Рефетека.ру / Математика

Реферат: Поверхности

Федеральное агентство по образованию

ГОУ ВПО Тульский государственный университет


Реферат

на тему: «Поверхности»

Дисциплина: «ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА»


Выполнил

студент группы 120691

Юдин А.С.


Проверил

Казимиров А.Н.

Поверхность - название для двумерного многообразия в пространстве.

Поверхности определяются как множество точек, координаты которых удовлетворяют определённому виду уравнений. Это неявный способ указания поверхности. Существуют еще два: явный способ (возможно, выразить одну переменную из уравнения поверхности через другие) и параметрический способ задания. При параметрическом указании задается система уравнений, которая и определяет поверхность.

Простая поверхность - поверхность, которую можно представить как часть плоскости, подвергнутую непрерывным искажениям.

Поверхности классифицируются по многим признакам. Некоторые из них:

1) Кривизна: каждому направлению поверхности от заданной точки соответствует своя форма сечения, которая и определяет кривизну;

2) Наличие касательной к поверхности: обычно касательная к поверхности – это плоскость. В некоторых случая через одну точку поверхности можно провести сколь угодно много касательных. Наличие касательной у какой-либо поверхности влияет на ее гладкость;

3) Метрика и внутренняя геометрия;

4) Нормаль: за нормаль к поверхности принимают единичный вектор, перпендикулярный касательной плоскости в заданной точке. Существует так же нормальное сечение;

5) Геодезические линии: кривая на поверхности называется геодезической линией, если во всех её точках главная нормаль к кривой совпадает с нормалью к поверхности;

6) Площадь: площадь в общем смысле – это числовая характеристика. Существуют поверхности с бесконечной площадью, например параболоид;

7) Ориентация: ориентированной называется двусторонняя поверхность с выбранным направлением нормали.

Приведем примеры некоторых поверхностей, опишем их основные характеристики, укажем применение и обозначение.

Эллипсоид. Эллипсоидом называется поверхность, каноническое уравнение которой имеет вид


Поверхности


где a, b и c - положительные числа.

Данная поверхность обладает тремя плоскостями симметрии, тремя осями симметрии и центром симметрии. Ими служат соответственно координатные плоскости, координатные оси и начало координат. Существует так же эллипсоид вращения. Применяется в геодезии.

Сфера – частный случай эллипсоида - замкнутая поверхность, следовательно, она имеет конечную площадь. Площадь сферы находят по формуле S=4πR^2.

Поверхность обозначается формулой:


(x - x0)^2 + (y - y0)^2 + (z - z0)^2 = R^2.


Применяется во многих отраслях (например, шарики для подшипников)


Поверхности

Рис. 1


На рисунке 1 представлен тор. Тор получается при вращении окружности радиуса b по окружности радиуса a. Существует возможность проведения такой касательной плоскости, которая будет иметь с тором только одну единственную точку. Обозначается параметрическими уравнениями:


Поверхности


Применяется в хлебопекарной промышленности.

Рисунок 1 содержит катеноид. Параметрическое уравнение:


Поверхности


Эта поверхность применяется в медицинской технике, для создания излучателя ультразвуковых волн. Имеет бесконечную площадь, причем это поверхность вращения.

Псевдосфера имеет следующее параметрическое уравнение:


Поверхности


Существование псевдосферы выявлено из работ Лобачевского.


Поверхности

Рис. 2

На рисунке 2 изображен геликоид. Прямой геликоид - поверхность, образованная движением прямой, вращающейся вокруг оси и перпендикулярной к ней и одновременно поступательно движущейся в направлении этой оси, причем скорости этих движений пропорциональны.

Задается параметрическими уравнениями:


Поверхности


Применяется при создании винтовых поверхностей, например лестниц или валов мясорубок.

Параболоид – поверхность вращения. Описывается уравнениями:


z = ax^2 + by^2


Одна из наиболее известных поверхностей – цилиндр. Имеет параметрические уравнения вида:


x=cos2Ps;

y=2t-1;

z=sin2Ps.


Цилиндры имеют широчайшее применение во всех сферах жизни (например, колесо автомобиля, кружка, ручка).

Существует еще много поверхностей в пространстве, которые имеют необычную для нас форму и размер. Мы рассмотрели лишь простейшие из них.

Похожие работы:

  1. • Разработка технологического процесса изготовления ...
  2. • Отделка поверхностей венецианской штукатуркой ...
  3. • Струйная гидроабразивная обработка поверхностей
  4. •  ... механической обработки поверхностей деталей лезвийными ...
  5. • Утилита "Поверхность"
  6. • Шероховатость поверхности
  7. • Пересечение кривых поверхностей
  8. •  ... высококачественного оштукатуривания кирпичных поверхностей
  9. • Устройства функциональной электроники
  10. • Технология изготовления детали типа "Вал"
  11. • Качество обработанной поверхности
  12. • Технология изготовления оптических поверхностей
  13. • Проектирование технологии процесса мехобработки корпуса ...
  14. • Смачивание, смачивающие агенты, гидрофобизация ...
  15. • Технология высококачественного окрашивания поверхностей ...
  16. • Безкорпусная герметизация полупроводниковых приборов
  17. • Сканирующая зондовая микроскопия
  18. • Трехмерное параметрическое моделирование на персональном ...
  19. •  ... МЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ЛЕЗВИЙНЫМ ...
  20. •  ... при огневой зачистке поверхности металлов
Рефетека ру refoteka@gmail.com