Министерство образования и науки Российской Федерации
Государственное образовательное учреждение высшего профессионального образования
Кафедра прочности летательных аппаратов
Курсовая работа
по курсу: “Строительная механика самолетов”
“Расчет оболочек вращения по безмоментной теории ”
Самара
Реферат
Курсовой проект.
Пояснительная записка: 16 с., 3 источника
Произведен расчет оболочки вращения согласно заданию, построены эпюры изменения нормального давления вдоль образующей составной оболочки, рассчитаны меридиональные и окружные погонные усилия в оболочке по безмоментной теории и построены эпюры этих сил
Содержание
Определение закона изменения нормального давления вдоль образующей составной оболочки и построение его эпюры
Расчет меридиональных и окружных погонных усилий в оболочке по безмоментной теории и построение их эпюр
Сечение I-I
Сечение III-III
Сечение IV-IV
Сечение V-V
Эпюра меридиональных и окружных погонных усилий
Определение максимальных значений окружных и меридиональных напряжений во всех частях составной оболочки
Эпюра меридианальных и окружных напряжений
Определение закона изменения нормального давления вдоль образующей составной оболочки и построение его эпюры
Для определения закона изменения нормального давления вдоль образующей составной оболочки, разделим ее на две части. Построим эпюру нормального давления (рис. 2.2 ).
Рис. 1.2
Расчет меридиональных и окружных погонных усилий в оболочке по безмоментной теории и построение их эпюр
В основе расчета усилий в оболочке по безмоментной теории лежат следующие два уравнения:
,219
,219
где - интенсивность внутреннего давления; и - меридиональные и окружные погонные нормальные усилия; и - главные радиусы кривизны срединной поверхности оболочки в меридиональном и окружном направлениях соответственно; - равнодействующая внешней нагрузки, приложенной к оболочке выше параллельного круга, определяемого углом .
Уравнение Error: Reference source not found носит название уравнения Лапласа, второе Error: Reference source not found – уравнение равновесия зоны.
Рассмотрим следующие сечения оболочки на рисунке 2.3: I, II, III, IV и V.
Рис. 1.3
Сечение I-I
Рис. 1.4
В силу того, что в сечении I-I , перепишем уравнения Error: Reference source not found и Error: Reference source not found в следующем виде:
219
219
Где , , , ,
219
Тогда меридиональное усилие в сечении I-I будет вычислено следующим образом:
Окружное усилие , с учетом найденного и уравнения Error: Reference source not found:
В итоге имеем:
. :,
Сечение II-II
Оболочка в сечении II-II имеет следующие геометрические характеристики:
.
Уравнения Error: Reference source not found и Error: Reference source not found принимают вид:
219
219
Где
,
, ,
,
,
219
Подставим Error: Reference source not found вError: Reference source not found:
,
Полученное выражение для подставим в Error: Reference source not found и выразим :
Запишем полученные выражения для и :
,
.
Вычислим численные значения и при и предварительно подсчитав следующие пределы при .
Сечение III-III
Рис. 1.6
Оболочка в сечении III-III имеет следующие геометрические характеристики:
, .
Уравнения Error: Reference source not found и Error: Reference source not found принимают вид:
219
219
Где
,
219
Подставим Error: Reference source not found в Error: Reference source not found и получим выражение для :
Найдем выражение для используя формулу Error: Reference source not found:
Меридиональное и окружное усилия в сечении III-III будут иметь значения:
,
.
Сечение IV-IV
Рис. 1.7
Геометрические характеристики оболочки в сечении IV-IV: , .
Уравнения Error: Reference source not found и Error: Reference source not found принимают вид:
219
219
Где
,
219
Подставим полученное в Error: Reference source not found:
Теперь найдем окружное усилие в сечении:
Вычислим численные значения и при и :
Сечение V-V
Рис. 1.8
Оболочка в сечении V-V имеет следующие геометрические характеристики:
.
Уравнения Error: Reference source not found и Error: Reference source not found принимают вид:
219
219
Где
,
,
,
,
,
219
Подставим Error: Reference source not found в Error: Reference source not found:
,
Полученное выражение для подставим в Error: Reference source not found и выразим :
Запишем полученные выражения для и :
,
.
Вычислим численные значения и при и предварительно подсчитав следующие пределы при .
В общем, для построения эпюры мы имеем следующие значения в соответствующих сечениях:
сечение I-I:,;
сечение II-II: ,,
,;
сечение III-III:,;
сечение IV-IV:,
,
сечение V-V:,
,
Эпюра меридиональных и окружных погонных усилий
Рис. 1.9
Определение максимальных значений окружных и меридиональных напряжений во всех частях составной оболочки
Окружные и меридиональные напряжения можно подсчитать по формулам:
219
219
Вычислим значения этих напряжений для всех сечений:
сечение I-I:
,;
сечение II-II:
,
,
,;
сечение III-III:
,;
сечение IV-IV:
,
,
сечение V-V:
,
,
Эпюра меридианальных и окружных напряжений
Рис. 1.10
По виду эпюры можно сказать, что максимальное меридиональное напряжение возникнет в днище бака: , а максимальные окружные напряжения в опорах: .