Рефетека.ру / Информатика и програм-ие

Реферат: Решение систем нелинейных алгебраических уравнений методом Ньютона

РЕФЕРАТ


Пояснительная записка: 44 с., 14 рис, 2 таблицы, 3 источника, 4 прил.

Данный продукт представляет собой программу, позволяющую решать СНАУ:

Решение систем нелинейных алгебраических уравнений методом НьютонаF1(X1, X2, X3)=0,5arctg(X1+X2)+0,2ln(1+X21+ X22+X23)-0,05(X1X2-X1X3-X2X3)+85X1-20X2+35X3-99;

F2(X1, X2, X3)=5arctg(X1+X2+X3)-25,5X1+19,5X2-15,5X3+15;

F3(X1, X2, X3)=-0,3cos(X1-2X2+X3)+0,5exp(-0,25(X21+X22+X23-3))-44,75X1 +20,25X2+5,25X3+18.

Модифицированным методом Ньютона при заданных начальных условиях, где задаётся погрешность вычисления. Кроме вычисления корня уравнения, существует возможность построения графика зависимости приближений двух координат решения. При построении графика задаются промежутки и константы. Программа может использоваться как наглядное пособие для студентов высших учебных заведений.

В программе реализуются:

1) работа с BGI графикой;

2) работа с файлами.

СОДЕРЖАНИЕ


Введение

1. Постановка задачи

1.1. Цель создания программного продукта

1.2. Постановка задачи

2. Математическая модель

3. Описание и обоснование выбора метода решения

4. Обоснование выбора языка программирования

5. Описание программной реализации

1 ПОСТАНОВКА ЗАДАЧИ


Цель создания программного продукта

Главной целью работы является разработка программы способной решать СНАУ трёх переменных модифицированным методом Ньютона, что должно являться пособием для студентов высших учебных заведений в снижении ненужной нагрузки, связанной с многочисленными массивами вычислений.


1.2 Постановка задачи


В данном программном продукте необходимо реализовать решение СНАУ:

Решение систем нелинейных алгебраических уравнений методом Ньютона0,5arctg(X1+X2)+0,2ln(1+X21+ X22+X23)-0,05(X1X2-X1X3-X2X3)+85X1-

-20X2+35X3-99;

5arctg(X1+X2+X3)-25,5X1+19,5X2-15,5X3+15;

-0,3cos(X1-2X2+X3)+0,5exp(-0,25(X21+X22+X23-3))-44,75X1+20,25X2+

+5,25X3+18.

Начальным приближением (X0) должны служить X1,0=0, X2,0=0, X3,0=0. Необходимо ввести точность (ξ) вычисления корня системы уравнений, ограниченную размером (не менее 0,00001). После вычислений с заданной погрешностью возникает множество приближений к корню, последнее из которых будет считаться корнем. После нахождения корня СНАУ и приближений к нему, необходимо построить график зависимости двух любых компонент решения (например, X1 и X3). Для этого третья компонента решения (X3) принимает значение константы. Необходимо указать какая функция будет участвовать в построении графика (например, F1), а также определить промежутки изменения обеих компонент решения (например, [X1min; X1max] и [X3min; X3max]).

2 МАТЕМЕТИЧЕСКАЯ МОДЕЛЬ


Общий вид решения системы нелинейных арифметических уравнений имеет вид:

Решение систем нелинейных алгебраических уравнений методом НьютонаF1(X1,…,Xn)=0

Fn(X1,…,Xn)=0

Решение систем нелинейных алгебраических уравнений методом Ньютона, где Fi – функция n переменных.

Решением СНАУ является вектор X=(X1,…,Xn), при подстановке компонент которого в систему каждое её уравнение обращается в верное равенство.

При n=3 – точка пересечения трёх поверхностей.

Модифицированный метод Ньютона – один из методов, применяющихся для нахождения корня СНАУ. Модифицированный метод Ньютона предполагает наличие начального приближения X0. Суть метода заключается в построении последовательности точек X0, …, Xn, сходящихся к решению.

Рекуррентная формула имеет вид:

Решение систем нелинейных алгебраических уравнений методом НьютонаРешение систем нелинейных алгебраических уравнений методом НьютонаРешение систем нелинейных алгебраических уравнений методом НьютонаРешение систем нелинейных алгебраических уравнений методом НьютонаРешение систем нелинейных алгебраических уравнений методом НьютонаРешение систем нелинейных алгебраических уравнений методом НьютонаРешение систем нелинейных алгебраических уравнений методом НьютонаXk+1=Xk+W(X0)-1F(Xk), где W(X0)-1 – обратная матрица частных производных уравнений системы уравнений (якобиан I-1) от начального приближения X0, а F(Xk) – вектор значений функций СНАУ вектора приближения к корню X, высчитанном, на предыдущем шаге.

Условием окончания выполнения приближений является шаг, на котором k-норма (в данном случае), т.е √F22(Xn+1)+ F22(Xn+1)+ F22(Xn+1), меньше определённой погрешности (ξ):

√F22(Xn+1)+ F22(Xn+1)+ F22(Xn+1) < ξ.

3 ОПИСАНИЕ И ОБОСНОВАНИЕ ВЫБОРА МЕТОДА РЕШЕНИЯ


Для решения СНАУ был выбран один из численных методов, который называется модифицированным методом Ньютона.

По сравнению с методом Ньютона модифицированный метод Ньютона сходится дольше, но имеет более простой алгоритм реализации, следовательно, проще реализуем программно на языке программирования.

4 ОБОСНОВАНИЕ ВЫБОРА ЯЗЫКА ПРОГРАММИРОВАНИЯ


Реализация поставленной задачи совершается на языке программирования Borland C++ version 3.1.

Система программирования Borland C++, разработанная американской корпорацией Borland, остаётся одной из самых популярных систем программирования в мире. Этому способствует простота лежащая в основе языка программирования C, а также поддержка графического и текстового режимов, что делает Borland C удачным выбором для реализации практически любого программного продукта.

Похожие работы:

  1. определение внешних спецификаций уравнений
  2. • Исследование метода простой итерации и метода Ньютона ...
  3. • Сравнительный анализ рециркуляционных схем на ...
  4. • ЭВМ с использованием математического пакета ...
  5. • Решение систем нелинейных уравнений методом Бройдена
  6. • Итерационные методы решения систем нелинейных ...
  7. • Численные методы для решения нелинейных уравнений
  8. • Нахождение корня нелинейного уравнения. Методы ...
  9. • Автоматизация решения систем линейных алгебраических ...
  10. • Численное решение системы линейных алгебраических ...
  11. • Геофизический "диалект" языка математики
  12. • Решение произвольных систем линейных уравнений
  13. • Итерационные методы решения системы линейных ...
  14. • Точные методы численного решения систем линейных ...
  15. • Решение систем линейных алгебраических ...
  16. • Вычислительная математика
  17. • Прямые методы решения систем линейных алгебраических ...
  18. • Точные методы решения систем линейных алгебраических ...
  19. • Решение систем линейных алгебраических уравнений методом ...
Рефетека ру refoteka@gmail.com