

Проектирование привода коробки скоростей металлорежущего станка принимаем d=40 мм,


3.3 Расчет на прочность зубчатых колес


Рассчитываем модуль зубчатой передачи не только по напряжениям изгиба, но и по контактным напряжениям; из двух величин выбираем большую и приводим к стандартному значению:


Проектирование привода коробки скоростей металлорежущего станка, мм.

Проектирование привода коробки скоростей металлорежущего станка, мм.


где Проектирование привода коробки скоростей металлорежущего станка- расчетами крутящий момент на валу шестерни (меньшего колеса) передачи в н м,

z - число зубьев шестерни;

i - передаточное число, равное отношению числа зубьев большего колеса к числу зубьев меньшего колеса (Проектирование привода коробки скоростей металлорежущего станка), независимо от того, понижающей передача или повышающая;

Проектирование привода коробки скоростей металлорежущего станка - знак плюс для подач наружного зацепления, минус внутреннего;

Проектирование привода коробки скоростей металлорежущего станка - коэффициент формы зуба, для z=20 Проектирование привода коробки скоростей металлорежущего станка=0,4


Проектирование привода коробки скоростей металлорежущего станка,


b - рабочая ширина зубчатого венца колеса в мм;

Проектирование привода коробки скоростей металлорежущего станка - коэффициенты, учитывающие увеличение нагрузки на передачу по сравнению с номинальной вследствие неравномерного характера процесса резания в работы привода;


Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка


где Проектирование привода коробки скоростей металлорежущего станка  коэффициент перегрузки, Проектирование привода коробки скоростей металлорежущего станка=1,2, Проектирование привода коробки скоростей металлорежущего станка,Проектирование привода коробки скоростей металлорежущего станка   коэффициенты динамичности нагрузки, из-за изготовления и монтажа Проектирование привода коробки скоростей металлорежущего станка=1,05, Проектирование привода коробки скоростей металлорежущего станка=1,03

Проектирование привода коробки скоростей металлорежущего станка коэффициенты неравномерности распределения нагрузки по длине зуба;


для Проектирование привода коробки скоростей металлорежущего станка Проектирование привода коробки скоростей металлорежущего станка


Проектирование привода коробки скоростей металлорежущего станка - допускаемое напряжение на изгиб и контактную прочность а Проектирование привода коробки скоростей металлорежущего станка определяются по формулам:

Проектирование привода коробки скоростей металлорежущего станка=1,9·108·1,2·1,4=2,96·108 Па,

Проектирование привода коробки скоростей металлорежущего станка=9,5·108·1,62=15,4·108 Па.


Проектирование привода коробки скоростей металлорежущего станка  длительные пределы выносливости зубьев при расчете на изгиб и контактную прочность в Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка   коэффициент, учитывающий влияние режима шлифования зубьев на величину допускаемого изгибного напряжения

Проектирование привода коробки скоростей металлорежущего станка   коэффициенты переменности режима работы,


Проектирование привода коробки скоростей металлорежущего станка,


где Проектирование привода коробки скоростей металлорежущего станка - расчетное (базовое) число циклов нагружения при испытании материала шестерни на усталостную прочность, Проектирование привода коробки скоростей металлорежущего станка=7·107

Проектирование привода коробки скоростей металлорежущего станка - количество передач в группе, Проектирование привода коробки скоростей металлорежущего станка=2

Проектирование привода коробки скоростей металлорежущего станка- расчетная частота вращения шестерни в мин-1; Проектирование привода коробки скоростей металлорежущего станка=219,63об./мин,

Проектирование привода коробки скоростей металлорежущего станка   коэффициенты увеличения Проектирование привода коробки скоростей металлорежущего станка и Проектирование привода коробки скоростей металлорежущего станка, зависящие от степени универсальности станка в расположения передачи (ближе к выходному валу).


Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка;

Проектирование привода коробки скоростей металлорежущего станка,


таким образом

Проектирование привода коробки скоростей металлорежущего станкамм,

Проектирование привода коробки скоростей металлорежущего станка


Принимаем по стандартному ряду m=3мм.

Остальные модули прямозубых зубчатых колес рассчитаны с помощью ЭВМи результаты расчета сводим в табл. 3.3.1.


3.4 Расчет геометрических параметров зубчатых колес


Диаметры делительных окружностей определяются по зависимости:


dwi=mi·zi,


Диаметры окружностей вершин определяются по зависимости:


dai=dwi+2mi,


Диаметры окружностей впадин определяются по зависимости:


dfi=dwi-2,5mi.


Определяем межцентровые расстояния между валами по формуле:


Проектирование привода коробки скоростей металлорежущего станка.


Определяем ширину зубчатых венцов по зависимости:

b1=10·m=10·3=30мм

b2=10·m=10·3=30мм

b3=10·m=10·3=30мм

b4=10·m=10·3=30мм

b5=10·m=10·2,5=25мм

b6=10·m=10·2,5=25мм

b7=10·m=10·2,5=25мм

b8=10·m=10·2,5=25мм

b9=10·m=10·3=30мм

b10=10·m=10·3=30мм

b11=10·m=10·3=30мм

b12=10·m=10·3=30мм

b13=10·m=10·3=30мм

b14=10·m=10·3=30мм

b15=10·m=10·2,5=25мм

b16=10·m=10·2,5=25мм

b17=10·m=10·2,5=25мм

b18=10·m=10·2,5=25мм


Таблица 3.3.1 - Исходные данные для расчета модуля и результаты расчета

Валы

Передат.

отношение

Крутящ.момент Мкр Н/м Ст.точности Исполн.вала Число передач в группе Материал зубч.колес Частота вращ. шестерни Расч. знач

m

мм








Мизг Мкон
I – II 28/41=1/1.41 40,21 Точная (7); ближе к входному валу 2

40Х

Закалка объемная

710 0,76 0,85 3
II – IV 21/80=1/4 56,35 Точная (7); ближе к входному валу 1

40Х

Закалка объемная

500 1,2 1,5 2,5
IV – V 45/45=1 222,5 Точная (7); ближе к входному валу 3

40Х

Закалка объемная

125 2,99 2,64 3
V – III 20/80=1/4 219,63 Точная (7); ближе к выходному валу 2

40Х

Закалка объемная

125 1,95 2,27 2,5
II - III 67/34=2 56,35 Точная (7); ближе к выходному валу 1

40Х

Закалка объемная

31,5 0,79 0,8 2,5

Таблица 3.4.1 – Геометрические параметры зубчатых прямозубых колес.

Z № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
z 23 46 28 41 80 21 67 34 30 60 45 45 60 30 20 80 33 67
m 3 2,5 3 2,5
d 69 138 84 123 200 52,5 167,5 85 90 180 135 135 180 90 50 200 82,5 167,5
df 61,5 130,5 76,5 155,5 193,75 46,25 161,25 78,75 82,5 172,5 127,5 127,5 172,5 82,5 43,75 193,75 76,25 161,25
da 75 144 90 129 205 57,5 172,5 90 96 186 141 141 186 96 55 205 87,5 172,5
aw 103,5 126,25 135 125

3.5 Уточненный расчет вала


Приведем расчет вала Ⅴ коробки скоростей. Расчетная схема приведена на рисунке 3.5.1.


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 3.5.1 –схема зацепления вала Ⅴ с валами Ⅵ и Ⅲ.


Для наглядности изобразим схему зацепления сбоку, на которой покажем все силы, действующие на вал Ⅴ (рис. 3.5.2).


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 3.5.2 –Схема сил действующих на вал \/.


Окружная сила:


Проектирование привода коробки скоростей металлорежущего станка


Радиальная сила:


Проектирование привода коробки скоростей металлорежущего станка Проектирование привода коробки скоростей металлорежущего станка,

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка


Проектирование привода коробки скоростей металлорежущего станка


гор.:


∑ У=0:

Ra+Rв-3197,5- 3296,3=0,

∑Ma=0: 3197,5∙182,5+3296,3∙(182,5+87,5)+Rв∙491=0,

Rв=3597,1Н,

Rа=2896,7Н,


верт.:


∑ У=0:

Ra+Rв-8785,2-1199,7=0,

∑Ma=0:

8785,2∙182,5+1199,7∙(182,5+87,5)-Rв∙491=0,

Rв=3925,1Н,

Rа=6059,8Н.


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 3.6.2.-Эпюры изгибающих и крутящих моментов.


Расчет валов на прочность производят по формуле:


Проектирование привода коробки скоростей металлорежущего станка Н/м2


где Проектирование привода коробки скоростей металлорежущего станка   приведенное напряжение (изгиб плюс кручение) в Па;

Проектирование привода коробки скоростей металлорежущего станка   расчетный крутящий момент на валу в Н·м;

Проектирование привода коробки скоростей металлорежущего станка   наибольший изгибающий момент в опасном сечении вала (шпинделя) в Н·м:


Проектирование привода коробки скоростей металлорежущего станка


где Проектирование привода коробки скоростей металлорежущего станка- максимальные изгибающие моменты в опасном сечении в Н·м,

Проектирование привода коробки скоростей металлорежущего станка,


Проектирование привода коробки скоростей металлорежущего станка - момент сопротивления изгибу в опасном сечении в м3;


Проектирование привода коробки скоростей металлорежущего станка,


Проектирование привода коробки скоростей металлорежущего станка   допускаемое напряжение на изгиб в Н/м2,

Принимаем для валов сталь 35 нормализованную с Проектирование привода коробки скоростей металлорежущего станка.


Проектирование привода коробки скоростей металлорежущего станка.


4. ВЫБОР ПОДШИПНИКОВ


Осевые нагрузки в коробке скоростей отсутствуют, поэтому применяем однорядные шариковые подшипники (по ГОСТ8338-75). В табл. 4.1приведены основные параметры подшипников, используемых в коробке.


Таблица 4.1- Основные размеры подшипников.

Обозначение подшипника d D B r

Динамич.

грузоподъем

ность, c,кН

Статическая

грузоподъем

ность, с0, кН

307 35 80 21 1 33,2 18
209 45 85 19 1 33,2 18,6

Общий вид подшипника приведен на рисунке 4.1


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 4.1 – Основные размеры шарикового подшипника.


В шпиндельной коробке имеется несколько десятков подшипников, а отказ любого из них выводит из строя всю коробку.


5.ВЫБОР ШПОНОК


Выбираем в качестве неподвижного соединения шпоночное с призматической шпонкой (по ГОСТ23360-78 ).

Для диаметров валов от 22 до 30 мм имеем следующие размеры шпонок: bЧhЧl= 8Ч7Ч18 мм,

глубина паза вала t1=4мм,

глубина паза втулки t2=3,3мм.

Для диаметров валов от 38 до 44 мм имеем следующие размеры шпонок: bЧhЧl= 12Ч8Ч28 мм,

глубина паза вала t1=5мм,

глубина паза втулки t2=3,3мм.

Основные размеры соединения приведены на рис.5.1.


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 5.1- Основные размеры шпоночного соединения.


Выбранные шпонки необходимо проверять на смятие по формуле:


Проектирование привода коробки скоростей металлорежущего станка, Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

Проектирование привода коробки скоростей металлорежущего станка

6. ВЫБОР СИСТЕМЫ СМАЗКИ


Смазочной системой называют совокупность устройств для подачи смазочного материала к трущимся поверхностям и возврата его в резервуар.

В качестве смазочных материалов в станках применяют жидкие минеральные масла и густые (консистентные) мази. Преимущественное распространение получили минеральные масла, которые лучше подходят для смазки ответственных быстроходных сопряжений и позволяют более легко осуществлять централизованную смазку с ее циркуляцией и очисткой от загрязнения.

Выбор того или иного сорта смазки зависит в первую очередь от скоростей относительных скольжений и нагрузок, действующих в сопряжениях.

При прочих равных условиях, чем выше скорость относительного скольжения и чем ниже давление в сопряжении, тем меньше вязкость.

Для коробок скоростей металлорежущих станков рекомендуется использовать масло индустриальное марки И-30(ГОСТ20799-75).

Определяем скорость в подшипниковых узлах:


Проектирование привода коробки скоростей металлорежущего станка


Определяем значение n·dcp=0,26·106·30=7,8·106.

Применяем смазку поливом сверху.


7. ВЫБОР СИСТЕМЫ УПРАВЛЕНИЯ


Механизм управления коробкой скоростей позволяет обеспечить четкое выполнение заданных функций станка с минимальным расходом времени и усилий, удобство и безопасность в управлении.

В нашем случае управление коробкой скоростей производится с использованием электромагнитных муфт. Это фрикционные односторонние муфты.

Устройство электромагнитной фрикционной односторонней муфты приведено на рис. 7.1.

При включении электромагнитной муфты (рис.7.1) магнитное поле, образуемое катушкой 2,притягивает якорь 5, сжимая пакет магнитопроводящих дисков 3 и 4. Выступы внутренних дисков 4 зацепляются со шлицами втулки 1, закрепляемой на валу механизма, а наружные выступы дисков3 зацепляются с втулкой 6, имеющей пролет и являющейся другим вращающимся элементом этого механизма.

Порядок включения и выключения муфт согласован с электросхемой привода, согласованной с кинематическими цепями привода скоростей.


Проектирование привода коробки скоростей металлорежущего станка

Рисунок 7.1 – Конструкция электромагнитной муфты.


ЗАКЛЮЧЕНИЕ


При выполнении разделов курсового проекта спроектирована коробка скоростей вертикально-сверлильного станка с ЧПУ с основным параметром d=20мм.

В результате выбрана кинематическая схема привода, произведен силовой расчет коробки скоростей – определены диаметры валов, модули зубчатых колес, выбраны подшипники качения, шпоночные соединения.

Обоснована и выбрана система смазки и управления коробки скоростей вертикально-сверлильного станка.

Спроектирована развертка и свертка вертикально-сверлильного станка с ЧПУ.


ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


Пуш В.Э. Конструирование металлорежущих станков. -М.: Машиностроение, 1977.-309с.

Справочник технолога машиностроителя. В 2-х т. Т2/ Под ред. А.Г. Косиловой и Р.К. Мещерякова 4-е изд-. М.: Машиностроение, 1985.-496с.

Методические указания к курсовому проекту по курсу "Металлорежущие станки и промышленные роботы" №755 (для студентов спец. 0501/Сост.: Сапронов Ю.А., Кочергие В.Г., Вяльцев Н.В., Горкуша А.Е. – Донецк: ДПИ, 10987. –48с.

Тарзиманов Г.А. Проектирование металлорежущих станков. -М.: Машиностроение, 1980.-288с.

Проников А.С. Расчет и конструирование металлорежущих станков. Изд.2-е, Высшая школа, 1968, - 431с.

Детали машин: Атлас конструкций./Уч. пособие для маш. Вузов /В.Н. Беляев, И.Р. Богатырев, А.В. Буланже, и др.; Под ред д.т.н., проф. Д.Н. Решетова. – 4-е изд.; перераб. и доп.   М.: Машиностроение, 1979. – 367с.

Подшипники качения: Справочник/Под ред. В.Н. Нарышкина и Р.В Коросташевского. -М.: Машиностроение, 1984 - с.

Расчеты на прочность деталей машин: Справочник/ Сост.: И.А. Биргер, Б.Ф. Шорр, Г.Б. Иосилевич -М.: Машиностроение, 1979 -702с.

Федотенок А.А. Кинематическая структура металлорежущих станков. -М.: Машиностроение, 1970.- 403 с.

Допуски и посадки: Справочник. В 2-х ч./в.Д. Мягков, М.А. палей, А.Б. Романов. В.А. Брагинский. – 6-е изд., перераб. И доп. – Л.: машиностроение. Ленингр. Отд-ние, 1982. – Ч.1. –543 с.

Похожие работы:

  1. • Расчет коробки скоростей металлорежущих станков
  2. • Разработка автоматической коробки скоростей ...
  3. • Расчет коробки скоростей металлорежущих станков
  4. • Проектирование коробки скоростей
  5. •  ... электропривода подач металлорежущего станка
  6. • Расчет и проектирование коробки скоростей к операционному ...
  7. • Коробка подач радиально-сверлильного станка
  8. • Расчет коробки подач горизонально-фрезерного станка
  9. • Разработка электромеханического привода главного ...
  10. • Наладка и эксплуатация электрооборудования металлорежущих ...
  11. •  ... обеспечения для проектировании цепной передачи в ...
  12. • Металлорежущий станок
  13. • Модернизация привода подач станка модели 6Н10 с ...
  14. •  ... изготовление вала в составе коробки скоростей токарно- ...
  15. • Изучение механизмов металлорежущих станков
  16. • Расчет технических параметров станков
  17. • Разработка электромеханического привода подачи станка ...
  18. • Модернизация коробки скоростей станка
  19. • Расчет коробки скоростей
Рефетека ру refoteka@gmail.com