МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ
Бердичівський політехнічний коледж
Контрольна робота
«Комп’ютерна схемотехніка»
(варіант №21)
студента групи Пзс-503
Михайлуса Михайла Геннадійовича
2008 р.
1. Принципи побудови систем числення, основні поняття
У числової інформації в персональних комп’ютерах є такі характеристики:
система числення - двійкова, десяткова та інші;
вид числа - дійсні, комплексні та масиви;
тип числа - змішані, цілі та дробові;
форма представлення числа (місце розташування коми) - з природною (змінною), з фіксованою та з плаваючою комами;
розрядна сітка та формат числа;
діапазон і точність подання числа;
спосіб кодування від’ємних чисел - прямий, обернений чи доповняльний код;
алгоритм виконання арифметичних операцій.
Системи числення — це сукупність прийомів та правил запису чисел за допомогою цифр чи інших символів. Запис числа у деякій системі числення називається його кодом.
Усі системи числення поділяють на позиційні та непозиційні.
Непозиційна система числення має необмежену кількість символів. Кількісний еквівалент кожного символу постійний і не залежить від позиції. Найвідомішою непозиційною системою числення є римська. В якій використовується сім знаків: I -1, V - 5, X - 10, L - 50, C - 100, D - 500, M - 1000. Недоліки непозиційної системи числення: відсутність нуля, складність виконання арифметичних операцій. Хоча римськими числами часто користуються при нумерації розділів у книгах, віків в історії та інше.
Позиційна система числення має обмежену кількість символів і значення кожного символу чітко залежить від її позиції у числі. Кількість таких символів q, називають основою позиційної системи числення. Головна перевага позиційної системи числення - це зручність виконання арифметичних операцій.
У системах числення з основою меншою 10 використовують десяткові цифри, а для основи більшої 10 добавляють букви латинського алфавіту.
У позиційних системах числення значення кожного символу (цифри чи букви) визначається її зображенням і позицією у числі.
Окремі позиції в записі числа. називають розрядами, а номер позиції - номером розряду. Число розрядів у записі числа, називається його розрядністю і зберігається з довжиною числа.
Позиційні системи числення діляться на однорідні та неоднорідні.
Неоднорідні системи числення - це такі позиційні системи числення, де для кожного розряду числа основа системи числення не залежить одна від одної і може мати будь-яке значення.
Прикладом є двійково-п’ятиркова система числення (система зі змішаними основами). Вони використовуються у спеціалізованих ЕОМ ранніх поколінь.
Однорідна позиційна система числення - це така система числення, для якої множина допустимих символів для всіх розрядів однакова. Причому, якщо вага в розряді числа складає ряд геометричної прогресії з знаменником (основою р), то це однорідна позиційна система числення з природною порядковою вагою. У даній позиційній системі числення з природною порядковою вагою число може бути представлене у вигляді поліному:
де - основа системи числення;
- вага позиції;
- цифри в позиціях числа;
- номер розрядів цілої частини;
- номер розрядів дробової частини.
Система числення з основою 10 - десяткова система. Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число десять є складеним. Кожне десяткове число можна розкласти по ступенях основи десяткової системи числення. Наприклад, число 5213,6 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
5213,6=5·103+2·102+1·101+3·100+6·10-1
Система числення з основою 2 - двійкова система. Для її зображення використовують цифри: 0, 1. Кожне двійкове число можна розкласти по ступенях основи двійкової системи числення. Наприклад, число 111,01 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
111,012=1·22+1·21+1·20+0·2-1+1·2-2=7,2510
Система числення з основою 8 - вісімкова система. Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7. Кожне вісімкове число можна розкласти по ступенях основи вісімкової системи числення. Наприклад, число 45,21 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
45,218=4·81+5·80+2·8-1+1·8-21=37,265110
Система числення з основою 16 - шістнадцяткова система. Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 та літери: A, B, C, D, E, F. Кожне шістнадцяткове число можна розкласти по ступенях основи шістнадцяткової системи числення. Наприклад, число DE,1B можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
DE,1B16=D·161·+E·160+1·16-1·B·16-2=222,105110
Ці записи показують один із способів переведення не десяткових чисел у десяткові.
При однаковій розрядності у системах числення з більшою основою можна записати більше різних чисел.
Перевагою двійкової системи числення є: простота виконання арифметичних операцій, наявність надійних мікроелектронних схем з двома стійкими станами (тригерами), призначеними для зберігання значень двійкового розряду цифр 0 або 1.
Для переведення цілого числа з однієї системи в іншу необхідно поділити перевідне число на нову основу за правилом початкової системи. Одержана перша остача є значенням молодшого розряду в новій системі, п першу частку необхідно знову ділити. Цей процес продовжується аж до появи неподільної частки. Результат записують у порядку оберненому їхньому одержанню:
Наприклад: переведемо число 118 з десяткової системи у війкову
11810=11101102
118 | 2 | |||||||||||
118 | 59 | 2 | ||||||||||
0 | 58 | 29 | 2 | |||||||||
|
1 | 28 | 14 | 2 | ||||||||
1 | 14 | 7 | 2 | |||||||||
0 | 6 | 3 | 2 | |||||||||
1 | 2 | 1 | 2 | |||||||||
1 | 0 | 0 | ||||||||||
1 |
Для переведення правильного дробу з однієї системи числення в іншу необхідно діючи за правилами початкової системи помножити перевідне число на основу нової системи. Від результату відокремити цілу частину, а дробову частину, яка залишилася знов помножити на цю основу.
Процес такого множення повторюється до одержання заданої кількості цифр. Результат записують як цілі частин добутку у порядку їхнього одержання.
Наприклад: переведемо число 0,625 з десяткової системи у двійкову
0,62510=0,10102
0,625 | |
2 | |
1,250 |
|
2 | |
0,500 |
|
2 | |
1,000 |
|
2 | |
0,000 |
Для переведення змішаних чисел у двікову систему потрібно окремо переводити цілу та дробову частини.
У вісімкових і шістнадцятькових чисел основа кратна степеню 2, тому переведення цих чисел у двійкову реалізується наступним чином: кожну цифру записують трьома двійковими цифрами (тріадами) для вісімкових чисел і чотирма - для шістнадцяткових чисел в напрямках вліво та вправо від коми. При цьому крайні незначущі нулі опускаються.
3 0 5, 4 2
Наприклад: 305,428=11 000 101,100 012
7 2 А, E F
72А,EF16=111 0010 1010,1110 11112
Для переведення двійкового числа у вісімкове початкове число розбивають на тріади вліво та вправо від коми, відсутні крайні цифри доповнюють нулями, кожну тріаду записують вісімковою цифрою. Аналогічно здійснюється переведення двійкового числа у шістнадцяткове, при цьому виділяють, які заміняють шістнадцятковими цифрами.
6 3, 4 2
Наприклад:
110 011,100 0102=63,42
3 А С 7
0011 1010,1100 01112=3А,С716
Критерії вибору
На відміну від аналогових машин, де будь-яка фізична чи математична величина може бути представлена у виді напруги, переміщення і т. п., у цифрових обчислювальних машинах дані задаються у виді цифрових чи буквених символів. При цьому використовується не будь-який набір символів, а визначена система. В електронних обчислювальних машин застосовуються позиційні системи числення. Така система числення, як римська, непозиційна, в обчислювальній техніці не використовується через свою громіздкість і складні правила утворення.
Від вибору системи числення залежить швидкодія ЕОМ та об’єм пам’яті. При виборі враховують такі нюанси:
1) наявність фізичних елементів;
2) економічність системи числення (чим більша основа системи числення, тим потрібна менша кількість розрядів, але більша кількість відображуючих елементів). Найбільш ефективна це трійкова система числення, але двійкова система і системи числення з основою 4 - не гірша;
3) важкість виконання операцій (чим менше цифр, тим простіше);
4) швидкодія (чим більше цифр, тим менша швидкодія);
5) наявність формального математичного апарату для аналізу і синтезу обчислювальних пристроїв.
Класична двійкова система числення - це така система числення, в якій для зображення чисел використовують тільки два символи: 0 та 1, а вага розрядів змінюється по закону 2k, де к—довільне число.
Правило виконання операцій у класичній двійковій системі числення
У загальному вигляді двійкові числа можна представити у вигляді поліному:
А2 = r n*2n + r n-1* 2n-1 + … + r1* 21 + r0*20 + r-1* 2-1,
Додавання у двійковій системі числення проводиться по правилу додавання поліномів, тобто j-тий розряд суми чисел a та b визначається за формулою.
Двійкова арифметика, чи дії над двіковими числами, використовують наступні правила, задані таблицями додавання, віднімання, множення.
Додавання Віднімання Множення
0 + 0 = 0 0 – 0 = 0 0 * 0 = 0
0 + 1 = 1 1 – 0 = 1 0 * 1 = 0
1 + 0 = 1 1 – 1 = 0 1 * 0 = 0
1 + 1 = 10 10 – 1 = 1 1 * 1 = 1
Логічне додавання
0 | 1 | |
0 | 0 | 1 |
1 | 1 | 1 |
Додавання по модулю 2
0 | 1 | |
0 | 0 | 1 |
1 | 1 | 0 |
Додавання двох багаторозрядних двійкових чисел проводиться порозрядно з урахуванням одиниць переповнення від попередніх розрядів.
Приклад:
+ | 1011 |
1011 | |
10110 |
Віднімання багаторозрядних двійкових чисел, аналогічно додаванню, починається з молодших розрядів. Якщо зайняти одиницю в старшому розряді, утвориться дві одиниці в молодшому розряді.
Приклад.
- | 1010 |
0110 | |
0100 |
Множення являє собою багаторазове додавання проміжних сум і зсувів.
Приклад.
x | 10011 |
101 | |
+ | 10011 |
00000 | |
10011 | |
1011111 |
Перевірка за вагами розрядів числа 1011111(2) дає 64 + 16 + 8 + 4 + 2 + 1 = 95(10).
Процес ділення складається з операцій віднімання, що повторюють.
Приклад.
101010 | 111 | |||
111 | 110 | |||
0111 | ||||
111 | ||||
0000 |
Позиційні системи числення з непостійною штучною вагою
Для ЦОМ розроблені допоміжні системи числення, що одержали назву "двійково-кодовані десяткові системи" (ДКДС). У цій системі кожна десяткова цифра представляється двійковим еквівалентом. Чотирьохрозрядне двійкове число може мати ваги розрядів: 2, 4, 2, 1 чи 8, 4, 2, 1, і ін. Десяткове число 7 у залежності від прийнятої системи ваги війкового розряду буде зображено у виді:
А) 1101 і Б) 0111
2421 8421(2-10)
Недоліком ДКДС є використання зайвих двійкових розрядів для десяткових чисел від 0 до 7. Більш раціональне застосування вісімкової системи, але вісімкові числа доводиться переводити в десяткові, а числа в ДКДС відразу читаються в десятковому коді.
Такі системи числення найчастіше використовуються в спеціалізованих ЕОМ як коди. Прикладом є двійково-десяткова системи числення.
Щоб перекласти десяткове число у двйково-десяткову систему числення, необхідно кожну цифру десяткового числа замінити.
Щоб перекласти число з двійково-десяткової системи числення необхідно спочатку перекласти його у десяткову систему числення, а потім за загальним правилом в іншу систему числення.
Щоб перекласти двійково-десяткове число у десяткову систему числення, необхідно кожні чотири цифри двійкової системи числення замінити однією цифрою десяткової системи числення, для цілої частини, починаючи з молодшого розряду, для дробової - з старшого.
Таблиця кодів
(10) | 8-4-2-12 |
8-4-2-1 (спеціалізована) |
8-4-2-1+”3” | 8-4-2-1+”6” | Грея |
0 | 0000 | 0000 | 0011 | 0110 | 0000 |
1 | 0001 | 0001 | 0100 | 0111 | 0001 |
2 | 0010 | 0010 | 0110 | 1000 | 0011 |
3 | 0011 | 0011 | 0111 | 1001 | 0010 |
4 | 0100 | 0100 | 1000 | 1010 | 0110 |
5 | 0101 | 1011 | 1001 | 1011 | 0111 |
6 | 0110 | 1100 | 1001 | 1100 | 0101 |
7 | 0111 | 1101 | 1010 | 1101 | 0100 |
8 | 1000 | 1110 | 1011 | 1110 | 1100 |
9 | 1001 | 1111 | 1100 | 1111 | 1101 |
2. Визначення та призначення тригерів. Класифікація тригерів
Тригери - це мікроелектроні схеми з двома стійкими станами. Вони призначені для зберігання значень двійкового розряду цифр 0 або 1.
Тригери мають динамічне і потенційне керування. Кожен компонент може містити один чи кілька тригерів у корпусі, у яких загальними є сигнали установки, скидання і тактової синхронізації (дивись малюнок). Перелік тригерів приведений нижче у таблиці.
а)
б)
в)
г)
Мал.- Тригери: а) - JK-тригер з негативним фронтом спрацьовування і низьким рівнем сигналів установки і скидання; б) - D-тригер з позитивним фронтом спрацьовування і низьким рівнем сигналів установки і скидання; в) - синхронний двотактний RS-тригер; г) -синхронний однотактний D-тригер
Таблиця. Перелік тригерів
Тип |
Параметри |
Порядок перерахування виводів |
Функціональне призначення |
Тригери з динамічним керуванням |
|||
JKFF | Кількість тригерів | S,R,C,J,J,...,K,K,...,Q,Q,..., Q, Q,... | JK-тригер з негативним фронтом спрацьовування і низьким рівнем сигналу установки і скидання |
DFF | Кількість тригерів | S, R, C, D, D,..., Q, Q,..., Q, Q,... | D-тригер з позитивним фронтом спрацьовування і низьким рівнем сигналу установки і скидання |
Тригери з потенційним управлінням |
|||
SRFF | Кількість тригерів | S, R, G, S, S,..., R, R,...,Q,Q,..., Q,Q,... | Двотактний синхронний RS тригер |
DLTCH | Кількість тригерів | S,R,G,D,D,..., Q, Q,..., Q, Q,... | Однотактний синхронний D тригер |
Моделі динаміки тригерів з динамічним керуванням мають формат:
MODEL <ім'я моделі> UEFF [(параметри)]
Параметри моделі тригерів з динамічним керуванням типу UEFF приведені нижче в таблиці (значення за замовчуванням - 0, одиниця виміру - c). Коса риса "/" означає "чи"; наприклад, запис S/R означає сигнал S чи R.
Моделі динаміки тригерів з потенційним керуванням має формат:
MODEL <ім'я моделі> UGFF [(параметри)]
Параметри моделі тригерів з потенційним керуванням типу UGFF приведені в таблиці 5 (значення за замовчуванням - 0, одиниця виміру с).
За замовчуванням у початковий момент часу вихідні стани тригерів прийняті невизначеними (стани X). Вони залишаються такими до подачі сигналів чи установки чи скидання переходу тригера у визначений стан. У МС5 мається можливість установити визначений початковий стан за допомогою параметра DIGINITSTATE діалогового вікна Global Settings.
У моделях тригерів маються параметри, що характеризують мінімальні тривалості сигналів установки і скидання і мінімальну тривалість імпульсів. Якщо ці параметри більше нуля, то в процесі моделювання обмірювані значення длительностей імпульсів порівнюються з заданими даними і при наявності занадто коротких імпульсів на екран видаються попереджуючі повідомлення.
Завдання №1
1. Перевести 121,37 з десяткової системи числення у двійкову: 121,3710=1111001,01012
121 | 2 | 0,37 | |||||||||
120 | 60 | 2 | 2 | ||||||||
1 | 60 | 30 | 2 |
0,74 |
|||||||
|
0 | 30 | 15 | 2 | 2 | ||||||
0 | 14 | 7 | 2 |
1,48 |
|||||||
1 | 6 | 3 | 2 | 2 | |||||||
1 | 2 | 1 | 2 |
0,96 |
|||||||
1 | 0 | 0 | 2 | ||||||||
1 |
1,92 |
вісімкову: 121,3710=171,27538
121 | 8 | 0,37 | |||||
120 | 15 | 8 | 8 | ||||
1 | 8 | 1 | 8 |
2,96 |
|||
|
7 | 0 | 0 | 8 | |||
1 |
7,68 |
||||||
8 | |||||||
5,44 |
|||||||
8 | |||||||
3,52 |
шістнадцяткову: 121,3710=79,5ЕВ816
121 | 16 | 0,37 | |||||
112 | 7 | 16 | 16 | ||||
9 | 0 | 0 |
5,92 |
||||
|
7 | 16 | |||||
14,72 |
|||||||
16 | |||||||
11,52 |
|||||||
16 | |||||||
8,32 |
двійково-десяткову: 121,3710=1 0010 0001,0011 01112-10
2. Перевести з двійкової системи числення у десяткову:
110111002=1·27+1·26+0·25+1·24+1·23+1·22+0·21+0·20= +1·128+1·64+0·32+1·16+1·8+1·4+0·2+0·1=128+64+0+16+8+4+0+0=22010
вісімкову: 110111002=011 011 1002=3348
шістнадцяткову: 110111002=1101 11002=DC16
Завдання №2
записати всі константи одиниці;
записати всі константи нуля;
записати досконалу диз’юнктивну нормальну форму;
записати досконалу кон’юктивну нормальну форму;
мінімізувати функцію за допомогою карт Карно;
побудувати комбінаційну схему заданої функції у базисі "І-ЧИ-НЕ"
Х1 |
Х2 |
Х3 |
Х4 |
f |
константа 1 |
константа 0 |
0 | 0 | 0 | 0 | 1 |
x1x2x3x4 |
|
0 | 0 | 0 | 1 | 1 |
x1x2x3x4 |
|
0 | 0 | 1 | 0 | 1 |
x1x2x3x4 |
|
0 | 0 | 1 | 1 | 1 |
x1x2x3x4 |
|
0 | 1 | 0 | 0 | 0 |
x1Ъx2Ъx3Ъx4 |
|
0 | 1 | 0 | 1 | 0 |
x1Ъx2Ъx3Ъx4 |
|
0 | 1 | 1 | 0 | 0 |
x1Ъx2Ъx3Ъx4 |
|
0 | 1 | 1 | 1 | 1 |
x1x2x3x4 |
|
1 | 0 | 0 | 0 | 1 |
x1x2x3x4 |
|
1 | 0 | 0 | 1 | 1 |
x1x2x3x4 |
|
1 | 0 | 1 | 0 | 0 |
x1Ъx2Ъx3Ъx4 |
|
1 | 0 | 1 | 1 | 1 |
x1x2x3x4 |
|
1 | 1 | 0 | 0 | 0 |
x1Ъx2Ъx3Ъx4 |
|
1 | 1 | 0 | 1 | 1 |
x1x2x3x4 |
|
1 | 1 | 1 | 0 | 0 |
x1Ъx2Ъx3Ъx4 |
|
1 | 1 | 1 | 1 | 1 |
x1x2x3x4 |
ДДНФ: F = x1x2x3x4 Ъ x1x2x3x4 Ъ x1x2x3x4 Ъ x1x2x3x4 Ъ x1x2x3x4 Ъ Ъ x1x2x3x4 Ъ x1x2x3x4 Ъ x1x2x3x4 Ъ x1x2x3x4 Ъ x1x2x3x4
ДДКНФ: F = (x1Ъx2Ъx3Ъx4)Щ(x1Ъx2Ъx3Ъx4)Щ(x1Ъx2Ъx3Ъx4)Щ Щ(x1Ъx2Ъx3Ъx4)Щ(x1Ъx2Ъx3Ъx4)Щ(x1Ъx2Ъx3Ъx4)
|
00 |
01 | 11 | 10 |
00 | 1 | 1 | 1 | 1 |
01 | 1 | |||
11 | 1 | 1 | ||
10 | 1 | 1 | 1 |
МДНФ: F = x1x2 Ъ x3x4 Ъ x1x3x4 Ъ x1x2x3
Комбінаційна схема:
x1
x2
x3
x4
Список використаної літератури
"Комп’ютерна схемотехніка". М.П.Бабич, І.А.Жуков. МК-Прес. 2004 рік.
Конспект лекцій.
Інтернет.