Рефетека.ру / Промышленность и пр-во

Курсовая работа: Проектирование гидросистем

1. Введение


Проектирование технических изделий является творческим процессом, успешное завершение которого в значительной мере зависит от способности конструктора находить наилучший, из числа возможных, проектный вариант. В большинстве случаев среди критериев оптимизации могут быть противоречащие друг другу, а также критерии, не представленные в формализованном виде. Вследствие этого конструктору приходится вести проектирование в диалоге с ЭВМ. При организации процесса проектирования на первое место выходит проблема оптимизации каждого проектного варианта. В приложении к управляемым системам с гидроприводами проблема решается на основе метода ΛПτ- поиска оптимальных параметров в задачах со многими критериями . Рассмотренное в реферате решение задачи проектирования управляемых система с гидроприводами состоит из нескольких этапов. Сначала строится математическая модель исследуемой системы и формулируются её критерии качества Проектирование гидросистем. Для систем с гидроприводами критериями Проектирование гидросистем могут служить: энергетические показатели, массы и габариты устройств системы, показатель структурной сложности системы, динамические и установившиеся ошибки при управлении системой, продолжительность переходных процессов, амплитудные и фазовые искажения для заданного частотного диапазона. Затем определяются конструктивные (варьируемые) параметры Проектирование гидросистем, от значений которых зависят критерии качества системы. Конкретные значения конструктивных параметров выбираются из некоторой области Проектирование гидросистем, которая определяется совокупностью ограничений на варьируемые параметры типа равенства Проектирование гидросистем или неравенства Проектирование гидросистем, а также функциональными ограничениями на процессы, протекающие в проектируемой системе Проектирование гидросистем. На этом этапе последовательно выбираются N пробных точек из множества D. С каждым набором конструктивных параметров моделируются процессы, протекающие в проектируемой системе. По результатам моделирования составляются таблицы испытаний системы, включающие значения пробных точек (векторы конструктивных параметров) и соответствующие им значения критериев качества. Особенность используемых таблиц испытаний состоит в том, что испытания равномерно распределены в области пространства параметров. Те из полученного множества Проектирование гидросистемдопустимые проектные решения, которые обеспечивают наилучшие в заданном смысле значения критериев Проектирование гидросистем, образуют подмножество Проектирование гидросистем оптимальных (наилучших в заданном смысле) проектных вариантов Проектирование гидросистем. Таким образом, задачу оптимального проектирования можно формализовать следующим образом:

Проектирование гидросистем;

D: Проектирование гидросистем, Проектирование гидросистем; Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем,

Проектирование гидросистем, Проектирование гидросистем;

Проектирование гидросистем ,

где opt - оператор, реализующий принцип оптимизации.

Проектируемые системы – динамические, поэтому при вычислительном эксперименте необходимо решать нелинейные дифференциальные уравнения, описывающие процессы, протекающие в этих системах. Полученные при вычислительных экспериментах таблицы испытаний позволяют выбрать для рассматриваемого проектного варианта наилучшие, в соответствии с принятыми критериями, значения параметров. Проведя такой выбор для всех проектных вариантов, конструктор имеет возможность найти "наилучший" вариант, принимая при этом во внимание и критерии, которые не были формализованы и не учитывались при вычислительном эксперименте.

2. Вычислительный эксперимент в задачах оптимального проектирования управляемых систем с гидроприводами


2.1 Электрогидравлические усилители (ЭГУ)


Проектируемые ЭГУ состоят из электромеханического преобразователя (ЭМП) и распределительного золотника с управляющим каскадом (УК и РК), которые описываются системами нелиней­ных дифференциальных уравнений 3-го и 4-ого порядков соответственно.

Варьируемые параметры ЭМП - воздушный зазор между якорем и сердечником, число витков обмотки управления, жесткость пружины подвеса заслонки. Варьируемые параметры УК и РК - диаметр плунжера золотника, масса золотника, диаметр дросселя, диаметр сопла, расстояние между заслонкой и срезом сопла в нейтральном по­ложении заслонки, угол наклона плоскости заслонки к оси золотника. В качестве критериев оптимальности для элементов ЭГУ были назначены критерии оценки качества. Для ЭМП - быстродействие, определяемое постоянной времени, усилие на выходном звене, крутизна статической характеристики, амплитудно-частотные и фазочастотные характеристики. Для УК и РК - быстродействие, определяемое постоянной времени, утечки в управляющем каскаде, статические характеристики, амплитудно-частотные и фазочастотные характеристики.


2.2 Гидросистемы


Гидросистемы с нерегулируемыми насосами. Гидросистемы энергопитания (ГСЭ) используются в управляющих системах в качестве источников питания рабочей жидкости гидроприводов. К параметрам гидросистемы отнесены давление рабочей жидкости в напорной магистрали системы, производительность насосной установки, массу насосной установки, ёмкость аккумулятора, предварительное давление в газовой камере аккумулятора, диапазон изменения рабочего давления, температура рабочей жидкости, емкость бака, а также те величины, которые зависят от условий эксплуатации гидроприводов. В качестве требований, предъявляемых к ГСЭ, которыми определяется качество системы, обычно выделяют: требования к энергетическому показателю, который должен быть достаточно высоким, малую массу, высокую надежность, низкую стоимость. В зависимости от назначения ГСЭ приоритет заданных критериев, как и их число, могут меняться. Выбор оптимального проектного варианта ГСЭ требует решения многокритериальной задачи с довольно большим числом варьируемых параметров. Задача усложнена тем, что заранее не известна оптимальная структура ГСЭ. Вследствие этого путь решения задачи состоит из двух этапов. На первом этапе проводится параметрическая оптимизации отдельных вариантов с предварительно выбранной структурой ГСЭ. На втором этапе сравниваются наилучшие варианты каждой из рассмотренных структур ГСЭ и выбирается вариант структуры и ее параметры, наиболее отвечающие требованиям к управляющему устройству.


2.3 Регулятор аксиально-поршневого насоса


В качестве варьируемых параметров выбираются конструктивные параметры регулятора: жесткость пружины гидроцилиндра, коэффициент полноты использования периметра втулки золотника в левом и правом окнах, диаметр дросселя, соединяющего торцевую полость золот­ника с линией нагнетания насоса, сила предварительного поджатия пружины гидроцилиндра, диаметр поршня гидроцилиндра, диаметр золотника, линейный размер, определяющий суммарное открытие левой и правой кромок золотника, жесткость пружины золотника. Значения границ изменения варьируемых пара­метров приняты по прочностным, технологическим и другим условиям. Каждая комбинация варьируемых параметров приводит к изменению стати­ческих и динамических характеристик регулятора по отношению к исходным, а также к изменению начальных условий для решения системы дифференциальных уравнений. Для каждой пробной точки должны быть дважды вычислены началь­ные условия, которым на статической характеристике насоса соот­ветствуют два равновесных состояния системы насос-регулятор: при отсутствии расхода жидкости потребителем Qs=0 и при максималь­ном потреблении Qs=Qsmax. Положение регулирующего органа насоса, при этих двух состо­яниях регулятора, определяется двумя значениями угла наклона шай­бы насоса, одно из которых приведет к появлению зоны не­чувствительности при управлении насоса регулятором, другое вызовет непроизводительные утечки в сис­теме, превышающие 10%, что недопустимо требованиями по энергетике насосной станции. Для избежания автоколебательного или неустойчивого процессов, а также процессов со слабым затуханием, введено ограни­чение по времени переходного процесса. Недопустимые по условиям прочности повышение или понижение давления в напорной магистрали при переходном процессе, вызванном изменением расхода жидкости потребителем, могут быть исключены с помощью соответствующего функционального ограничения. Показате­ли качества динамических характеристик регулятора оцениваются по максимальному отклонению наклонной шайбы и времени переходного процесса давления в напорной магистрали при возмущении, вызванном ступен­чатым изменением расхода потребителя. Из-за не симметрии действия сил на управляющий золотник и поршень гидроцилиндра приближенно эффективные значения некоторых параметров могут получаться различными по отношению к своим ограниче­ниям в зависимости от уменьшении или увеличении расхода жидкости Qs. В связи с этим, динамические характеристики оцениваются по двум переходным процессам: при увеличении расхо­да Qs от нуля до Qsmax/2 и при уменьшении его от Qsmax до Qsmax/2. Статическая точность регулятора оценивается крутизной характеристики насоса при автоматическом регулировании его подачи.

Результаты оптимизации. У большинства проектных вариантов регулятора, наблюдается улучшение динамических характеристик за счет уменьшения времени переходного процесса и динамической ошибки. Однако, это улучшение достигается за счет увеличения расхода Qупр жидкости, необходимого для управления насосом.


2.4. Однокаскадные автономные электрогидравлические следящие привода (ЭГСП)


Каждый ЭГСП характеризуется параметрами: давлением настройки предохранительного клапана, коэффициентом подачи насоса, коэффициентом давления. Эти параметры приняты в качестве варьируемых. Для оценки качества ЭГСП приняты критерии: энергетический показатель, определяемый количеством потребляемой приводом энергии в отсутствие командного сигнала; динамический показатель, характеризующий переходные процессы в приводе и точность, осуществляемого с помощью привода, управления объектом.

Необходимо рассмотреть схемы ЭГСП двух типов. ЭГСП второго типа имеет несколько меньшую потребляемую мощность. Схемы обоих типов ЭГСП имеют близкие значения показателей качества переходного процесса. По потребляемой электрической мощности в отсутствие командного сигнала ЭГСП второго типа является более экономичным. По качеству переходного процесса ЭГСП первого типа обладает несколько большим быстродействием.

3. Математическое моделирование и оптимальное проектирование автономного электрогидравлического привода


3.1 Постановка задачи оптимального проектирования электрогидравлических следящих приводов


Алгоритм нахождения оптимального проектного варианта электрогидравлического следящего привода (ЭГСП) можно построить, применив метод ЛПτ–поиска. В этом случае задача ставится следующим образом.

Пусть качество ЭГСП характеризуется некоторой совокупностью критериальных функций Проектирование гидросистем и конструктивных параметров Проектирование гидросистем. Координаты вектора Проектирование гидросистем можно варьировать, изменяя конструктивные параметры системы и соответственно получая различные показатели ее качества. Конкретные значения Проектирование гидросистем выбирают из некоторой области Проектирование гидросистем. Область Проектирование гидросистем определяется совокупностью ограничений на варьируемые параметры типа равенства Проектирование гидросистем и/или неравенства Проектирование гидросистем, а также функциональными ограничениями Проектирование гидросистем. Ограничения назначаются на основании технических, эксплуатационных и других требований. Те из полученного множества Проектирование гидросистем допустимые проектные решения, которые обеспечивают наилучшее в заданном смысле значения Проектирование гидросистем, образуют подмножество Проектирование гидросистем оптимальных вариантов Проектирование гидросистем. В указанной постановке задачу оптимального проектирования можно представить в таком виде

Проектирование гидросистем;

Проектирование гидросистем Проектирование гидросистем, Проектирование гидросистем;

Проектирование гидросистем;

Проектирование гидросистем, Проектирование гидросистем;

Проектирование гидросистем, Проектирование гидросистем Проектирование гидросистем, Проектирование гидросистем;

Проектирование гидросистем, Проектирование гидросистем ,

где opt - оператор, реализующий принцип оптимизации.

В алгоритме поиска оптимального решения используются математические модели ЭГСП, которые состоят из дифференциальных и алгебраических уравнений:

Проектирование гидросистем;

Проектирование гидросистем,

где Проектирование гидросистем - n-мерный вектор переменных состояния, Проектирование гидросистем - m-мерный вектор конструктивных (варьируемых) параметров ЭГСП, t - время. При решении этой системы уравнений, параметры ЭГСП должны быть выбраны так, чтобы они наилучшим образом удовлетворяли техническим требованиям, сформулированным в виде критериев качества ЭГСП и совокупности ограничений.

Варьируемые параметры и параметрические ограничения. Каждый ЭГСП характеризуется параметрами:

- давление настройки предохранительного клапана - Проектирование гидросистем,

коэффициент подачи насоса (определяет, насколько увеличивается подача насоса за счет утечек на слив) - Проектирование гидросистем,

коэффициент давления (определяет какое давление будет в отсутствие управляющего сигнала на обмотках ЭМП) - Проектирование гидросистем.

Эти параметры приняты в качестве варьируемых, на их значения наложены ограничения, указанные в техническом задании. 

Критерии качества. Для оценки качества ЭГСП приняты критерии:

1. Энергетический показатель, определяемый количеством потребляемой приводом энергии в отсутствие командного сигнала.

2. Динамический показатель, характеризующий переходные процессы в приводе и точность, осуществляемого с помощью привода, управления объектом.

Кроме того, должны учитываться не формализуемые показатели, к которым относятся технологические возможности производства приводов, опыт эксплуатации приводов данного типа и др.

Задача оптимального проектирования состоит в выборе таких параметров ЭГСП, чтобы достигались минимум потребляемой приводом энергии, переходные процессы не хуже допустимых, заданная точность управления объектом и минимальные массогабаритные характеристики. При этом должны быть удовлетворены все параметрические и функциональные ограничения.

Решение задачи рассмотрим на примере проектирования автономного ЭГСП с одной ступенью усиления мощности потока жидкости, подводимой к исполнительному гидродвигателю. При этом используем метод ЛППроектирование гидросистем-поиска. Поскольку число исходных исследуемых вариантов не влияет на решение данной задачи, с целью сокращения излагаемого материала ограничимся двумя типами наиболее часто применяемых на практике приводов.


3.2 Математические модели автономных электрогидравлических следящих приводов


Схема ЭГСП первого типа дана на рис.1. Электродвигатель 1 приводит во вращение трехшестеренный насос 2, который создает потоки рабочей жидкости, направляемой к золотниковым плунжерам 3. В отсутствие подводимого от электронного усилителя сигнала Проектирование гидросистем жидкость через окна, открытые золотниковыми плунжерами, поступает на слив. Вследствие равенства площадей окон разность давлений в полостях гидроцилиндра 4 равна нулю и поршень 5 вместе со штоком 6 неподвижны. При наличии сигнала в виде напряжения Проектирование гидросистем на концах обмотки 7 электромеханического преобразователя (ЭМП) происходит поворот качалки 8 по или против часовой стрелки в зависимости от полярности сигнала. Поворот качалки вызывает перемещение золотниковых плунжеров, увеличивающих открытие одного окна и уменьшающих открытие другого. Соответственно давление в одной полости гидроцилиндра уменьшается, а в другой – увеличивается. Под действием силы, созданной разностью давлений в гидроцилиндре, поршень 5 перемещается до тех пор, пока сигнал Проектирование гидросистем обратной связи от датчика 10 не уменьшит Проектирование гидросистем до требуемого значения. Установленные на напорных магистралях насоса, предохранительные клапаны 9 ограничивают наибольшее повышение давления в гидроцилиндре.

В ЭГСП второго типа (рис 2) применен плоский золотник 1 и двухшестеренный насос 2 [4]. Переливной клапан 3 поддерживает постоянное давление в напорной магистрали насоса. При поступлении сигнала Проектирование гидросистем в обмотки 4 ЭМП, золотник, закрепленный на упругой рамке, отклоняется от среднего положения, вызывая изменение давления в полостях гидроцилиндра. В остальном этот тип ЭГСП действует аналогично первому типу.

Математические модели обоих типов ЭГСП составим, используя общую методику математического описания таких динамических систем.

Для ЭГСП первого типа примем следующие допущения:

- вследствие малости технологических зазоров у золотниковых плунжеров утечки жидкости по ним можно не учитывать;

- зависимости подачи насосов от давления в напорных каналах линейные;

- гидродинамические силы, действующие на золотниковые плунжеры, и силы сухого трения в подвижных элементах пренебрежимо малы.

При указанных допущениях были получены перечисленные ниже уравнения.

Уравнение электрического сигнала ошибки

Проектирование гидросистем (1)

где Проектирование гидросистем – входной сигнал при управлении ЭГСП.

Уравнение, описывающее преобразование сигнала в ЭУ

Проектирование гидросистем (2)

где Проектирование гидросистем - напряжение на выходе ЭУ, Проектирование гидросистем – коэффициент усиления ЭУ.

Уравнение напряжений в обмотках ЭМП

Проектирование гидросистем, (3)

где Проектирование гидросистем – ток управления, Проектирование гидросистем - сопротивление обмоток ЭМП, Проектирование гидросистем - сопротивление выходного каскада электронного усилителя, Проектирование гидросистем – индуктивность ЭМП,

Уравнение движения золотниковых плунжеров

Проектирование гидросистем, (4)

где Проектирование гидросистем – перемещение золотниковых плунжеров, Проектирование гидросистем – постоянная времени узла управления (УУ), Проектирование гидросистем - коэффициент относительного демпфирования УУ, Проектирование гидросистем - коэффициент передачи УУ.

Коэффициент, связи угла поворота якоря ЭМП с перемещением золотниковых плунжеров

Проектирование гидросистем , (5)

где Проектирование гидросистем – плечо качалки УУ

Уравнение линеаризованной расходно-перепадной характеристики (рис 3)

Проектирование гидросистем , (6)

где Проектирование гидросистем– разность давлений в полостях нагруженного гидроцилиндра, коэффициенты Проектирование гидросистем и Проектирование гидросистем находят аппроксимацией расходно-перепадной характеристики (при различных положениях золотниковых плунжеров).

Уравнение баланса расходов при движении поршня гидроцилиндра

Проектирование гидросистем , (7)

где Проектирование гидросистем – перемещение штока гидроцилиндра, Проектирование гидросистем – модуль объемной упругости жидкости в гидроцилиндре, закрепленном на упругой опоре, Проектирование гидросистем– расход рабочей жидкости, Проектирование гидросистем – рабочая площадь поршня, Проектирование гидросистем– объем одной полости гидроцилиндра при среднем положении поршня.

Уравнение движения управляемого приводом объекта

Проектирование гидросистем , (8)

где Проектирование гидросистем – масса подвижных частей управляемого объекта, приведенная к штоку привода, Проектирование гидросистем– координата положения центра приведенной массы, измеряемая от среднего положения поршня, Проектирование гидросистем – коэффициент трения в подвижных частях обекта, Проектирование гидросистем– жесткость связи штока гидроцилиндра с управляемым объектом, Проектирование гидросистем– “жесткость” позиционной нагрузки.

Уравнение сил, действующих на поршень гидроцилиндра

Проектирование гидросистем, . (9)

Уравнение сил, действующих на гидроцилиндр

Проектирование гидросистем, (10)

гдеПроектирование гидросистем– жесткость опор гидроцилиндра, Проектирование гидросистем- перемещение гидроцилиндра.

Уравнение сигнала обратной связи, снимаемого при перемещении штока гидроцилиндра

Проектирование гидросистем, (11)

где Проектирование гидросистем – коэффициент позиционной обратной связи.

Уравнения (1) – (11) описывают математическую модель ЭГСП, их можно записать в нормальной форме Коши:


Проектирование гидросистем (12)

Переменные и коэффициенты, входящие в систему уравнений (12), определяется по следующим соотношениям:

Проектирование гидросистем; Проектирование гидросистем; Проектирование гидросистем; Проектирование гидросистем; Проектирование гидросистем;

Проектирование гидросистем Ом, Проектирование гидросистем ,Проектирование гидросистемГн,

Проектирование гидросистем c, Проектирование гидросистем 1/Ом,

Проектирование гидросистем мм/А, Проектирование гидросистем c, Проектирование гидросистем,

Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем В/м.

Начальные условия (t0=0)

Проектирование гидросистем


Для решения задачи был использован метод Рунге-Кутты с модификацией Мерсона, который позволяет эффективно решать подобные системы. Входное воздействие выбрано ступенчатым с Проектирование гидросистем В.

Качество ЭГСП оценивалось по двум критериям, которыми служили:

1. Электрическая мощность, потребляемая электродвигателем в отсутствие управляющего сигнала на обмотках ЭМП, Проектирование гидросистем[Вт].

2. Характеризующий динамическую ошибку и продолжительность переходного процесса функционал

Проектирование гидросистемПроектирование гидросистем ,

где Проектирование гидросистем – принятое с учетом заданной точности управления конечное перемещение штока гидроцилиндра, Проектирование гидросистем – перемещение штока гидроцилиндра в текущий момент времени.

Варьируемые параметры и границы их изменения приняты следующими:

- давление настройки предохранительного клапана - Проектирование гидросистем,

пределы изменения давления 4,0 ≤ Проектирование гидросистем ≤ 8,0 МПа;

коэффициент подачи насоса - Проектирование гидросистем ,

пределы изменения коэффициента 1,1 ≤ Проектирование гидросистем ≤ 1,5;

коэффициент давления (определяет какое давление будет в отсутствие управляющего сигнала на обмотках ЭМП) - Проектирование гидросистем ,

пределы изменения коэффициента 0,1 ≤ Проектирование гидросистем ≤ 0,5.

Численные значения конструктивных параметров, используемые в численных экспериментах, определялись с помощью приведенных ниже формул.

Сила торможения штока гидроцилиндра принята согласно техническому заданию на проектирование ЭГСП равной

Проектирование гидросистем Н (13)

Рабочая площадь поршня гидроцилиндра

Проектирование гидросистем (14)

Первое значение диаметра поршня гидроцилиндра при известном диаметре штока Проектирование гидросистем

Проектирование гидросистем (15)

По полученному значению диаметра поршня назначаетсяПроектирование гидросистем, наиболее близкое к значениям ряда нормальных размеров.

Площадь поршня гидроцилиндра:

Проектирование гидросистем (16)

Наибольший расход жидкости, необходимый для работы ЭГСП, определяется геометрическими размерами гидроцилиндра и заданной скоростью поршня при минимальной нагрузке, поэтому: Проектирование гидросистем, где Проектирование гидросистем – максимальная производительность насоса (в отсутствие нагрузки, действующей на шток гидроцилиндра), Проектирование гидросистем – максимальная скорость поршня гидроцилиндра (в соответствии с техническим заданием).

При расчетах характеристик привода учитывалась механическая характеристика выбранного электродвигателя насоса и зависимость потребляемого тока от нагрузки на валу. Характеристика представлена уравнением:

Проектирование гидросистем об/мин, (17)

где Проектирование гидросистем- число оборотов вала электродвигателя, Проектирование гидросистем- момент на валу электродвигателя.

Электрический ток, потребляемый электродвигателем насоса:

Проектирование гидросистем А (18)

Теоретическая производительность насоса:

Проектирование гидросистем Проектирование гидросистем (19)

Число зубьев шестерен насоса Проектирование гидросистем, модуль зубчатого колеса Проектирование гидросистем м.

Ширина зубчатых колес шестеренного насоса определена по формуле:

Проектирование гидросистем (20)

Ширина Проектирование гидросистем принимается ближайшей из нормального ряда.

Уточненное значение удельной производительности насоса:

Проектирование гидросистем (21)

Суммарная площадь дроссельных окон, открываемых золотниковым плунжером, определяется из соотношения:

Проектирование гидросистем (22)

где Проектирование гидросистем- проводимость окон, равная: Проектирование гидросистем (23)

Площадь каждого из четырех дроссельных окон:

Проектирование гидросистем (24)

Площадь дроссельного окна связана с перемещением золотника соотношением:

Проектирование гидросистем (25)

Коэффициенты Проектирование гидросистем и Проектирование гидросистем определяются по расходно-перепадной характеристике (Рис. 3).

Гидравлическая постоянная времени привода:

Проектирование гидросистем , (26)

где Проектирование гидросистем – приведенная жесткость нагруженного гидроцилиндра

Проектирование гидросистем, (27)

где Проектирование гидросистем – приведенный модуль упругости гидроцилиндра

Проектирование гидросистем

Механическая постоянная времени гидроцилиндра:

Проектирование гидросистем.

Постоянная времени демпфирования гидроцилиндра:

Проектирование гидросистем .

Коэффициент относительного демпфирования гидроцилиндра:

Проектирование гидросистем

Проектирование гидросистем – объем полости гидроцилиндра при среднем положении поршня, здесь Проектирование гидросистем м - ход поршня,

Проектирование гидросистемПроектирование гидросистем м3 – объем подводящего трубопровода гидролинии и мертвого объема гидроцилиндра,

Проектирование гидросистем [МПа] – модуль объемной упругости рабочей жидкости.

Проектирование гидросистем –масса подвижных частей управляемого объекта, приведенная к штоку привода:

Проектирование гидросистем кг, где

Проектирование гидросистем Н м с2 – момент инерции управляемого объекта относительно оси вращения,

Проектирование гидросистем м – плечо управляемого объекта,

Проектирование гидросистем Н с/м

Проектирование гидросистем – жесткость крепления гидроцилиндра.

Проектирование гидросистем Н/м – жесткость опоры гидроцилиндра,

Проектирование гидросистем Н/м – жесткость связи штока с управляемыми органами объекта,

Проектирование гидросистем Н/м – “жесткость” позиционной нагрузки.

Проектирование гидросистем (28)

Проектирование гидросистем Н/м

Значения исходных величин при численных испытаниях ЭГСП первого типа представлены в табл.1.


Значения параметров ЭГСП первого типа

Таблица 1

Исходная величина обозн. значение размерн.
Диаметр штока

Проектирование гидросистем

0,012 м
Диаметр поршня гидроцилиндра

Проектирование гидросистем

0,037 м
Площадь поршня гидроцилиндра

Проектирование гидросистем

9,64Ч10-4 м2
Модуль зубчатых колес насоса:

Проектирование гидросистем

0,001 м
Число зубьев зубчатых колес насоса

Проектирование гидросистем

15
Ширина зубчатых колес насоса

Проектирование гидросистем

0,0055 м
Удельная производительность насоса

Проектирование гидросистем

5,18Ч10-7 м3/об
Начальное открытие золотника

Проектирование гидросистем

0,00036 м
Радиус отверстий в золотнике

Проектирование гидросистем

0,00175 м
Число отверстий во втулке золотника

Проектирование гидросистем

4

Давление настройки

предохранительных клапанов:

Проектирование гидросистем

4Ч106 Па
Сопротивление обмоток ЭМП

Проектирование гидросистем

200 Ом
Индуктивность обмоток ЭМП

Проектирование гидросистем

2,5 Гн
Постоянная времени и коэффициент передачи электрической цепи ЭМП

Проектирование гидросистем

0,0125 с

Проектирование гидросистем

0,005 А/В
Постоянные времени и коэффициенты механической части ЭМП

Проектирование гидросистем

1000 мм/А

Проектирование гидросистем

0,004 c

Проектирование гидросистем

0,133

Проектирование гидросистем

1,5Ч10-5 м/рад
Коэффициенты линеаризованной расходно-перепадной характеристики (рис. 3)

Проектирование гидросистем

0,292 м2/с

Проектирование гидросистем

6,44Ч10-10 м5/сЧН
Объем полости гидроцилиндра при среднем положении поршня

Проектирование гидросистем

1,64Ч10-5 м3
Модуль объемной упругости рабочей жидкости

Проектирование гидросистем

1250 МПа
Объем подводящего трубопровода и мертвый объем гидроцилиндра

Проектирование гидросистем

5Ч10-6 м3
Гидравлическая постоянная времени привода

Проектирование гидросистем

0,00331 с
Механическая постоянная времени и коэффициент демпфирования гидроцилиндра

Проектирование гидросистем

0,0114 с

Проектирование гидросистем

0,36

Проектирование гидросистем

0,0158 с

3.3 Результаты математического моделирования и оптимального проектирования двух типов автономных электрогидравлических следящих приводов


Фрагмет результатов расчета ЭГСП первого типа представлен в таблице 2 и на рис. 4. (На рисунке по оси абсцисс отложен характеризующий динамическую ошибку и продолжительность переходного процесса функционал, по оси ординат - электрическая мощность, потребляемая электродвигателем в отсутствие управляющего сигнала на обмотках ЭМП.)

Последовательность вычисления пробных точек состояла из тех же этапов, что при вычислении пробных точек для ЭГСП первого типа.

Варьируемыми параметрами для ЭГСП второго типа являются:

- Давление настройки предохранительного клапана - Проектирование гидросистем Пределы изменения давления 40 ≤ Проектирование гидросистем ≤ 80 МПа;

- Коэффициент подачи насоса (определяет, изменение подачи насоса) Проектирование гидросистем. Пределы изменения коэффициента 0,8 ≤ Проектирование гидросистем ≤ 0,9.

- Коэффициент давления (определяет какое давление будет в отсутствие командного сигнала на ЭМП) - Проектирование гидросистем. Пределы изменения коэффициента 0,3 ≤ Проектирование гидросистем ≤ 0,9.

Сила торможения штока гидроцилиндра, параметры Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем, Проектирование гидросистем и другие параметры определяются по тем же зависимостям, как и для ЭГСП первого типа за исключением следующих.

Площадь дроссельного окна связана с перемещением золотника соотношением:Проектирование гидросистем, где Проектирование гидросистем - ширина дроссельного окна.

Проектирование гидросистем Ом - сопротивление обмоток ЭМП,

Проектирование гидросистем Гн – индуктивность обмоток якоря ЭМП,

Проектирование гидросистем c

Проектирование гидросистем

Фрагмент результатов расчета приведены в таблице 3 и на рис. 5. По оси абсцисс отложен характеризующий динамическую ошибку и продолжительность переходного процесса функционал, по оси ординат - электрическая мощность, потребляемая электродвигателем в отсутствие управляющего сигнала на обмотках ЭМП.

Для каждого из двух типов ЭГСП были рассчитаны 256 вариантов пробных точек. Каждая точка проверялась на соответствие исходным техническим заданием. В таблицу попали только те точки, которые удовлетворяют всем требованиям задания. Для ЭГСП первого типа прошло 174 варианта, второго – 137. Как видно из рис. 4 (точка выделена жирным цветом) предварительный вариант имеет неплохие показатели качества (хорошее качество переходного процесса и ток потребления в отсутствие управляющего сигнала). ЭГСП второго типа имеет несколько меньшую потребляемую мощность, поскольку в схеме применен двух- , а не трехшестеренный насос. Схемы первого и второго типа имеют сходные показатели качества переходного процесса

3.4 Заключение


В результате проведенных расчетов двух типов ЭГСП с различными принципиальными схемами получены наиболее близкие к оптимальным значения параметров для каждого проектного варианта. Альтернативным по отношению к ЭГСП первого типа (с золотниковыми плунжерами) может рассматриваться ЭГСП второго типа (с плоским золотником) несмотря на то, что для него требуется больший ток управления ЭМП. Этот недостаток отразится на массо-габаритных показателях, если кроме механических узлов, они учитывают массы и габариты электронных блоков. Однако, по потребляемой электрической мощности в отсутствие командного сигнала ЭГСП второго типа является более экономичным. По качеству переходного процесса ЭГСП первого типа обладает несколько большим быстродействием. Рассмотренная на примере двух типов ЭГСП методика проектирования может быть распространена на другие типы гидроприводов.

Фрагмент результатов численных испытаний ЭГСП первого типа. Таблица 2

вар

Проектирование гидросистем

Вт

Проектирование гидросистем

105

Проектирование гидросистем

МПа

Проектирование гидросистем

Проектирование гидросистем

Проектирование гидросистем

мм

Проектирование гидросистем

мм

Проектирование гидросистем

мм

Проектирование гидросистем

с

Проектирование гидросистем

с

Проектирование гидросистем

1 149 4,03 6,00 0,300 1,30 3,2 30 14,1 0,0325 0,0159 0,373
3 177 4,02 5,00 0,400 1,40 4,0 32 15,9 0,0347 0,0159 0,350
5 200 4,03 4,50 0,350 1,25 5,0 35 18,8 0,0417 0,0158 0,345
6 129 3,80 5,50 0,250 1,35 3,2 30 15,9 0,0355 0,0159 0,409
7 162 6,67 7,50 0,450 1,15 2,0 26 7,6 0,0217 0,0161 0,336
9 168 4,33 5,75 0,325 1,18 3,2 30 12,9 0,0305 0,0159 0,355
10 124 4,00 4,75 0,225 1,48 4,0 32 21,0 0,0427 0,0159 0,445
11 231 4,14 6,75 0,425 1,27 3,2 28 10,2 0,0224 0,0160 0,345
12 137 3,89 5,25 0,175 1,23 4,0 32 19,3 0,0400 0,0159 0,413
13 202 4,10 7,25 0,375 1,42 3,2 28 11,3 0,0238 0,0160 0,363
14 105 7,79 6,25 0,275 1,13 2,0 28 11,3 0,0346 0,0160 0,374
15 214 4,11 4,25 0,475 1,33 5,0 35 17,9 0,0395 0,0158 0,335
16 102 3,99 6,13 0,113 1,26 3,2 30 19,8 0,0425 0,0159 0,486
17 153 3,94 4,13 0,313 1,46 5,0 35 22,7 0,0464 0,0158 0,393
18 116 4,91 5,13 0,213 1,16 3,2 32 17,4 0,0443 0,0159 0,385
19 217 4,10 7,13 0,412 1,36 3,2 28 10,7 0,0231 0,0160 0,353
20 118 4,10 4,63 0,163 1,31 4,0 32 22,0 0,0443 0,0159 0,465
21 121 8,55 6,63 0,363 1,11 2,0 28 9,8 0,0311 0,0160 0,343
22 107 4,82 7,63 0,263 1,41 2,0 26 11,0 0,0283 0,0161 0,424
23 197 4,82 5,63 0,463 1,21 3,2 30 11,5 0,0284 0,0159 0,329
25 136 5,83 7,88 0,338 1,24 2,0 26 8,8 0,0240 0,0161 0,354
27 158 5,99 4,88 0,438 1,14 3,2 32 13,5 0,0366 0,0159 0,323
28 170 4,15 7,38 0,188 1,19 3,2 28 12,7 0,0256 0,0160 0,396
30 172 3,94 4,38 0,287 1,29 5,0 35 20,8 0,0435 0,0158 0,370
31 204 4,10 6,38 0,488 1,49 3,2 28 11,2 0,0236 0,0160 0,361
33 170 3,91 5,19 0,306 1,28 4,0 32 16,4 0,0357 0,0159 0,368
35 231 4,15 6,19 0,406 1,18 3,2 28 10,1 0,0222 0,0160 0,344
36 122 3,78 5,69 0,156 1,13 3,2 30 16,6 0,0369 0,0159 0,422
37 128 5,67 7,69 0,356 1,33 2,0 26 9,3 0,0252 0,0161 0,376
39 177 4,02 4,69 0,456 1,43 4,0 32 15,9 0,0347 0,0159 0,351
40 119 4,06 4,94 0,131 1,21 4,0 32 21,8 0,0439 0,0159 0,457
42 126 6,09 7,94 0,231 1,11 2,0 26 9,4 0,0262 0,0161 0,379
43 177 4,58 5,94 0,431 1,31 3,2 30 12,4 0,0300 0,0159 0,345
45 160 5,46 4,44 0,381 1,16 4,0 35 17,1 0,0449 0,0158 0,329
47 153 6,57 7,44 0,481 1,26 2,0 26 8,0 0,0227 0,0161 0,344
49 115 8,28 7,06 0,319 1,14 2,0 28 10,3 0,0323 0,0160 0,351
51 208 4,09 4,06 0,419 1,24 5,0 35 18,1 0,0400 0,0158 0,337
52 97 4,44 7,56 0,169 1,29 2,0 26 12,2 0,0307 0,0161 0,461

Фрагмент результатов численных испытаний ЭГСП второго типа. Таблица 3

вар

Проектирование гидросистем

Вт

Проектирование гидросистем

105

Проектирование гидросистем

МПа

Проектирование гидросистем

Проектирование гидросистем

Проектирование гидросистем

мм

Проектирование гидросистем

мм

Проектирование гидросистем

с

Проектирование гидросистем

с

Проектирование гидросистем

2 71,0 6,53 7,00 0,450 0,825 2,0 28 0,0419 0,0160 0,266
4 68,1 6,32 6,50 0,375 0,887 2,0 28 0,0412 0,0160 0,269
5 74,1 7,38 4,50 0,675 0,837 3,2 35 0,0449 0,0158 0,261
7 75,5 7,26 7,50 0,825 0,813 1,6 26 0,0445 0,0161 0,265
8 67,0 6,68 7,75 0,338 0,869 1,6 26 0,0425 0,0161 0,268
11 76,5 6,83 6,75 0,787 0,844 2,0 28 0,0431 0,0160 0,266
13 74,9 6,72 7,25 0,712 0,881 2,0 28 0,0427 0,0160 0,266
15 75,9 7,54 4,25 0,862 0,856 3,2 35 0,0453 0,0158 0,26
17 71,0 7,17 4,13 0,619 0,891 3,2 35 0,0442 0,0158 0,260
19 76,2 6,85 7,13 0,769 0,866 2,0 28 0,0430 0,0160 0,263
22 69,8 6,89 7,63 0,544 0,878 1,6 26 0,0432 0,0161 0,267
25 72,7 7,08 7,88 0,656 0,834 1,6 26 0,0439 0,0161 0,265
26 71,2 6,53 6,88 0,506 0,859 2,0 28 0,0419 0,0160 0,266
28 71,2 6,54 7,38 0,431 0,822 2,0 28 0,0419 0,0160 0,266
30 71,9 7,24 4,38 0,581 0,847 3,2 35 0,0444 0,0158 0,260
31 75,6 6,77 6,38 0,881 0,897 2,0 28 0,0429 0,0160 0,266
34 69,1 7,03 4,19 0,459 0,870 3,2 35 0,0437 0,0158 0,26
35 75,6 6,77 6,19 0,759 0,820 2,0 28 0,0429 0,0160 0,266
37 72,3 7,05 7,69 0,684 0,858 1,6 26 0,0438 0,0161 0,266
38 72,0 6,58 6,69 0,534 0,833 2,0 28 0,0421 0,0160 0,266
41 73,4 6,64 6,94 0,647 0,877 2,0 28 0,0424 0,0160 0,266
42 70,9 6,96 7,94 0,497 0,802 1,6 26 0,0435 0,0161 0,266
44 69,1 6,39 6,44 0,422 0,864 2,0 28 0,0414 0,0160 0,268
45 75,5 7,50 4,44 0,722 0,814 3,2 35 0,0452 0,0158 0,260
47 75,2 7,25 7,44 0,872 0,839 1,6 26 0,0445 0,0161 0,265
51 74,6 7,43 4,06 0,778 0,836 3,2 35 0,0450 0,0158 0,26
52 68,1 6,75 7,56 0,403 0,848 1,6 26 0,0428 0,0161 0,268
55 76,2 6,80 6,56 0,853 0,873 2,0 28 0,0430 0,0160 0,267
56 69,3 6,41 6,81 0,366 0,817 2,0 28 0,0415 0,0160 0,267
59 73,5 7,13 7,81 0,816 0,892 1,6 26 0,0441 0,0161 0,265
60 68,9 7,02 4,31 0,441 0,880 3,2 35 0,0437 0,0158 0,261
61 75,2 6,75 6,31 0,741 0,830 2,0 28 0,0428 0,0160 0,266
62 73,5 6,65 7,31 0,591 0,855 2,0 28 0,0424 0,0160 0,267
67 74,1 7,17 7,66 0,755 0,827 1,6 26 0,0442 0,0161 0,265
68 68,3 6,95 4,16 0,380 0,840 3,2 35 0,0435 0,0158 0,262
70 73,1 6,63 7,16 0,530 0,815 2,0 28 0,0423 0,0160 0,266
73 74,2 6,69 7,41 0,642 0,871 2,0 28 0,0425 0,0160 0,266
74 70,6 6,49 6,41 0,492 0,846 2,0 28 0,0418 0,0160 0,267

Проектирование гидросистем

Рис.1 Схема ЭГСП 1-го типа


Проектирование гидросистем

Рис. 2 Схема ЭГСП 2-го типа

Литература:


[1] Соболь И.М., Свешников Р.Б.. Выбор оптимальных параметров в задачах с многими критериями. – М.: Наука, 1981, 110с.

[2] Боровин Г.К., Попов Д.Н., Хван В.Л.. Математическое моделирование и оптимизация гидросистем. – М.: Изд. МГТУ им.Н.Э. Баумана, 1995, 84с.

[3] Боровин Г.К., Попов Д.Н.. Оптимальное проектирование гидросистем энергопитания приводов промышленных роботов. // Математическое моделирование, 1997, т.9, №9, с.43-53

[4] Боровин Г.К., Малышев В.Н., Попов Д.Н.. Математическое моделирование и оптимальное проектирование автономных электрогидравлических приводов. – М.: Ин. прикл. математ. им. М.В. Келдыша РАН, 2003, препр. №33, 24с.

29


Похожие работы:

  1. • Проектирование гидроприводов передней стойки шасси и ...
  2. • Анализ внедрения прогрессивных технологических ...
  3. • Расчет гидравлического привода технологического ...
  4. • Восстановление гидросистемы "Польского сада" усадьбы ...
  5. • Проектирование гидропривода
  6. • Подбор гидродвигателя к станку модели ЗУ131М
  7. • Организационная структура предприятия
  8. • Конструктивное усовершенствование гидравлической ...
  9. • Универсальный передвижной гидроагрегат
  10. • Описание работы гидросистемы и сети управления шасси самолета ...
  11. • Проектирование гидропривода рыхлительного ...
  12. • Гидросистема экскаватора ЭО-5123
  13. • Расчет гидросистемы с параллельно включенным ...
  14. • Гидравлический расчет объемного гидропривода ...
  15. • Гидравлические системы АКПП
  16. • Гидросистема прицепного скрепера
  17. • Гидросистема прицепного скрепера
  18. • Расчет гидравлической системы
  19. • Гидропневматические машины и приводы
Рефетека ру refoteka@gmail.com