Рефетека.ру / Информатика и програм-ие

Реферат: Математическая теория информации

1. Количество информации, и ее мера


На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).


Помехи

Математическая теория информацииМатематическая теория информацииx1 y1


x2 y2

… …

xn yn

Рис. 1. Система передачи информации


Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х1, х2,…, хm} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(xi) – вероятности появления сообщений, причем p(xi) і 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице


Математическая теория информации.


Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi), поэтому естественно предположить, что количество информации I(xi) в сообщении xi является функцией p(xi). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1, x2) = p(x1).p(x2), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:


I(x1, x2) = I(x1)+I(x2). (1)


Поэтому для оценки количества информации предложена логарифмическая мера:


Математическая теория информации. (2)


При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: logax = logbx/logba.

В зависимости от основания логарифма используют следующие единицы информации:

2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;

e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;

10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.

Битом (двоичной единицей информации) – называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.

Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:


Математическая теория информации. (3)


Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):


Математическая теория информации. (4)


Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):


Математическая теория информации. (5)


2. Свойства количества информации


1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.

2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.

3. Для события с одним исходом количество информации равно нулю.

4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.

Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны: pi0 = pi1 = 1/2.

Количество информации равно:


I = n log m = 8 log2 2 = 8 бит.


Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны:


pi0 = 3/4; pi1 = 1/4.


Количество информации равно:


Математическая теория информации


3. Энтропия информации


Энтропия – содержательность, мера неопределенности информации.

Энтропия – математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)}, т.е. она характеризует среднее значение количества информации, приходящееся на один символ.


Математическая теория информации. (6)

Определим максимальное значение энтропии Hmax(x). Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:


Математическая теория информации (7)


Представим вспомогательную функцию F в виде:


Математическая теория информации. (8)


Найдем максимум этой функции


Математическая теория информации т. к.

Математическая теория информации.


Как видно из выражения, величина вероятности pi не зависит от i, а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m.

При этом выражение для энтропии равновероятных, независимых элементов равно:


Математическая теория информации. (9)


Найдем энтропию системы двух альтернативных событий с вероятностями p1 и p2. Энтропия равна

Математическая теория информации


4. Свойства энтропии сообщений


1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 Ј p Ј 1.

2. Энтропия максимальна для равновероятных событий.

3. Энтропия для детерминированных событий равна нулю.

4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.

Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:

H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.

I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.


5. Избыточность сообщений


Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником


Математическая теория информации, (10)

где ? – коэффициент сжатия.

Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.

Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.

Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log2m = log22 = 1 [дв. ед/симв.]

При этом H(x) = Hmax(x) и избыточность равна R = 0.

Пример 2. Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4.

Решение: Энтропия для случая независимых, не равновероятных элементов равна:


Математическая теория информации


При этом избыточность равна R = 1–0,815=0,18

Пример 3. Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.

Решение: Общее число пятибуквенных сообщений равно: N = mn = 32

Энтропия для равновероятных сообщений равна:


H = I = – log2 1/N = log2325 = 5 log232 = 25 бит./симв.

Литература


Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.

Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.

Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1984.

Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320 с.

Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.

Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы. – Ижевск: НИЦ «РХД», 2001, 288 стр.

Рефетека ру refoteka@gmail.com