Рефетека.ру / Экология

Реферат: Загрязнение атмосферы

Привнесение в какую-либо среду новых, не характерных для нее в рассматриваемое время физических, химических и биологических агентов или превышение естественного среднемноголетнего уровня этих агентов в среде называется загрязнением. Основными источниками загрязнения атмосферного воздуха в индустриальных странах служат автомобили и другие виды транспорта и промышленные предприятия. Ежегодно в атмосферный воздух поступает более 200 млн. т оксида углерода, 151 млн. т оксида серы (IV) (сернистого газа), свыше 50 млн. т оксидов азота, более 50 млн. т различных углеводородов, более 250 млн. т мелкодисперсных аэрозолей и т. д. Только за счет сжигания угля в различных энергетических установках в окружающую среду в мире поступает ртути в 8700 раз> мышьяка в 125, урана в 60, кадмия в 40, бериллия и циркония в 10, олова и ванадия в 4 раза больше, чем их вовлекается в естественный биологический кругооборот на Земле за то же время (Добродеев Д. П., 1978). Самый чистый воздух над океаном. В деревнях и селах он содержит пылевидных примесей в 10 раз больше, над поселками и небольшими городами воздух грязнее в 35 раз, а над промышленными центрами плывут облака тяжелого смога. В них содержится пыли в 150 раз больше, чем над океаном. Загрязненный воздух над крупными городами простирается на высоту 1,5-2,0 км. Эта плотная шапка задерживает летом до 20% солнечных лучей, а зимой, когда и так мало света, поглощает половину его

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 70 млн. т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 процентов от общемирового выброса.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 1 км. от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

д) Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т. в год.

е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т. предельного чугуна выделяется кроме 2,7 кг. сернистого газа и 4,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.


Аэрозольное загрязнение атмосферы


Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км. пылевидныхчастиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот.

Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС.

Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс. куб. м. условного оксида углерода и более 150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц.

При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.


Фотохимический туман (смог)


Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии.

Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид.

Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.


Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями (ПДК)


Приоритет в области разработки предельно допустимых концентраций в воздухе принадлежит СССР. ПДК - такие концентрации, которые на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей. Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в ГГО - Главной Геофизической Обсерватории. Чтобы по результатам наблюдений определить значения воздуха, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК, а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с ПДК длительного действия среднеустойчивой ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере города, оценивается с помощью комплексного показателя - индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют.

Максимальные разовые концентрации основных загрязняющих веществ были наибольшими в Норильске (окислы азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной

Загрязнение атмосферы оказывает неблагоприятное воздействие не только на человека, но и на флору и фауну, на различного рода сооружения, транспортные средства и др. На территорию Северной Швеции и Норвегии серы выпадает в 2-2,5 раза больше, чем выбрасывается в воздушный бассейн с этих территорий. В то же время во многих промышленных странах Западной Европы, в частности в Великобритании и Голландии, отношение выпадений серы к выбросам составляет лишь 10-20%, а в ФРГ, Франции и Дании - 20-45%.

Следовательно, остальная часть выбросов переносится воздушными потоками. Опасность выбросов сернистых соединений заключается прежде всего в их массовости, токсичности и сравнительно большом общем "сроке жизни". "Продолжительность жизни" сернистого газа в атмосфере сравнительно невелика: от двух-трех недель, если воздух сравнительно сухой и чистый, до нескольких часов, если воздух влажен и в нем присутствует аммиак или некоторые другие примеси. Но он растворяется в каплях атмосферной влаги. В результате каталитических, фотохимических и других реакций окисляется и образует раствор серной кислоты. Следовательно, агрессивность выбросов возрастает. В конечном счете переносимые воздушными массами сернистые соединения переходят в форму сульфатов. Их перенос в основном происходит на высоте от 750 до 1500 м, где средние скорости перемещения воздушных масс близки к 10 м/с.

Поэтому дальность переноса сернистого газа 300-400 км. На этом же удалении от источника выбросов в струе переноса отмечается максимум концентрации раствора серной кислоты. Ее обнаруживают и на расстоянии 1000-1500 км, где в основном завершается ее переход в сульфаты. Описанный процесс - упрощенная схема, не учитывающая возможности вымывания сернитого газа и серной кислоты по пути переноса каплями дождя, а также абсорбирования их растительностью, почвой, поверхностными и морскими водами. Воздействие сернистого газа и его производных на человека и животных проявляется прежде всего в поражении верхних дыхательных путей.

Под влиянием сернистого газа и серной кислоты происходит разрушение хлорофилла в листьях растений, в связи с чем ухудшаются фотосинтез и дыхание, замедляется рост, снижаются качество древесных насаждений и урожайность сельскохозяйственных культур, а при более высоких дозах и продолжительном воздействии растительность погибает. Так называемые кислые дожди вызывают повышение кислотности почв. В итоге снижается эффективность применяемых минеральных удобрений на пахотных землях, из видового состава трав на долголетних культурных сенокосах и пастбищах выпадают наиболее ценные. Особенно сильное влияние кислые осадки оказывают на дерново-подзолистые и торфяные почвы, широко распространенные в северной части Европы.

Наличие в воздухе соединений серы ускоряет процессы коррозии металлов, разрушения зданий, сооружений, памятников истории и культуры, ухудшает качество промышленных изделий и материалов. Установлено, что в промышленных районах сталь ржавеет в 20 раз, а алюминий разрушается в 100 раз быстрее, чем в сельской местности. Увеличение задымленности воздуха ведет к ухудшению микроклимата города: увеличению числа туманных дней, уменьшению прозрачности атмосферы и, следовательно, к снижению видимости, освещенности, ультрафиолетовой радиации. Утром 26 октября 1948 г. густой туман - смог - окутал г. Донора (штат Пенсильвания, США). Из смеси тумана с дымом и копотью начала выпадать сажа, покрывшая дома, тротуары и мостовые черным покрывалом.

Двое суток видимость была настолько плохой, что жители с трудом находили дорогу домой. Вскоре врачей стали осаждать кашлящие и задыхающиеся пациенты, жаловавшиеся на нехватку воздуха, насморк, резь в глазах, боль в горле и тошноту. В течение следующих четырех дней, пока не начался сильный дождь, заболело 5910 человек из 14 тыс. жителей города. Двадцать человек умерло. Погибло много собак, кошек и птиц. Исследуя причины этой трагедии, метеорологи установили, что она вызвана температурной инверсией, которая препятствовала нормальной циркуляции воздуха. Обычно теплый воздух поднимается от земли в вышележащие холодные области, унося с собой значительную часть загрязняющих воздух продуктов деятельности человека.

Изредка слой теплого воздуха образуется вблизи от земли над холодным слоем, возникает температурная инверсия, следствием которой является нарушение циркуляции воздуха. В результате ядовитые выделения скапливаются непосредственно над землей. Лондонский смог (смесь дыма и тумана) 1952 г. за три-четыре дня погубил более 4 тыс. человек. Сам по себе туман не опасен для человеческого организма. Он становится вредным, когда чрезмерно загрязнен токсическими примесями. 5 декабря 1952 г. над всей Англией возникла зона высокого давления и в течение нескольких дней сохранялась безветренная погода.

Однако трагедия разыгралась только в Лондоне, где была высокая степень загрязнения атмосферы. Английские специалисты определили, что смог 1952 г. содержал несколько сот тонн дыма и сернистого ангидрида. При сопоставлении загрязненности атмосферного воздуха в Лондоне в эти дни с уровнем смертности было отмечено, что смертность увеличилась прямо пропорционально концентрации в воздухе дыма и сернистого газа.

Главный действующий компонент смога лондонского типа - сернистый газ (5-10 мг/м3 и выше). В смоге лондонского типа практически не образуется каких-либо новых веществ. Его токсичность целиком определяется исходными загрязнителями. Возникает он при сжигании достаточно больших количеств топлива. Особенно тяжелое положение сложилось в Лос-Анджелесе, где с 30-х годов в теплое время года, как правило летом и ранней осенью, стал появляться сухой туман с влажностью около 70%. Этот туман называют фотохимическим смогом. Фотохимический туман может возникать при более низких концентрациях загрязнителей, чем лондонский смог, и для него более характерна желто-зеленая или сизая сухая дымка, а не сплошной туман.

При смоге появляется неприятный запах, резко ухудшается видимость. Погибают домашние животные, главным образом собаки и птицы. У людей фотохимический смог вызывает раздражение глаз, слизистых оболочек носа и горла, симптомы удушья, обострение легочных и различных хронических заболеваний. Смог оказывает вредное влияние и на растения, особенно на салатные культуры, бобы, свеклу, злаки, виноград, декоративные насаждения. Сначала наблюдается набухание листьев. Через некоторое время нижние поверхности листьев приобретают серебристый или бронзовый оттенок, а на верхних появляются пятнистость и белые налеты. Затем наступает быстрое увядание растения.

Фотохимический туман вызывает коррозию материалов и элементов зданий, растрескивание красок, резиновых и синтетических изделий, порчу одежды. Из-за плохой видимости нарушается работа транспорта. Явно выраженный сильный фотохимический туман наблюдается в Лос-Анджелесе более 60 дней в году. Отсюда и пошла печальная слава этого города как родины фотохимического тумана - явления, искусственно созданного человеком. Основной причиной образования фотохимического тумана является сильное загрязнение городского воздуха газовыми выбросами предприятий химической промышленности и транспорта и главным образом выхлопными газами автомобилей.

На каждом километре пути легковой автомобиль выделяет около 10 т оксида азота. В Лос-Анджелесе, где скопилось свыше 3 млн. автомобилей, они выбрасывают в воздух около 1 тыс. т этого газа в сутки. Кроме того, здесь часты температурные инверсии (до260 дней в году), способствующие застою воздуха над городом. Фотохимический туман возникает в загрязненном воздухе в результате фотохимических реакций, протекающих под действием коротковолновой (ультрафиолетовой) солнечной радиации на газовые выбросы. В процессе этих реакций возникают вещества, значительно превосходящие исходные по своей токсичности. Основные компоненты фотохимического смога - фотооксиданты (озон, органические перекиси, нитраты, нитриты, пероксилацетилнитрат), оксиды (IV) азота, оксид (II) и оксид (IV) углерода, углеводороды, альдегиды, кетоны, фенолы, метанол и т. д. Эти вещества в меньших количествах всегда присутствуют в воздухе больших городов, в фотохимическом смоге их концентрация часто намного превышает предельно допустимые нормы. Многие зарубежные крупные города (Нью-Йорк, Чикаго, Бостон, Детройт, Токио, Милан) подвержены лос-анджелесскому смогу. В крупных американских городах концентрация озона иногда достигает 2-3 мг/м3 и выше. Это в 100-200 раз больше, чем в чистом природном воздухе.

Однако и сравнительно более низкие концентрации озона оказывают вредные воздействия на человека. В Советском Союзе явлений, подобных фотохимическому туману, не наблюдалось. По данным В. А. Попова, содержание фотооксидантов в атмосферном воздухе Москвы, Баку и Батуми значительно ниже, чем в городах США. Однако условия для возникновения смога могут создаться. Число автомашин растет так быстро, что при наличии достаточной ультрафиолетовой радиации в атмосфере наших городов могут иметь место те же процессы, что отмечены выше. К факторам, оказывающим неблагоприятное влияние на организм человека, относятся также соединения свинца, содержащиеся в выхлопных газах автотранспорта. В атмосферном воздухе свинец содержится почти исключительно в виде неорганических соединений. Количество свинца в крови человека возрастает с увеличением его содержания в воздухе.

Последнее ведет к снижению активности ферментов, участвующих в насыщении крови кислородом, и, следовательно, к нарушению обменных процессов в организме. В литературе имеются данные о связи конкретных уровней загрязнения атмосферы с легочной патологией. Так, в исследовании, выполненном в Чикаго, указывается на обострение хронического бронхита при разных уровнях загрязнения воздуха сернистым газом. Ниже приведена зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом (Сагпаш а. оШ.): Концентрация сернистого газа, мг/л13 0,13 0,26 0,39 0,52 0,66 0,78 0,78 и выше Процент обострений хронического бронхита (в человеко-днях) 13,0 17,1 18,7 18,2 18,6 22,1 26,5 Многие исследователи подчеркивают связь детской заболеваемости (в первую очередь органов дыхания) со степенью загрязнения атмосферного воздуха сернистым газом. В Англии была проанализирована заболеваемость большой группы детей (3866 человек) с момента их рождения до 15 лет. Оказалось, что значительные подъемы в частоте респираторных заболеваний, как правило, наблюдались в те дни, когда уровни среднегодовых концентраций сернистого газа и дыма превышали 0,13 мг/м3.

Согласно его исследованиям при загрязнении воздуха сернистым газом- в концентрации до 0,049 мг/м3 показатель заболеваемости (в человеко-днях) взрослого населения Нашвилла (США) составлял 8,1%, при уровне загрязнения 0,150- 0,349 мг/м3 он был равен 12,0%, в районах с загрязнением воздуха выше 0,350 мг/м3 он возрастал до 43,8%. Японские исследователи также показали, что бронхиальной астмой наиболее часто заболевают в районах со значительным загрязнением атмосферного воздуха сернистым газом, причем частота случаев астмы возрастает прямо пропорционально росту концентраций сернистого газа. Загрязнение атмосферного воздуха таит в себе не только угрозу здоровью людей, но и наносит большой экономический ущерб. Так, ядовитые вещества воздуха отравляют домашний скот во Флориде, обесцвечивают краску на стенах домов и корпусах автомашин в Линкольне (штат Мэн), под их влиянием гибнут сосны, растущие в 60 милях от Лос-Анджелеса, а также фруктовые сады в Техасе и Иллинойсе, шпинат на юге Калифорнии. За загрязнение воздуха американцы ежегодно расплачиваются миллиардами долларов.

Согласно оценкам Агентства по охране окружающей среды экономические потери от смертности и заболеваний в связи с загрязнением воздушной среды в США составляют ежегодно 6 млрд. долларов. Эта цифра включает и ущерб от утраты трудоспособности, а также расходы на соответствующее медицинское обслуживание. Ущерб, наносимый ежегодно экономике страны в результате коррозии и разрушения материалов, гибели растений и сокращения урожайности сельскохозяйственных культур, оценивается в 4,9 млрд. долларов. Общий экономический ущерб от загрязнения атмосферы в США составляет, по расчетам Агентства по охране окружающей среды, 16 млрд. долларов в год

Похожие работы:

  1. • Загрязнение атмосферы на территории России
  2. • Меры борьбы с загрязнением атмосферы
  3. • Проблемы загрязнения окружающей среды. Загрязнение атмосферы
  4. • Загрязнение атмосферы
  5. • Загрязнение атмосферы
  6. • Характеристика загрязнения атмосферы
  7. • Загрязнение атмосферы Кемеровской области
  8. • Загрязнение атмосферы Астраханской области
  9. • Загрязнение атмосферы (Контрольная)
  10. • Экологические последствия загрязнения атмосферы
  11. • Источники загрязнения атмосферы
  12. • Загрязнение атмосферы
  13. • Загрязнение атмосферы. Лекарственные травы
  14. • Загрязнение атмосферы передвижными транспортными средствами
  15. • Анализ критериев опасности загрязнения атмосферы для растений
  16. • Атмосфера - внешняя оболочка биосферы. Загрязнение атмосферы
  17. • Микроэлементный состав лишайников как индикатор загрязнения ...
  18. • Микроэлементный состав лишайников как индикатор загрязнения ...
  19. • Разработка программного модуля для нахождения ...
Рефетека ру refoteka@gmail.com