МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО – ЭКОНОМИЧЕСКИЙ
ИНСТИТУТ ФИЛИАЛ В ГОРОДЕ ТУЛЕ
КАФЕДРА СТАТИСТИКИ
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Статистика»
ВАРИАНТ 7
Выполнил:
Проверил:
Тула 2007
ИСХОДНЫЕ ДАННЫЕ
Имеются следующие выборочные данные по предприятиям одной из отраслей экономики в отчетном году (выборка 20% - ная механическая):
№ пр-я п/п |
Средене – списочная численность работников, чел. |
Выпуск продукции, млн.руб. |
№ пр-я п/п |
Средене – списочная численность работников, чел. |
Выпуск продукции, млн.руб. |
1 | 159 | 37 | 16 | 137 | 25 |
2 | 174 | 47 | 17 | 171 | 45 |
3 | 161 | 40 | 18 | 163 | 41 |
4 | 197 | 60 | 19 | 145 | 28 |
5 | 182 | 44 | 20 | 208 | 70 |
6 | 220 | 64 | 21 | 166 | 39 |
7 | 245 | 68 | 22 | 156 | 34 |
8 | 187 | 59 | 23 | 130 | 14 |
9 | 169 | 43 | 24 | 170 | 46 |
10 | 179 | 48 | 25 | 175 | 48 |
11 | 120 | 24 | 26 | 184 | 54 |
12 | 148 | 36 | 27 | 217 | 74 |
13 | 190 | 58 | 28 | 189 | 56 |
14 | 165 | 42 | 29 | 177 | 45 |
15 | 142 | 30 | 30 | 194 | 61 |
ЗАДАНИЕ 1
По исходным данным:
Постройте статистический ряд распределения организаций (предприятий) по признаку среднесписочная численность работников, образовав пять групп с равными интервалами.
Постройте графики полученного ряда распределения. Графически определите значения моды и медианы.
Рассчитайте характеристики интервального ряда распределения:
среднюю арифметическую;
среднее квадратическое отклонение;
коэффициент вариации;
моду и медиану.
Вычислите среднюю арифметическую по исходным данным, сравните ее с аналогичным показателем, рассчитанным в п.3 для интервального ряда распределения. Объясните причину их расхождения.
Сделайте выводы по результатам выполнения задания.
РЕШЕНИЕ:
Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.
Для группировок с равными интервалами величина интервала:
,
где - наибольшее и наименьшее значения признака;
n – число групп.
чел.
В результате получим следующий ряд распределения (табл.1.1):
Таблица 1.1.
Интервальный ряд | Дискретный ряд |
- количество предприятий внутри i – той группы |
% |
1гр.: 120 – 140 |
(120+140)/2=130 |
3 | 10% |
2гр.: 140 – 160 |
(140+160)/2=150 |
5 | 16.7% |
3гр.: 160 – 180 |
(160+180)/2=170 |
11 | 36.7% |
4гр.: 180 – 200 |
(180+200)/2=190 |
7 | 23.3% |
5гр.: 200 – 220 |
(200+220)/2=210 |
4 | 13.3% |
2. Мода – значение признака, наиболее часто встречающееся в изучаемой совокупности. Для дискретных рядов распределения – вариант, имеющий наибольшую частоту.
Медиана – это вариант, который находится в середине вариационного ряда, делящий его на две равные части.
3. Рассчитаем характеристики интервального ряда распределения:
Средняя арифметическая.
Если значения осредняемого признака заданы в виде интервалов (“от – до”), т.е. интервальных рядов распределения (табл.1.1), то при расчете средней арифметической величины в качестве значений признаков в группах принимаются середины этих интервалов, в результате чего образуется дискретный ряд (табл.1.1). Т.о. средняя арифметическая будет равна:
,
где - средняя численность работников внутри i – той группы;
- количество предприятий внутри i – той группы;
чел.
Среднее квадратическое отклонение.
Представляет собой корень квадратный из дисперсии. Дисперсия признака представляет собой средний квадрат отклонения вариантов от их средней величины, она вычисляется по формуле:
==526
Среднее квадратическое отклонение показывает, на сколько, в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты.
= 23 чел.
Коэффициент вариации.
13,3%
По величине коэффициента вариации можно судить о степени вариации признаков, а следовательно, об однородности состава совокупности. Совокупность считается количественно однородной, если коэффициент однородности не превышает 33%. Т.о., в рассматриваемом варианте совокупность количественно однородная.
Мода и медиана.
Для интервальных вариационных рядов распределения мода рассчитывается по формуле:
,
где - мода;
- нижняя граница модального интервала;
- величина модального интервала;
- частота модального интервала;
- частота интервала, предшествующего модальному;
- частота интервала, следующего за модальным.
= 172 чел.
Модальный интервал определяется по наибольшей частоте.
Наибольшее число предприятий – 11 – имеют среднесписочную численность работников в интервале 160 – 180 чел., который и является модальным. Итак, модальным значением среднесписочной численности работников по предприятиям одной из отраслей экономики является численность равная 172 чел. В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком – то из интервалов признака . Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот)равна или превышает полусумму всех частот ряда.
Значение медианы рассчитывается по формуле:
,
где - медиана;
- нижняя граница медианного интервала;
- величина медианного интервала;
- сумма частот ряда;
- частота медианного интервала;
- сумма накопленных частот ряда, предшествующих медианному интервалу.
Прежде всего, найдем медианный интервал. Таким интервалом будет интервал среднесписочной численности работников 160 – 180 чел., поскольку его кумулятивная частота равна 19(3+5+11), что превышает половину суммы всех частот (30/2=15).
=173 чел.
Полученный результат говорит о том, что из 30 предприятий одной из отраслей экономики 15 предприятий имеют среднесписочную численность работников 173 чел., а 15 предприятий – более.
4. Вычислим среднюю арифметическую по исходным данным.
= 173 чел.
Результат расчетов средней арифметической в п.3 совпадает с результатом расчетов в п.4. Это произошло потому, что при исчислении средней арифметической в интервальном ряде допускается некоторая неточность, поскольку делается предположение о равномерности распределения единиц признака внутри группы. Ошибка будет тем меньше, чем уже интервал и чем больше единиц в интервале. Т.к. интервал в нашей задаче достаточно узкий - 20, а число единиц в интервале достаточно большое, следовательно, ошибка расчетов в п.3 мала, и результаты расчетов п.3 и п.4 совпадают.
ЗАДАНИЕ 2
По исходным данным:
Установите наличие и характер связи между признаками среднесписочная численность работников (х – факторный) и выпуском продукции (y - результативный), образовав 5 групп по обоим признакам с равными интервалами, методами:
аналитической группировки:
корреляционной таблицы.
Измерьте тесноту корреляционной связи между названными признаками с использованием коэффициента детерминации и эмпирического корреляционного отношения.
Сделайте выводы по результатам выполненного задания.
РЕШЕНИЕ
1. Аналитическая группировка.
Основные этапы проведения аналитической группировки – обоснование и выбор факторного и результативного признаков, подсчет числа единиц в каждой из образованных групп, определение объема варьирующих признаков в пределах созданных групп, а также исчисление средних размеров результативного показателя. Результаты группировки оформляются в таблице. Установим наличие и характер связи между величиной среднесписочной численности работников и выпуском продукции методом аналитической группировки по данным таблицы исходных данных.
Вначале строим рабочую таблицу (табл.2.1).
Таблица 2.1.
Распределение предприятий по среднесписочной численности работников.
№ п.п |
Группы предприятий по среднесписочной численности работников |
№ пред- прия- тия |
Среднесписочная численность работников, чел. | Объем выпускаемой продукции, млн.руб. |
А | Б | 1 | 2 | 3 |
I | 120 – 140 |
11 23 16 |
120 130 137 |
24 14 25 |
Итого |
3 |
387 |
63 |
|
II | 140 - 160 |
15 19 12 22 1 |
142 145 148 156 159 |
30 28 36 34 37 |
Итого |
5 |
750 |
165 |
|
III | 160 - 180 |
3 18 14 9 21 24 17 2 25 29 10 |
161 163 165 169 166 170 171 174 175 177 179 |
40 41 42 43 39 46 45 47 48 45 48 |
Итого |
11 |
1870 |
484 |
|
IV | 180 - 200 |
5 26 8 28 13 30 4 |
182 184 187 189 190 194 197 |
44 54 59 56 58 61 60 |
Итого |
7 |
1323 |
392 |
|
А | Б | 1 | 2 | 3 |
V | 200 - 220 |
20 7 27 6 |
208 215 217 220 |
70 68 74 64 |
Итого |
4 |
860 |
276 |
|
Всего |
30 |
5190 |
1380 |
Для установления наличия и характера связи между величиной среднесписочной численности работников и объемом выпускаемой продукции по данным рабочей таблицы 2.1 строим итоговую аналитическую таблицу 2.2.
Таблица 2.2.
Зависимость объема выпускаемой продукции от среднесписочной численности работников.
№ п.п. |
Группы предприятий по среднесписочной численности работников |
Число пред –приятий |
Среднесписочная численность работников | Объем выпускаемой продукции | ||
Всего | Средняя численность работников | Всего | в среднем на одно предприятие | |||
А | Б | 1 | 2 | 3 | 4 | 5 |
120 – 140 140 – 160 160 – 180 180 – 200 200 – 220 |
3 5 11 7 4 |
387 750 1870 1323 860 |
129 150 170 189 215 |
63 165 484 392 276 |
21 33 44 56 69 |
|
Итого |
30 |
5190 |
173 |
1380 |
46 |
Данные таблицы 2.2 показывают, что с ростом среднесписочной численности работников, средний объем продукции, выпускаемой одним предприятием, растет. Следовательно, между исследуемыми признаками существует прямая корреляционная зависимость.
Корреляционная таблица.
Для изучения структуры предприятий по объему выпускаемой продукции, пользуясь таблицей исходных данных, построим интервальный вариационный ряд, характеризующий распределение предприятий по объему выпускаемой продукции. Величина интервала равна:
12 млн.руб.
Интервальный ряд | Дискретный ряд |
- количество предприятий внутри i – той группы |
1гр.: 14 – 26 |
(14+26)/2=20 |
3 |
2гр.: 26 – 38 |
(26+38)/2=32 |
5 |
3гр.: 38 – 50 |
(28+50)/2=44 |
12 |
4гр.: 50 – 62 |
(50+62)/2=56 |
6 |
5гр.: 62 – 74 |
(62+74)/2=68 |
4 |
По таблице исходных данных необходимо определить, существует ли зависимость между среднесписочной численностью работников (факторный признак х) и выпускаемой продукцией (результативный признак y).
Построим корреляционную таблицу, образовав 5 групп по факторному и результативному признакам (табл.2.3).
Таблица 2.3.
Распределение предприятий по среднесписочной численности работников и объему выпускаемой прдукции.
Среднесписочная численность работников | Выпускаемая продукция, млн.руб. | |||||
14 – 26 | 26 – 38 | 38 – 50 | 50 – 62 | 62 – 74 |
Итого |
|
120 – 140 |
3 |
3 | ||||
140 – 160 |
5 |
5 | ||||
160 – 180 |
11 |
11 | ||||
180 – 200 |
1 |
6 |
7 | |||
200 – 220 |
4 |
4 | ||||
Итого |
3 | 5 | 12 | 6 | 4 | 30 |
Как видно из данных табл.2.3, распределение числа предприятий произошло вдоль диагонали, проведенной из левого верхнего угла в правый нижний угол таблицы, т.е. увеличение признак “среднесписочная численность работников” сопровождалось увеличением признака “выпускаемая продукция”.
Характер концентрации частот по диагонали корреляционной таблицы свидетельствует о наличии прямой тесной корреляционной связи между изучаемыми признаками.
2. Теснота корреляционной связи между названными признаками может быть измерена с помощью коэффициента детерминации и эмпирического корреляционного отношения.
Коэффициент детерминации равен отношению межгрупповой дисперсии к общей:
Межгрупповая дисперсия равна:
=
Общая дисперсия равна:
=249 + 186 = 435
Средняя из групповых дисперсий:
==
Групповая дисперсия равна:
=0.428 или 42,8%
Это означает, что выпускаемая продукция на 42,8% зависит от среднесписочной численности работников, а на 57,2% - от других факторов.
Эмпирическое корреляционное отношение.
Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
В нашем примере , что свидетельствует (из соотношения Чэддока) о тесной связи (0,7 – 0,9) между выпуском продукции и среднесписочной численностью работников.
ЗАДАНИЕ 3
По результатам выполнения задания 1 с вероятностью 0,683 определите:
Ошибку выборки среднесписочной численности работников и границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности.
Ошибку выборки доли предприятия со среднесписочной численностью работников 180 и более человек и границы, в которых будет находиться генеральная доля.
РЕШЕНИЕ
1. Для определения среднесписочной численности работников на предприятиях была произведена 20% - ная механическая выборка, в которую попало 30 предприятий. В результате обследования было установлено, что средняя арифметическая среднесписочной численности работников 173 чел. При среднем квадратическом отклонении 23 чел.
Границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности
Т.к. выборка механическая, предельная ошибка выборки определяется по формулам:
где N – объем генеральной совокупности (число входящих в нее единиц). Т.к. выборка 20% - ная, то N=150 (5*30).
20% - ная выборка означает, что отбирается и проверяется каждая 5-ая единица (1:0,2).
n – объем выборки (число обследованных единиц) = 30 предприятий.
- генеральная дисперсия (дисперсия признака в генеральной совокупности).
t = 1 (из таблицы значений интегральной функции Лапласа при заданной вероятности 0,683)
чел.
С вероятностью 0,683 можно утверждать, что среднесписочная численность работников находится в пределах или
2. Доля предприятий со среднесписочной численностью работников 180 и более человек находится в пределах:
Выборочная доля составит:
=11/30=0,37,
где m – доля единиц, обладающих признаком;
n – численность выборки.
Ошибка выборки генеральной доли составит:
или 7,9%
С вероятностью 0,683 можно утверждать, что доля предприятий со среднесписочной численностью работников 180 чел. и более будет находиться в пределах p = 37%7.9% или 29,1%p44,9%.
ЗАДАНИЕ 4
Имеются следующие данные по двум предприятиям отрасли:
№ пр – я п/п |
Выпуск продукции, тыс.руб. | Среднесписочная численность рабочих, чел. | ||
Базисный период | Отчетный период | Базисный период | Отчетный период | |
1 2 |
6400 4800 |
6000 6000 |
100 60 |
80 60 |
Определите:
По каждому предприятию уровни и динамику производительности труда. Результаты расчетов представьте в таблице.
По двум предприятиям вместе:
индексы производительности труда (переменного, постоянного состава, структурных сдвигов);
абсолютное изменение средней производительности труда за счет отдельных факторов.
Сделайте выводы.
РЕШЕНИЕ
1. Для характеристики уровня производительности труда в статистической практике используют выработку.
Выработка W характеризует количество продукции, производимой на одного работника. Она является прямым показателем производительности труда – чем больше выработка, тем выше производительность труда.
W=П/T, где W – средняя выработка; П – количество произведенной продукции; T – численность работников.
П=WT
Результаты расчетов представим в таблице 4.1.
Таблица 4.1.
Характеристика уровней производительности труда
№ пр – я п/п |
Производительность труда, тыс.руб./чел. |
Численность работников, чел. |
Выпуск продукции, тыс.руб. | |||
Базисный период |
Отчетный период |
Базисный период |
Отчетный период |
Базисный период | Отчетный период | |
1 2 |
64 80 |
75 100 |
100 60 |
80 60 |
6400 4800 |
6000 6000 |
Итого |
- |
- |
160 |
140 |
11200 |
12000 |
2. Рассчитаем по двум предприятиям вместе индексы производительности труда:
индекс переменного состава.
Для исчисления индекса производительности труда переменного состава по двум предприятиям вместе вначале определим среднюю производительность труда, тыс.руб./чел.:
в базисный период =70;
в отчетный период 85.7.
Теперь исчислим индекс средней производительности труда переменного состава:
1.224 или 122, 4%
Следовательно, средняя производительность труда по двум предприятиям вместе в отчетном периоде по сравнению с базисным увеличилась на 22,4%.
Индекс постоянного состава.
Определим, в какой мере изменение производительности труда произошло в результате изменения только производительности труда на отдельных предприятиях. Для этого сравним среднюю производительность труда в отчетном периоде со средней производительностью труда в базисном периоде при одинаковой численности работников (отчетный период) на основе индекса постоянного состава:
=1,21 или 121%
Исчисленный индекс характеризует общее изменение производительности труда на отдельных предприятиях. Средняя производительность труда в отчетном периоде по сравнению с базисным в результате изменения только производительности труда на отдельных предприятиях выросла на 21%.
Индекс структурных сдвигов.
Определим, в какой мере изменение средней производительности труда произошло в результате изменения только среднесписочной численности рабочих. Для этого сравним среднюю производительность труда в отчетном периоде со средней производительностью труда в базисном периоде при производительности труда на отдельных предприятиях на уровне базисного периода, т.е. исчислим индекс структурных сдвигов:
==1,012 или 101,2%
Индекс показывает, что средняя производительность труда в результате изменения численности рабочих выросла дополнительно на 1,2%.
Абсолютное изменение средней производительности труда за счет отдельных факторов.
Абсолютное изменение средней производительности труда составило:
85.7–70=15.7тыс.руб./чел., что привело к увеличению количества выпускаемой продукции на 800 тыс. руб., т.е. (12000 – 11200)
Изменение средней производительности труда происходило под влиянием двух факторов: изменения производительности труда на отдельных предприятиях и изменения среднесписочной численности рабочих.
Абсолютное изменение средней производительности труда за счет изменения производительности труда на отдельных предприятиях составит: 85,7 – 70,9 = 14,8 тыс.руб./чел.
Абсолютное изменение средней производительности труда в результате изменения численности рабочих составило: 70.86 – 70 = 0.86 тыс.руб./чел.
Общий вывод: если бы происшедшие изменения производительности труда не сопровождались структурными перераспределениями на предприятиях, то средняя производительность труда по двум предприятиям возросла бы на 21%. Изменение структуры выпуска продукции на отдельных предприятиях в общем объеме выпуска вызвало повышение средней производительности труда на 1,2%. Одновременное воздействие двух факторов увеличило среднюю производительность труда по двум предприятиям на 22,4%.