МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ
Институт транспортной техники и организации производства
Кафедра: «Теплоэнергетика железнодорожного транспорта»
Курсовая работа по дисциплине
«Источники загрязнения и технические средства защиты окружающей среды»
Экология объекта
Москва 2009 г.
Котельная с n=5 котлами КЕ-25-14МТ
1. ОПРЕДЕЛЕНИЕ ОБЪЁМОВ ВОЗДУХА И ПРОДУКТОВ СГОРАНИЯ
Теоретический объём воздуха, необходимый для полного сжигания топлива:
Объём трёхатомных газов:
Объём сухих дымовых газов при полном сгорании топлива:
(м3/кг)
(м3/кг)
(м3/кг)
Объём водяных паров вычисляется по формуле:
-
коэффициент
избытка воздуха
в топке
(м3/кг)
Действительно
необходимое
количество
воздуха при
=1,25:
(м3/кг)
2. ОПРЕДЕЛЕНИЕ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ С ДЫМОВЫМИ ГАЗАМИ МАЛОЙ МОЩНОСТИ
1.Фактический расход на котёл, кг/с.
где D-фактическая паропроизводительность котла, т/ч ;
-низшая
теплота сгорания
топлива в МДж/кг
;
-К.П.Д.
котла при ном.
нагрузке ;
(кг/с)
2.Расчётный расход топлива, кг/с
,
где
-потери
от механической
неполноты
сгорания ;
(кг/с)
3. Годовая выработка тепла
Ти – число часов использования установленной мощности Ти = 4000 ч/год
(МДж/год)
Годовой расход топлива:
3. ДИСПЕРСНЫЙ (ФРАКЦИОННЫЙ) АНАЛИЗ ПЫЛИ
Дисперсный состав уноса твёрдых продуктов сгорания:
dч,мкм | <10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-86 | 86-100 | >100 |
mi, % | 6 | 10 | 10 | 10 | 8 | 8 | 10 | 3 | 35 |
|
0,06 | 0,1 | 0,1 | 0,1 | 0,08 | 0,08 | 0,1 | 0,03 | 0,35 |
Д | 0,06 | 0,16 | 0,26 | 0,36 | 0,44 | 0,52 | 0,62 | 0,65 | |
X | -1.55 | -0.99 | -0.64 | -0.355 | -0.15 | 0.05 | 0.31 | 0.39 | |
dгр | 10 | 20 | 30 | 40 | 50 | 60 | 86 | 100 | |
Lg dч | 1 | 1,301 | 1,477 | 1,602 | 1,699 | 1,778 | 1,934 | 2 |
,
где
-масса
взвеси (в нашем
случае равна
100) ,
Рассчитаем суммы:
Из уравнения:
путём интегрирования
получим систему
уравнений с
двумя неизвестными
;
;
.
4. ВЫБОР ЗОЛОУЛОВИТЕЛЯ
Полный объём продуктов сгорания:
(м3/кг)
Объёмный расход продуктов сгорания:
м3/с
где
-
расчётный
расход топлива;
-
объём газа;
Объём продуктов сгорания, выходящий из трубы:
м3/с
Выбираю батарейный циклон БЦ :
Wопт=3.5 м/с – оптимальное значение скорости газов в циклоне с направляющим аппаратом типа «розетка» 25˚(табличное значение)
ξ90=90
– опытное значение
коэффициента
сопротивления
циклона(табличное
значение)
dт50=3.85 мкм – медианный размер опытных частиц
lg ση=0.46 – среднеквадратичное отклонение частиц от медианного размера
Параметры эксперимента:
Dц=0.25 м
Wцт=4.5 м/с – опытное значение скорости газа в циклоне
(Па
- динамическая
вязкость газов
(кг/м3) – плотность
опытных частиц
Суммарное количество твёрдых продуктов сгорания (летучей золы и несгоревшего топлива) в дымовых газах перед золоуловителем:
,
Концентрация твёрдых веществ в продуктах сгорания:
г/м3
Объёмный расход продуктов сгорания при температуре уходящих газов:
м3/с
Принимаем
Dц=0.25;
Принимаю nц= 64, выбираю батарейный циклон типа БЦ 1x8x8
Уточняю скорость:
м/с
≈ Wопт
Коэффициент гидравлического сопротивления циклона:
К1 = 1 для D ≥ 250 мм
К2 – поправка на запыленность газов
К3 = 35 – поправка на компоновку циклонов в группу
Па – гидравлическое
сопротивление
циклона
Параметры уходящих газов:
- плотность
золы
;
Медианный размер частиц, улавливаемый циклоном:
мкм
по таблице нормальной функции распределения Ф (x)=0.95635
Максимальная степень очистки ηmax=0.955
Среднеэксплуатационная степень очистки η=ηз=0.85∙0.95635=0.8129
5. ОПРЕДЕЛЕНИЕ ВЫБРОСОВ ГАЗООБРАЗНЫХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ
5.1 Оксиды серы
Суммарное количество оксидов серы МSO2 в г/с, выбрасываемых в атмосферу с дымовыми газами котлоагрегатов, вычисляют по формуле:
,
где
-
содержание
серы в топливе
на рабочую
массу, % ;
-
доля оксидов
серы, связываемых
летучей золой
в котле ( по табл
2 (2)составляет
0,1);
-
доля оксидов
серы, улавливаемых
в мокром золоуловителе
попутно с
улавливанием
твёрдых частиц
(для сухих
золоуловителей
принимаем
равным нулю);
(г/с)
(г/с)
5.2 Оксиды углерода
Количество выбросов оксида углерода в г/с определяется по соотношению:
,
где
-
выход оксида
углерода на
единицу топлива,
г/кг;
Здесь q3-потери теплоты вследствие химической неполноты сгорания топлива, %;
R-доля потери теплоты q3, обусловленная наличием в продуктах неполного сгорания оксида углерода (принимают для твёрдого топлива 1,0 );
(г/кг)
(г/с)
(г/с)
5.3 Расчёт выбросов оксидов азота при слоевом сжигании твердого топлива
Топка ТЧЗМ - топка с пневмомеханическим забрасывателем и цепной чешуйчатой решеткой обратного хода. Удельный выброс оксидов азота при сжигании твердого топлива, г/с:
,
где
-
удельный выброс
оксидов азота,
г /МДж;
где αт – коэффициент избытка воздуха в топке
R6 – остаток на сите с размером ячеек 6 мм%, принимаю R6= 0
-
безразмерный
коэффициент,
учитывающий
влияние рециркуляции
дымовых газов
при подаче их
в смеси с дутьевым
воздухом под
колосниковую
решетку ,на
образование
оксидов азота;
принимаю r=0
6.801*10-3г
/МДж
=1.415МВт/ м2
МNO2 = 0.126*5=0.63 г/с
6. ОПРЕДЕЛЕНИЕ ВЫБРОСОВ ТВЁРДЫХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ
6.1 Расчёт выбросов твёрдых продуктов сгорания
Суммарное
количество
твёрдых продуктов
сгорания (летучей
золы и несгоревшего
топлива)
,
поступающих
в атмосферу
с дымовыми
газами котлов
в г/с, вычисляются
по формуле:
,
где
-
зольность
топлива на
рабочую массу,
% ;
-
доля золы, уносимой
газами из котла
(доля золы топлива
в уносе);
-
доля твёрдых
частиц, улавливаемых
в золоуловителях;
32,68- теплота сгорания углерода, МДж/кг;
,
Количество
летучей золы
в г/с, уносимой
в атмосферу
в составе твёрдых
продуктов
сгорания, вычисляют
по формуле:
,
(г/с)
Количество
коксовых остатков
при сжигании
твёрдого топлива
в г/с, образующихся
в топке в результате
механического
недожога топлива
и выбрасываемых
в атмосферу,
определяют
по формуле:
,
(г/с)
6.2Расчет выбросов бензапирена
Выброс
бензапирена
поступающего
в атмосферу
с дымовыми
газами в г/с
рассчитывают
по уравнению
:
массовая
концентрация
бензапирена
в сухих дымовых
газах при стандартном
коэффициенте
избытка воздуха
;
объем сухих
дымовых газов
,образующихся
при полном
сгорании 1 кг
(1 н
)
топлива
при
При сжигании твердого топлива
А – коэффициент, характеризующий тип колосниковой решетки, для угля – 2,5
R - коэффициент, характеризующий температурный уровень экранов (при р=24 ата,
tn=221,78>150 0C ; R=350
Кд = 1 – коэффициент, учитывающий концентрацию бензаперена при неполной нагрузке котля
Кзу - коэффициент, учитывающий степень улавливания бензапирена золоуловителем.
Z – понижающий коэффициент (бензаперен улавливается в меньшей степени, чем зола. При температуре газов перед золоуловителем tзу = tух = 180 oC < 185 oC и сухих золоуловителях.
Кзу = 1-ηз*Z =1- 0.81290.8= 0.35
=
1.463*10-3 мг/нм3
г/с
7. РАСЧЕТ МИНИМАЛЬНО НЕОБХОДИМОЙ ВЫСОТЫ ДЫМОВОЙ ТРУБЫ
Диаметр устья дымовой трубы ,м :
температура
уходящих газов;
скорость
продуктов
сгорания на
выходе из дымовой
трубы, принимаю
25 м/с
Принимаю Dутр = 1,8
Предварительная минимальная высота дымовой трубы по приведенным газам м :
Масса приведенного газа:
А – коэффициент стратификации атмосферы для Мурманска 160
F=1
- коэффициент, зависящий от степени очистки циклона
- значение коэффициентов в первом приближении
- коэффициент рельефа местности
Фоновая концентрация приведенного газа:
максимально
разовые предельные
допустимые
концентрации;
- фоновая концентрация SO2
- фоновая концентрация NO2
- фоновая концентрация NO
- фоновая концентрация золы
- ПДК максимально разовая для SO2
- ПДК максимально разовая для NO2
- ПДК максимально разовая для NO
- ПДК максимально разовая для CO
- ПДК максимально разовая для NO
- ПДК максимально разовая для золы
Определяются
коэффициенты
f и
:
Опасная скорость ветра на высоте устья трубы
Определяется коэффициент m в зависимости от параметра f :
Определяется
безразмерный
коэффициент
n в
зависимости
от параметра
:
Определяется минимальная высота дымовой трубы во втором приближении :
Выполняем второй уточняющий расчет .
Определяются коэффициенты f и v :
Определяется коэффициент m в зависимости от параметра f :
Определяется
безразмерный
коэффициент
n в
зависимости
от параметра
:
Определяется минимальная высота дымовой трубы в третьем приближении :
Выполняем третий уточняющий расчет .
Определяются коэффициенты f и v :
Определяется коэффициент m в зависимости от параметра f :
Определяется
безразмерный
коэффициент
n в
зависимости
от параметра
:n3
=2,4
Определяется минимальная высота дымовой трубы в четвертом приближении:
Т.к. разница
между
меньше
0.5 м ,то расчет
выполнен верно
.
Выбираем дымовую трубу из кирпича со следующими
стандартными
размерами :
Предварительная минимальная высота дымовой трубы для твердых веществ м :
(г/с)
Определяются
коэффициенты
f и
:
Опасная скорость ветра на высоте устья трубы:
Определяется коэффициент m в зависимости от параметра f :
Определяется
безразмерный
коэффициент
n в
зависимости
от параметра
:n=2,5
Определяется
минимальная
высота дымовой
трубы во втором
приближении
:
Окончательно выбираем дымовую трубу из кирпича со следующими стандартными размерами : Dтр = 1.8м Hтр = 75м
8. ОПРЕДЕЛЕНИЕ СОСТАВА И КОЛИЧЕСТВА СТОЧНЫХ ВОД КОТЕЛЬНОЙ
При регенерации Na – катионитных фильтров кроме солей, содержащихся в исходной воде, сбрасываются продукты регенерации фильтров – СаCl2 и MgCl2, а также избыток поваренной соли, который берется для более глубокой регенерации фильтрующего материала. При проведении операции взрыхления возможно попадание в сток измельченного фильтрующего материала; используемая для регенерации техническая поваренная соль содержит до 7% различных примесей, которые также попадают в сток.
Котловая
вода в котлах
низкого среднего
давления после
необходимых
стадий обработки
воды в основном
содержит
легкорастворимый
катион натрия
и анионы:
.
Все катионы и анионы, поступающие в котел с химически очищенной водой, не претерпевают изменений с повышением давления, температуры и концентрации солей при испарении, кроме бикарбоната натрия, который частично (около 60%) разлагается в барботажном деаэраторе и окончательно в котле по уравнению:
Показатели воды, приходящей на ВПУ.
|
|
|
|
|
|
|
|
мг/л | мг/л | мг/л | мг/л | мг/л | мг/л | мг/л | мг/л |
2 | 6 | 20,9 | 42,7 | 9,5 | 150 | 35,5 | 21 |
1) Пересчитываем данные анализа в мг-экв/л:
-
верно
2) Общая жесткость:
3) Карбонатная жесткость:
4) Некарбонатная жесткость:
мг-экв/л
Количество сточной воды:
Расход воды на продувку
Расчёт расхода воды на собственные нужды:
Расход соли на приготовление регенерирующего раствора:
(кг/сут)
где
=
100 (г/г-экв)-удельный
расход соли
на регенерацию
при общей жесткости
воды до 5 г-экв/м3
Расход воды на регенерацию:
(м3/сут)
- доля химически чистой соли
СРР = 6 % - концентрация регенерационного раствора.
=
1041.3 (кг/м3)
– плотность
регенерационного
раствора.
Расход воды на отмывку катионита от продуктов регенерации:
(м3/сут)
- удельный
расход воды
на отмывку
(м3/сут)
Количество сточной воды:
В стоках ВПУ будут CaCl2,MgCl2 и избыточный NaCl.
Доля кальция, удаляемого из фильтра в продуктах регенерации:
Количество CaCl2 и MgCl2 , сбрасываемое в течение суток:
(кг/сут.)
(кг/сут.)
где 55,5 и 47,6 – эквивалентная масса CaCl2 и MgCl2 .
(кг/сут)
где 58,5 (г/г-экв) – теоретический удельный расход соли на регенерацию.
Общее количество солей, сбрасываемых в сутки:
(кг/сут.)
2HCO3- =CO2+3+CO2+H2O
Na2CO3+H2O=2NaOH+CO2
kуп=Sкв/Sпв=25
(г/л)
< 10г/л –сточные
воды котельной
можно отправить
без очистки
в дренаж.
9. РАСЧЕТ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В ГАЗАХ ЗА КОТЛОМ
1) массовая концентрация:
;
мг/
;
;
2)
Объемная концентрация
в частях на
миллион :
где:-плотность
газа при НФУ,
кг/н
;
;
Определение удельных выбросов:
(МВт)
МВт
г/МДж.
г/МДж
г/МДж
г/МДж – до
золоуловителя
г/МДж – после
золоуловителя
3)Токсичность выбросов за котлом и в устье трубы
Токсичность за котлом:
Токсичность после золоуловителя (в устье трубы):
Эффективность установки золоуловителя:
С помощью золоуловителя снизилась токсичность на 37.77%