БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра РТС
РЕФЕРАТ
На тему:
«Колебательные, инерционно-дифференцирующие и интегрирующие звенья радиотехнических следящих систем»
МИНСК, 2008
К колебательным звеньям относят звенья, описываемые дифференциальным уравнением следующего вида:
где ξ – коэффициент затухания (для звеньев автоматических систем ξ = 0,5…0.7).
К таким звеньям относятся RLC контура, акселерометры и др.
Обозначим (собственная частота) и разделим почленно все слагаемы числителя и знаменателя на Т2; в результате получим:
где – частота затухающих колебаний;
.
Рис. 1. Переходная и логарифмическая амплитудно-частотная характеристики колебательного звена.
По мере увеличения ξ, длительность переходного процесса увеличивается, частота колебаний уменьшается и при процесс может быть описан ДУследующего вида:
или
,
где ,
Такое звено называется апериодическим звеном 2-го порядка. Передаточная функция звена определяется выражением
Апериодическое звено 2ого порядка может быть представлено как два последовательно соединенных апериодических звена 1ого порядка. Характеристики звена:
и – сопрягающие частоты.
ЛАЧХ (рис.3.9):
ФЧХ:
Переходная характеристика (рис.2):
.
Рис. 2. Переходная и логарифмическая амплитудно-частотная характеристики апериодического звена 2-го порядка
Дифференцирующие звенья. К идеальным дифференцирующим звеньям
относят звенья, выходная величина которых пропорциональна производной входной величины:
В автоматических системах единственным примером идеального дифференцирующего звена является тахогенератор.
Величина k имеет размерность времени, называется постоянной времени дифференцирования и обозначается Т.
Она может быть определена, если входные и выходные величины имеют одну и ту же физическую природу следующим образом: постоянная времени определяется как интервал времени от момента подачи на вход линейно изменяющегося напряжения до момента времени, когда напряжение на выходе сравняется с напряжением на входе (рис. 3).