Рефетека.ру / Промышленность и пр-во

Реферат: Подвижные сосредоточенные источники постоянной мощности

Предельное состояние. Если следить за подвижным температурным полем, связанным с сосредоточенным источником тепла, то можно заметить, что возникающая в начале нагрева область повышенных температур с течением времени увеличивается и достигает определенных предельных размеров. Подвижное температурное поле, как бы насыщенное теплом источника, только перемещается вместе с ним. Такое состояние процесса называется предельным или установившимся.

Таким образом, процесс нагрева источником постоянной мощности делится на два периода;

I период — теплонасыщение, когда размеры связанной с источником нагретой зоны увеличиваются;

II период— предельное или установившееся состояние процесса распространения тепла, когда температурное поле остается постоянным. При неподвижном источнике тепла неподвижное поле предельного состояния называют стационарным. При подвижном источнике связанное с ним температурное поле предельного состояния называют квазистационарным. Процесс распространения тепла стремится к предельному состоянию при неограниченно длительном действии источника постоянной мощности, т. е. при t—> ∞.

Для определения уравнений, описывающих процесс распространения теплоты от движущихся непрерывно действующих источников, используют принцип наложения. С этой целью весь период действия источника теплоты разбивают на бесконечно малые отрезки времени dt. Действие источника теплоты в течение бесконечно малого отрезка времени dt представляют, как действие мгновенного источника теплоты. Суммируя процессы распространения теплоты от действующих друг за другом в разных местах тела мгновенных источников теплоты, получают уравнение температурного поля при непрерывном действии подвижного источника теплоты.


Подвижные сосредоточенные источники постоянной мощности


Подвижные сосредоточенные источники постоянной мощности


Рис. 7.1 Схема движения непрерывно действующего источника мощностью q, перемещающегося со скоростью v:

а — точечный на поверхности полубесконечного тела; б - линейный в бесконечной пластине; е — плоский в бесконечном стержне


Подвижный точечный источник теплоты на поверхности полубесконечного тела. Точечный источник теплоты постоянной мощности q движется с постоянной скоростью v прямолинейно из точки О0 в направлении оси х (рис. 7.1, а). Допустим, что с момента движения источника прошло время tН и он находится в точке О. Вместе с источником теплоты перемещается подвижная система координат, начало которой совпадает с местоположением источника теплоты, т. е. с точкой О. Требуется определить температуру точки А (х, у,z).

Для этого запишем приращение температуры в точке А от мгновенного точечного источника теплоты, который действовал в течение времени dt в точке О'. С момента выделения теплоты в точке О' прошло время t. Используем уравнение (6.1), полагая Q = qdt, а расстояние Подвижные сосредоточенные источники постоянной мощности:

Подвижные сосредоточенные источники постоянной мощности (7.1)

Суммируем приращения температуры от всех элементарных источников теплоты на линии ОО0. Время распространения теплоты от мгновенного источника в точке О равно нулю, а от мгновенного источника в точке О0 равно tН. Поэтому интеграл берем в пределах от 0 до tН:

Подвижные сосредоточенные источники постоянной мощности (7.2)

После преобразования получим:

Подвижные сосредоточенные источники постоянной мощности (7.3)


где R2=x2+y2+z2

Уравнение (7.3) выражает температурное поле в полубесконечном теле в стадии теплонасыщения, т. е. когда температура отдельных точек непрерывно повышается. После продолжительного действия источника теплоты достигается так называемое предельное состояние, когда температура точек в подвижной системе координат перестает изменяться во времени. Такое состояние достигается при t→∞ и называется квазистационарным.

В этом случае уравнение (7.3) интегрируется после подстановки R2/4at=u2 и принимает вид

Подвижные сосредоточенные источники постоянной мощности (7.4)

Температурное поле предельного состояния симметрично относительно оси Ox (рис. 7.2). Изотермы на поверхности xOy представляют собой овальные кривые, которые сгущены впереди источника теплоты и раздвинуты позади него.


Подвижные сосредоточенные источники постоянной мощностиПодвижные сосредоточенные источники постоянной мощности

Рис. 7.2 Температурное поле предельного состояния при движении точечного источника теплоты по поверхности полубесконечного тела:

а — изотермы на поверхности хОу; б — изотермы в поперечной плоскости xOz, проходящей через центр источника теплоты; в — распределение температуры по прямым, параллельным оси х и расположенным на поверхности массивного тела; г — распределение температуры по прямым, параллельным оси у и лежащим в поперечной плоскости xOz; д — схема расположения координатных осей


Распределение температуры по поверхности массивного тела на расстоянии у, равном 1, 2, 3 см, представлено соответственно кривыми 1, 2, 3 на рис. 7.2, в. Температура точек при приближении источника теплоты резко возрастает, достигает максимума, а затем убывает. Снижение температуры происходит с меньшей скоростью, чем ее подъем. Максимум температуры в точках, находящихся не на оси Ох, достигается после прохождения источником теплоты плоскости, параллельной yOz, в которой находится рассматриваемая точка. В более удаленных от оси Ох точках максимальная температура достигается позже и имеет меньшее численное значение по сравнению с точками, расположенными ближе к оси Ох. Пунктирной линией на рис. 7.2, а соединены точки с максимальной температурой на плоскости хОу. Поверхность раздела областей нагрева и остывания получается путем вращения пунктирной кривой относительно оси Ох. Область впереди пунктирной кривой нагревается, позади пунктирной кривой — остывает.

Неподвижный источник теплоты. Если в уравнении (7.4) v= 0, то будем иметь случай стационарного температурного поля в полубесконечном теле

Подвижные сосредоточенные источники постоянной мощности (7.5)

Температура в направлении от источника теплоты убывает обратно пропорционально R, т. е. по закону гиперболы. Температура на данном расстоянии R прямо пропорциональна мощности источника теплоты q и обратно пропорциональна коэффициенту теплопроводности λ. Распределение температуры не зависит от теплоемкости материала сγ.

Подвижный линейный источник в пластине

Линейный источник теплоты мощностью q с равномерным распределением ее по толщине пластины движется с постоянной скоростью v (рис. 7.1, б). Граничные плоскости z = 0 и z=δ отдают теплоту в окружающую среду, температура которой принимается равной нулю. Коэффициент теплоотдачи α.

Уравнение, описывающее температурное поле в пластине, получим аналогично случаю точечного источника теплоты. Приращение температуры в точке А от мгновенного линейного источника теплоты, который действовал в точке О', составит в соответствии с уравнением (6.9)

Подвижные сосредоточенные источники постоянной мощности (7.6)

Интегрируя от 0 до tН и преобразуем

Подвижные сосредоточенные источники постоянной мощностиПодвижные сосредоточенные источники постоянной мощности (7.7)

где r2=x2+y2.

Уравнение (7.7) выражает температурное поле в пластине в стадии теплонасыщения. Предельное квазистационарное состояние достигается при t →∞. В этом случае уравнение принимает вид

Подвижные сосредоточенные источники постоянной мощности (7.8)

где К0 – модифицированная функция Бесселя 2-го рода нулевого порядка; b=2α/cγδ.


Подвижные сосредоточенные источники постоянной мощности


Рис. 7.3. Температурное поле предельного состояния при движении линейного источника теплоты в бесконечной пластине:

а — изотермы на поверхности пластины, пунктирная кривая — точки с максимальными температурами; б — распределение температуры в сечениях параллельных оси х; г ~ схема координатных осей

Предельное состояние. При нагреве пластины линейным источником теплоты распределение температуры по ее толщине согласно уравнению (7.8) равномерно. Следует, однако, иметь в виду, что в действительности из-за наличия теплоотдачи с поверхности пластины всегда наблюдается некоторая неравномерность распределения температуры по ее толщине.

Картины распределения температуры в пластине (рис. 7.3) и в плоскости хОу массивного тела (см. рис. 7.2) качественно имеют много общего. Отличие заключается в том, что изотермы в пластине еще более вытянуты, чем в полубесконечном теле. Степень вытянутости изотерм зависит не только от условий сварки и теплофизических свойств материала, но и от теплоотдачи в воздух.

Неподвижный источник. Если в уравнении (7.8) принять v = 0, то получим уравнение стационарного температурного поля в пластине:

Подвижные сосредоточенные источники постоянной мощности (7.9)

Температурное поле является осесимметричным. В отличие от полубесконечного тела, где стационарное состояние достигается благодаря значительному теплоотводу в трех направлениях, стационарное состояние в пластине возможно лишь при наличии теплоотдачи в окружающее пространство. Если теплоотдача отсутствует, то температура возрастает беспредельно. Распределение температуры при стационарном процессе в пластине зависит не только от мощности и коэффициента теплопроводности λ, но и от коэффициента теплоотдачи α и толщины пластины δ.

Подвижный плоский источник теплоты в бесконечном стержне

Плоский источник теплоты постоянной мощности q равномерно распределен по поперечному сечению стержня F и перемещается с постоянной скоростью v в направлении вдоль стержня (см. рис. 7.1, в). Боковая поверхность отдает теплоту в окружающую среду при постоянном коэффициенте теплоотдачи α.

Приращение температуры в точке А от мгновенного плоского источника, который действовал в точке О' t секунд назад, составит

Подвижные сосредоточенные источники постоянной мощности (7.10)

Начало координат движется вместе с источником теплоты и находится в точке О.

Интегрируем приращения температуры от всех мгновенных источников теплоты в пределах от 0 до tН:

Подвижные сосредоточенные источники постоянной мощности (7.11)

Уравнение (7.11) описывает температурное поле в стержне в стадии теплонасыщения. Предельное квазистационарное состояние достигается при tH—>∞. В этом случае уравнение (7.11) после введения замены t = u2 и интегрирования принимает вид:

Подвижные сосредоточенные источники постоянной мощности (7.12)

Предельное состояние. При нагреве стержня плоским источником теплоты распределение температуры по поперечному сечению стержня согласно уравнению (7.12) равномерно. В действительности из-за теплоотдачи с поверхности стержня всегда будет наблюдаться некоторая неравномерность распределения температуры по его поперечному сечению.

Распределение температуры вдоль стержня будет характеризоваться быстрым нарастанием температуры впереди источника теплоты и весьма плавным спадом температуры позади источника. Если 4ba/v2=0 т. е. теплоотдача отсутствует, то температура позади источника теплоты будет оставаться постоянной.

Неподвижный источник. Если в уравнении (7.12) v = 0, то получим уравнение стационарного температурного поля в стержне:

Подвижные сосредоточенные источники постоянной мощности (7.13)

Стационарное состояние в стержне возможно лишь при наличии теплоотдачи в окружающую среду. Распределение температуры при стационарном процессе в стержне зависит от λ, b, F и р.

Похожие работы:

  1. • Аналитические методы исследования температурных полей
  2. • Разработка схемы источника "ПТИ" с использованием ...
  3. • Физические величины, характеризующие поля ...
  4. • Компенсация реактивной мощности в системах ...
  5. • Значение народных подвижных игр в процессе развития ...
  6. •  ... качеств старших дошкольников через подвижные игры
  7. • Системы подвижной связи
  8. • Влияние подвижных игр для развития физических качеств ...
  9. • Подвижная игра как средство ...
  10. • Подвижные игры как средство ...
  11. • Защита окружающей среды от подвижных источников выбросов
  12. • Расчёт коллекторного двигателя постоянного тока малой ...
  13. • Общесоюзные нормы технологического проектирования ...
  14. •  ... возраста подвижным играм (на примере МБДОУ д/с № 14 ...
  15. • Проектирование модуля главного движения станка ...
  16. • Специализированный подвижной состав
  17. • Системы сотовой подвижной связи
  18. • Влияние подвижных игр для развития физических качеств у юных ...
  19. • О мощности фотона и фотонном генераторе
Рефетека ру refoteka@gmail.com