Маммедов А.Б., Баширов Р.И., Бакинский Государственный Университет, Азербайджан.
В изучении природы можно различать два этапа: донаучный и научный этапы.
Донаучный или натурфилософский этап охватывает период начиная от античного периода до установления экспериментального естествознания XVI-XVIIвека. Представления о природе в этот период носили чисто натурфилософский характер, наблюдаемые природные явления объяснялись на основе смонтированных умственным путем философских принципов. Самым большим достижением естествознания в этот период явилась, считавшаяся дискретивной концепцией строения материи, учение античного атомизма. Согласно этому учению, все тела формируются из считающихся самыми маленькими частицами материи атомов. Согласно античному атомизму предоставившему первичную теоретическую модель атома, атомы являются невидимыми, неделимыми и непроницаемыми микрочастицами, отличаются друг от друга только количественными отношениями – формой, размерами, строем.
Античный атомизм, который объяснял целое как механическую совокупность формирующих его частей, явился первой теоретической программой.[1] Исходными понятиями атомизма были атом и вакуум. Согласно создателю этого учения Демокриту, вакуум необходим для объяснения механического размещения тел в пространстве и их деформации (сжатие, удлинение и другие) под влиянием внешних сил. Атомизм объяснял сущность протекания природных процессов механическим взаимовлиянием атомов, их притяжением и отталкиванием.
Механическая программа объяснения природы, впервые выдвинутая в античном атомизме, реализовалась в классической механике, положившей начало изучению природы научным способом.
Современные научные представления о структурных уровнях формирования материи следует начинать с концепции классической физики об изучении микромира, которая зародилась в результате критического исследования представлений классической механики, которые применяются только в микромире.
Формирование научных представлений о строении материи относится к XVI веку, к периоду заложения Г.Галилеем основы механической картины мира. Галилей не только обосновал гелиоцентрическую систему Н.Коперника, открыл законы инерции движения и свободного падения, он также разработал новый методологический способ описания природы – научно-теоретический метод. Сущность этого метода заключается в том, что, отобрав целый ряд физических и геометрических характеристик природы, Галилей превратил их в предмет научного исследования. Отбор отдельных характеристик объекта предоставил возможность созданию теоретических моделей и проверке их на основе научного эксперимента. Сформулированная Галилеем методологическая концепция сыграла решающую роль в утверждении классического естествознания.
Опираясь на исследования Галилея, И.Ньютон разработал механическую научную теорию движения земных и небесных тел по одним и тем же законам, рассматривая природу как сложную систему. Разработки Ньютона и его последователей послужили основой для создания дискретной (корпускулярной) модели реальности в рамках механической картины мира. Здесь материя рассматривается как материальная субстанция, сформированная из отдельных атомов или корпускуляров, свойства массы и веса приписываются неделимым, неизменным, непроникновенным атомам.
Ньютон сформулировал важную характеристику мира – трехмерное пространство, находящееся в обязательно неизменном и долговечном покое эвклидовой геометрии. Это пространство однородно и изотропно. Причина однородности пространства заключалась в неизменности геометрических свойств во всех точках, причиной изотропности – неизменность этих свойств во всех направлениях. Ньютон, отделив время от материальных процессов, также абсолютизировал его и отождествлял его с одной из метрических характеристик времени – продолжительностью. Во взглядах Ньютона единомерное абсолютное время, описываемое, как равноскоростное течение нематериальной субстанции от прошлого к настоящему, обладает беспрерывной структурой, однородно, изотропно, бесконечно и универсально. Ньютон объяснял однородность времени ковариантивностью законов движения относительно превращений Галилея, изотропность – ковариантивностью законов движения относительно временной инверсии.
Ньютон рассматривал движение как перемещение в пространстве, происходящем по всей протяженности беспрерывной траектории на основе законов механики, и выдвинул предположение о том, что физические процессы могут соотноситься с перемещением под влиянием сил притяжения, считающихся силами влияния на дальние расстояния, которые присущи материальным точкам.
Французский ученый и философ Р.Декарт, выступая со своей дуалистической концепцией об отношении материи и мышления, обосновывал механическое объяснение природы философской стороной и показал, что можно объективно объяснить мир, не принимая во внимание человека-наблюдателя. Звучащая в такт с ньютоновскими взглядами эта вера сыграла большую роль в направленности развития естественных наук в этот период.
В отличие от натурфилософии механический подход к описанию природы оказался необыкновенно продуктивным. Вслед за механикой Галилея-Ньютона оформились другие области физики, сопровождаемые небывалыми достижениями, в том числе гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других теорий. Однако в этот период оставались две области, которые не могли быть объяснены в рамках механической картины мира – оптика и электромагнитные явления.
Основы оптики разработал Ньютон. Он выдвинул корпускулярную теорию света и открыл явление дисперсии света. Согласно логике своего учения Ньютон считал свет потоком материальных частичек-корпускуляров и предполагал, что каждый светящийся предмет излучает мелкие частицы, которые движутся согласно законам механики и попадая на глаза порождают чувство зрения. На основе теории Ньютона было дано объяснение законам отображения и преломления света.
Голландский ученый Х.Хуигенс попытался объяснить оптические явления принципиально другим путем – на основе сформулированной им же теории волны. Теория волны света с целью создания аналогии между механической волной, распространяющейся на поверхности воды, и распространяющимся в воздухе светом выдвигала представления о заполнении эфиром всего пространства считающегося средой упругости. Согласно этому представлению свет рассматривается как распространение волн эфира в среде и предполагается, что каждая точка эфира, колеблясь в вертикальном направлении, создает картину волны, меняющей свое место от одного мгновения к другому в пространстве колебания всех его точек. Х.Хуигенс, исходя и теории волны, с успехом объяснил также отражение и преломление света. Однако, в этот период был известен один факт, направленный против теории Хуигенса. Физикам было известно, что механическая волна может преодолеть появившиеся на ее пути препятствие. Хотя луч света, распространяющийся прямолинейно, не может преодолеть препятствие, опыты показали, что позади непрозрачного тела, на который направлен луч света, образуется его тень с резкими границами. Однако обнаруженное вскоре явление дифракции света положило конец всем сомнениям в теории Хуигенса. Таким образом, влияние Ньютона в этот период было столь велико, что не смотря на то, что его корпускулярная теория не смогла объяснить явление дифракции, она была беспрекословно принята.
Теория волны света в начале XIX века была вновь выдвинута английским физиком Т.Юнгом и французским ученым О.Д.Френелем. Т.Юнг на основе теории волны сумел объяснить явление интерференции, то есть явление усиления или ослабления друг другом во взаимном порядке когерентных волн света, встречающихся в любой точке пространства. Согласно теории волны усиления или ослабления друг другом когерентных волн света зависит от совпадения друг с другом выпуклостей или впадин встречающихся волн.
Явление интерференции дифракции объяснялись только в рамках теории волны и не находили никакого своего объяснения в рамках корпускулярной теории света.
В этот период существовала другая область физики, которая адекватно не считалась с механическими законами – область электромагнитных явлений. Опыты английского естествознателя М.Фарадея и теоретические исследования физика К.Максвелла перевернули с ног на голову существующие представления о существовании единственного вида материи - дискретного вещества и заложили основу электромагнитной картины мира. Датский естествознатель Х.Эрстед, изучавший магнитное влияние электрического тока в 20-х годах прошлого века открыл явление электромагнетизма. Продолжавший исследования в этом направлении М.Фарадей доказал на чувствительных опытах, что изменение магнитного поля, проходящего через замкнутый контур, порождает течение индукции в этом контуре. Это явление, которое открыло новый период в истории физики, получило название электромагнитной индукции. Обладающий талантом великого исследователя и широким воображением Фарадей на основе анализа результатов реализованных в жизнь физических опытов выдвинул понятие «силовые линии» и с его помощью дал точное описание меняющегося от точки к точке влияния электрических сил в «силовом поле». Опираясь на представления о силовых линиях он вскоре выдвинул гениальную мысль о том, что в природе существует родственная связь между электричеством и светом. Исходя из идеи единства света и электричества Фарадей в новой оптике, которую он хотел создать и обосновать экспериментальным путем начал рассматривать свет как колебание в силовом поле и в результате пришел к заключению о том, что учение об электричестве и оптика находятся во взаимной связи друг с другом и создают единую область.
К.Максвелл, доказывавший исследования М.Фарадея в области электромагнетизма, подошел к его идее о магнетизме и электричестве с математической точки зрения и выразил ее математическими формулами. В понимании Фарадея понятие «силовое поле» было только вспомогательным математическим понятием. К.Максвелл же придал этому понятию физическое значение и рассматривал его как независимую реальность. Он по этому поводу писал: «Электромагнитная область – часть пространства, содержащая и окружающая находящиеся в состоянии электричества или магнетизма тела».[2] Максвелл на основе объединения обнаруженных экспериментальным путем законов электромагнитных явлений и явления электромагнитной индукции чисто математическим способом создал систему дифференциальных уравнений, описывающих электромагнитные процессы. Давший полное описание электромагнитных явлений в границах их применения Максвелл создал систему уравнений точь-в-точь как система механики Ньютона – завершенную, адекватную, совершенную с точки зрения логики. Из этих уравнений вытекал вывод о том, что вполне возможно существование электромагнитного поля, «не связанного» ни с каким электрическим зарядом. Согласно дифференциальным уравнениям Максвелла вихревые электрические и магнитные поля определяются не их изменением, а изменением другого поля с течением времени: интенсивность вихревого электрического поля определяется изменением с течением времени магнитного поля и наоборот, интенсивность вихревого магнитного поля определяется временными изменениями электрического поля .
Поэтому, если в какой-либо точке пространства существует меняющихся с течением времени магнитное поле, значит вокруг этой точки создается меняющееся с временем (вихревое) электрическое поле и наоборот. В результате этого процесса происходит постоянное изменение векторов электрическое и магнитного полей, уже не связано с электрическим зарядом и рассматривается в пространстве как отдельное от него независимое существование. Теоретические вычисления показали, что скорость рассеивания электрического поля в пространстве равна скорости волны по своей природе являются электромагнитными волнами. Выдвинутая в 1945 году М.Фарадеем и обоснованная в 1862 году К.Максвеллом идея о едином происхождении света и электричества в 1888 году была подтверждена немецким физиком Г.Герцем экспериментально. В опытах между заряженными шариками, получались электромагнитные волны и эти волны, попадая на виток кругового провода, создают в нем ток. Герц, изучавший отражение и интерференцию электромагнитных волн, доказал существование их волнообразного процесса и измерил длину волн. Герц, измерив скорость электромагнитных волн на основе скорости колебаний, заметил, что их скорость равна скорости света. Опыты Герца непосредственно утвердили истинность гипотезы Максвелла. После опытов Герца понятие «поле» в физике стало не вспомогательным математическим сочетанием, а было утверждено как объективно существующая физическая реальность. Таким образом, был обнаружен новый вид поля, материал нового качества присущий ей.
Таким образом, в конце XIX века физика пришла к выводу о том, что материя существует в двух формах: дискретное вещество и непрерываемое поле.[3]
Вещество – вид материи, обладающий покоящейся массой или механической массой. Вещество состоит из атомов и существует в 7 агрегатных состояниях: твердое, жидкое, газ, плазма, эпиплазма, нейтрон, вакуум.
Другой вид материи – поле – это материальная среда, связывающая тела друг с другом и переносящая влияние с одного тела на другое. В качестве примеров физических полей можно назвать гравитационное (притяжения) поле, электрическое поле, магнитное поле, электромагнитное поле, поле ядерных сил, различные мезонские поля и другие.
Вещество макроскопического уровня (простые тела) и поле (гравитационное поле, электромагнитное поле) в основном отличаются следующими особенностями.[4]
1. Вещество и поле отличаются покоящейся массой. В случае, когда частицы вещества обладают покоящейся массой, частицы поля обладают только движущейся массой.
2. Вещество и поле отличаются сущностью корпускуляров волны: вещество дискретно, сформировано из атомов; поле беспрерывно.
3. Вещество и поле отличаются степенью проникновения: вещество проникает мало, наоборот поле полностью проникает.
4. Вещество и поле отличаются закономерностями движения. Скорость движения частиц вещества разнообразна, в случае когда они могут пребывать в полном покое и до приобретения скорости света, частицы поля имеют стабильную скорость, в вакууме их скорость равна скорости света.
5. Вещество и поле отличаются степенью самостоятельности: Частицы вещества характеризуются конечной степенью самостоятельности, частицы же поля – бесконечной степенью самостоятельности.
6. Вещество и поле отличаются степенью концентрации массы и энергии: эта концентрация велика в веществе, и мала в поле.
Революционные открытия, произошедшие в физике в конце XIX - начале ХХ веков доказали, что физическая реальность стала единой, что между веществом и полем не существует обязательной границы, непреодолимого препятствия: точь-в-точь как и вещество поле обладает свойством корпускулярности, вещество же точь-в-точь как и поле обладает свойством волновости.
При переходе физики от изучения макромира к изучению микромира коренным образом изменились представления классической физики о веществе и поле. Изучая микрочастицы, ученые натолкнулись на такую картину, которая казалась парадоксальной с точки зрения классической физики: один и тот же объект демонстрирует и свойство волновости и свойство корпускулярности. Это явление получило название корпускулярно-волнового дуализма.
Первый шаг в области изучения противоречивой природы частиц сделал немецкий ученый Макс Планк. Все началось с появления в физике в конце XIX века такой загвоздки, как «ультрафиолетовая катастрофа». Согласно расчетам, производимым на основе формул классической электродинамики, интенсивность излучения только темных предметов безгранично увеличивалась. Это противоречило практике. Из исследований, проводимых по излучению тепла, М.Планк пришел к выводу о том, что в процессе излучения энергия излучается не в произвольном количестве и беспредельно, а неделимыми порциями – квантами.[5] Энергия кванты определяется числом колебаний, соответствующих излучению (V) и универсальной постоянной, называемой постоянной Планка: E=hn. Как отмечал Планк, приход в физику идеи кванта пока нельзя связывать с созданием квантовой теории, однако 14 декабря 1900 года – дата появления формулы квантовой энергии, стала датой заложения основы этой же теории, днем зарождения атомной физики и началом нового периода в естествознании.
Первым физиком, который встретил открытие влияния элементарного кванта с высоким духовным подъемом и развил его в творчестве. Был А.Эйнштейн. Он в 1905 году, применяя идею квантитативности излучения и поглощения энергии во время теплового излучения к явлениям излучения вообще, заложил основу квантовой теории. Эйнштейн, применяя гипотезу Планка n световым явлениям пришел к выводу о том, что необходимо принять корпускулярную структуру света. Квантовая теория света или теория фотона Эйнштейна подтвердила, что наряду с тем, что свет является волновым явлением распространения в мировом пространстве, он также обладает беспрерывной структурой. Свет можно рассматривать как неделимые энергетические порции, световые кванты и фотоны. Энергия фотонов определяется постоянной Планка (h) и скоростью соответствующих колебаний (n). Монохроматический свет различных цветов (красный, желтый, зеленый, синий, фиолетовый и другие) состоят из световых квантов различной энергии. Идея Эйнштейна о световых квантах предоставила возможность понять и наглядно описать фотоэлектрическое явление, сущность которого состоит в отделении электрона от световой материи. Эксперименты показали, что существование фотоэффекта определяется не интенсивностью падающей на металл световой волны, а частотой света. Если предположить, что каждый фотоэлектрон отделяется одним фотоном, становится ясным, что эффект происходит в том случае, когда энергия фотона становится достаточно большой, чтобы разорвать взаимную связь материи и электрона.
Спустя 10 лет после зарождения толкования фотоэлектрического эффекта в подобном раскладе он был подтвержден опытами американского физика Р.Э.Милликена. Открытое в 1923 году американским ученым А.Х.Комптоном явление (»Эффект Комптона») окончательно подтвердило квантовую теорию. В общем, квантовая теория света – одна из теорий физики, которая неоднократно была подтверждена опытами. Однако таким образом волновая природа света была окончательно подтверждена опытами по явлениям интерференции дифракции. В связи с этим создалась такая парадоксальная ситуация: стало известно, что свет в одно и то же время ведет себя и как волна и как корпускуляр. В этом случае, фотон выступает как специфический вид корпускуляра. Основная характеристика дискретности фотона, особая порция энергии (E=hn) определяется характеристикой чисто волны – частотой (n). Как и все великие природно-научные открытия квантовая теория света приобрела существенный мировоззренческий, теоретическо-познавательный характер.
Представления о фононах-квантах электромагнитного поля стали большим подарком развитию квантовой теории. Поэтому А.Эйнштейн считается одним из великих создателей квантовой теории. Теория Эйнштейна, развивая взгляды М.Планка, предоставила возможность датскому ученому Н.Бору разработать новую модель атома.
В 1913 году датский ученый Нильс Бор, применяя принцип квантитативности к решению проблем строения атома и характеристики спектра атома, устранил противоречия в созданной Резерфордом модели атома. Предложенная в 1911 году Резерфордом модель атома напоминала солнечную систему: в центре ее было расположено ядро, вокруг него по круговым орбитам вращались электроны. Ядро было положительно заряжено, электроны обладали отрицательным электрическим зарядом. Силы притяжения в Солнечной системе в атоме заменялись электрическими силами. Положительный электрический заряд ядра атома, который равнялся порядковому номеру элемента в периодической системе Менделеева, уравновешивался отрицательным электрическим зарядом электронов. Поэтому атом являлся электрически нейтральным.
Анализ планетарной модели атома в рамках классической электродинамики содержал два невозможных противоречия. Первое из этих противоречий состояло в том, что электроны для того, чтобы не потерять свою устойчивость, должны вращаться вокруг ядра. Как известно, круговое движение характеризуется центробежным ускорением. Согласно законам классической электродинамики ускоренно движущиеся электроны должны непременно излучать электромагнитную энергию. Однако в этом случае электроны за очень короткий промежуток (10–8 секунды), расходуя свою энергию на излучение, должны упасть на ядро. Это нам хорошо известно из повседневного опыта. Если бы электроны упали на ядро, тело, состоящее из них, например стоящий перед нами стол, изменил бы свои размеры в 10 тысяч раз.
Второе противоречие планетарной модели атома связано с тем, что постепенно приближающийся в результате излучения к ядру электрон для беспрерывного изменения своей частоты спектр излучения атома должен быть целым. Опыт же показывает, что спектр излучения атома линейный. Другими словами, планетарная модель атома Резерфорда не уживаются с электродинамикой Максвелла.
Квантовая теория атома, которая могла бы решать оба эти противоречия (так называемая «теория Бора о строении атома») была выдвинута Н.Бором. Содержание этой теории формировалось из следующих положений, объединенных в единую, целую идею:
закономерности линейного спектра атома водорода;
ядерная модель атома, предложенная резерфордом;
квантовый характер излучения и поглощения света.
Выдвинутая Н.Бором для объяснения структуры атома новая гипотеза опиралась на три не уживающиеся с принципами классической физики постулата.
Первый постулат: в каждом атоме существует несколько стационарных состояний электронов (стационарные орбиты). Электромагнитные волны, движущиеся по стационарным орбитам атома, не излучаются, не поглощаются.
Второй постулат: атом только тогда излучает или поглощает порцию энергии, когда электрон переходит из одного стационарного состояния в другое.
Третий постулат? Электрон движется вокруг ядра по таким круговым стационарным орбитам, на которых в момент импульса электрона постоянная Планка полностью уподобляется относительной 2p: .
где m, n, r – соответственно масса электрона, скорость и радиус стационарной орбиты, по которой он движется, n=1,2,3… – целые числа.
Эти постулаты заложили начало новому периоду в изучении свойств и строения атома.
Первый постулат показал ограниченность классической физики, а в особых случаях неприемлемость ее законов к стационарным состояниям. Не так легко согласиться с идеей о излучении энергии электронами на определенно отобранных орбитах. В эту же минуту возникает вопрос: «Почему?» Однако в связи с тем, что этот постулат был адекватен результатам экспериментов, физики вынуждены были его принять. Из второго постулата вытекает вывод о том, что энергия атома излучается порциями. Переход электрона с одной орбиты на другую обязательно сопровождается целыми числами энергетических квантов. Так, состояние электронов в атоме характеризуется 4 квантовыми числами – главное, орбитальное, магнитное и орбитальное квантовое число.
Главное квантовое число (n) определяет энергию электрона в областях ядра, в сложных атомах порядковый номер слоя электронов. Орбитальное квантовое число (l) характеризует коррективы, привносимые в энергию атома одновременным движением атомов. Спиновое квантовое число (s) определяет специальный механический момент, характеризующий вращательное движение электронов.
Постулаты Бора объясняли устойчивость атома: в стационарных состояниях электрон без существования внешних причин не излучает электромагнитную энергию. Только теперь стало ясно, почему при неизменной оценке состояний атомы химических элементов не излучают электромагнитные волны.
Модель атома, предложенная Бором, не смотря на то, что дала точное описание атома водорода, состоящего из одного протона и одного электрона, и это описание довольно хорошо согласовывалось с фактами опыта, позднее применение этой модели к многоэлектронным атомам столкнулось с определенными трудностями. Как бы точно ни старались теоретики описать движение и орбиту электронов в атоме, различие между теоретическими результатами и данными экспериментов оставалось большим. Однако в ходе развития квантовой теории стало ясно, что эти различия связаны в основном со свойством волновости у электронов. Волновая длина электрона, движущегося по круговой орбите в атоме, входила в состав измерений атома и составляла приблизительно 10–8 см. Хотя движение частиц, присущих какой-либо системе, только в том случае можно достаточно точно описать как механическое движение материальной точки по замкнутой орбите, когда волновая длина частицы по сравнению с системой изменений будет настолько мала, что не будет приниматься во внимание. Другими словами, нужно принять во внимание, что электрон – не точка, не крепкий «шарик», у него есть внутренняя структура, которая может меняться в зависимости от присущих ему состояний. Однако в этом случае детали внутренней структуры электрона остаются не известными.
Здесь становится ясным, что принципиально не возможно представить структуру атома на основе представлений об орбитах предположительно точечных электронов, поэтому внутренние орбиты атома стали идеальными объектами, они даже не существуют в действительности. Согласно их волновой природе электроны и их электрический заряд якобы неравномерно распределены по атому и обладают по времени в некоторых точках малой, в других – большей плотностью электронов.
Описание распределения плотности заряда электрона внутри атома дано в квантовой механике: в некоторых точках плотность заряда электрона достигает максимальной отметки. Кривая, объединяющая точки максимальных отметок плотности заряда электрона, формально называется орбитой электрона. Вычисленная в теории Бора траектория атома водорода совпала с кривой, проходящей через точки максимальных отметок средней плотности заряда, что в свою очередь полностью соответствует экспериментальным данным.
Теория Бора словно очерчивает линию границы первого этапа развития современной физики. Атомная теория Бора на основе добавления небольшого количества новых рассуждений была последней попыткой описать структуру атома на основе классической физики. Постулаты Бора показали, что классическая физика не способна объяснить подобные результаты самых простых опытов, связанных со структурой атома. Чуждые классической физике постулаты Бора, нарушив ее цельность, в свою очередь смогли объяснить лишь небольшую область экспериментальных данных. Поэтому, рождается представление о том, что постулаты Бора, открывшие новые, до этого времени неизвестные науке свойства материи, в то же время частично, не полностью отражали их. Теория Бора, и его постулаты которые не могли быть применены к сложным атомам, были бессильны в объяснении существенных явлений физики также как дифракция и интерференция не могли объяснить волновые свойства света и материи. На многие вопросы, связанные со структурой атома, были получены ответы только в результате развития квантовой механики. Было выяснено, что Боровскую модель атома нельзя буквально понимать такой, какой была прежде. Процессы атома неправильно было бы наглядно описывать в формах механических моделей, созданных по аналогии с явлениями макромира. Вскоре стало известно, что точно определенные для макромира представления о времени и пространства непригодны для описания микрофизических явлений. Постепенно физики-теоретики превратили атом в еще более абстрактную систему - совокупность ненаблюдаемых уравнений.
Элементарные частицы и проблема их структурности.
Проблема структуры материи была одной из актуальных проблем, всегда стоящих в центре внимания естествознания, особенно в передовой ее области – физике. Выпукло отражая взаимосвязь философии и естествознания, эта проблема имеет не только философское, но и практическое и производственно-техническое значение. Для этого достаточно сказать, что формирующие важный этап научно-технической революции современные физические теории, в том числе квантовая механика и теория элементарных частиц тесно связаны с открытием и использованием ядерной энергии, заложившей основу «атомного века».
Современная физика завоевала большие достижения в области изучения строения и свойств материи. Однако, несмотря на это в области строения и свойств материи у природы много еще не открытых секретов. Проникая в глубины теоретической познавательной материи и обнаруживая новые уровни ее строения, мы все больше верим этому. Физика на современном этапе своего развития вступила на такой полный научных открытий путь, который ведет ее вперед в направлении еще большего овладения силами человеческой природы. Однако физика не сразу встала на этот путь. Прежде чем завоевать определенные достижения на этом пути она прошла длинный и сложный путь развития, устранила за этот период натурфилософские метафизические представления о строении и свойствах материи, присущих одной из эпох.
Современное учение о строении материи начало зарождаться на основе устойчивых практических фактов, начиная только в конце XIX – начале ХХ веков. Не останавливаясь на успехах научного познания, это учение, которое обогащалось и развивалось, объединяло в себе органически связанные друг с другом четыре стороны: прежде всего это учение – атомистическое учение, потому что согласно этому учению каждое тело, каждая физическая область формируется из микрочастиц и микрообластей, во-вторых это учение – статистическое учение, потому что оно, основываясь на статистические представления, определяет свойства и закономерности движения микрообъектов, их взаимные влияния и превращения статистическими законами, в-третьих, это учение – квантовая теория, так свойства и закономерности движения микрочастиц качественно отличаются от определяемых классической физикой свойств и закономерностей движения микроскопических тел, наконец, это учение - релятивистское учение, потому что в этой теории связь пространства, времени и материи описывается посредством релятивистской теории – теории относительности.
Не останавливающийся на области познания строения и свойств материи развивающееся человеческое познание обнаружило ее сложность строения и неисчерпаемость свойств и подтвердило это новыми фактами. Самым большим достижением, завоеванным в области изучения строения материи является переход о уровня атома к уровню элементарных частиц. Первой элементарной частицей обнаруженной в конце XIX века, стал электрон, в первой половине ХХ века были обнаружены фотон, протон, позитрон, нейтрон, нейтрино и другие элементарные частицы. В настоящее время элементарные частицы считаются самыми маленькими «элементарными» частицами среди микрообъектов, окружающих атомы, молекулы. После Второй Мировой войны благодаря использованию современной экспериментальной техники и в первую очередь сильных ускорителей, создающих условия высокой энергии и гигантской скоростей, было обнаружено существование более 300 элементарных частиц.[6] Одна часть элементарных частиц была обнаружена в эксперименте, другая часть (резонансы, кварки, виртуальные частицы) считались теоретическими.
Что выражает понятие «элементарная частица» в современной физике? Прежде чем ответить на этот вопрос необходимо отметить присущую естественно-научному понятию сторону о том, что как и все физические понятия , понятие «элементарность» является относительным, на разных этапах развития научного познания приобретает различное значения. До середины 60-х годов нашего века представления об элементарных частицах напоминали один из видов взглядов на атомы, высказанных Демокритом. Однако эти первые наивные представления об элементарных частицах просуществовали не долго: вскоре было доказано, что неизменных, непроницаемых, бесструктурных частиц нет. Под влиянием реальных фактов понятие «элементарность» подверглось изменению и вообще все, что можно назвать «элементарной частицей» приняло неопределенный характер. В настоящее время целый ряд авторов справедливо отмечают, что понятие «элементарность» используется в двух значениях: с одной стороны как синоним самого простого, с другой стороны как субатомальной частицы, то есть показатель фундаментальности. Принимая во внимание каждые два значения, выражаемые понятием «элементарная частица», мы можем сказать в полном и широком смысле слова, что называемые «элементарными» частицами являются такие материальные образования, которые состоят из других известных науке частиц и во всех процессах как единое целое находятся во взаимном влиянии, которые включают в себя характеризующие их физические величины – масса, заряд электрона, спин, парность, одиночность, изотропный спин и другие начальные параметры, не могущие быть теоретически вычисленными и могущие быть точно применены к физической теории только экспериментально.[7]
Физика элементарных частиц – это, выражаясь словами ученого академика И.Б.Таммина, основная область «ведущая современную физику к кануну существенных изменений и революционных переворотов». Элементарные частицы образно уподобили «неизученным планетам». Неслучайно, что заслуживающие внимания открытия физики были сделаны после 60-х годов именно в этой области. Для того, чтобы составить представление о достижениях в этой области, достаточно сказать, что за последние 25-30 лет число элементарных частиц увеличилось от 35 до 340 и предвидится дальнейшее увеличение этой цифры в будущем.[8] Особенно начиная с 30-х годов нашего века кроме ранее известных электрона, фотона и протона были обнаружен дополнительно много новых частиц: нейтрон, позитрон, нейтроны различной массы и заряда (также нейтральные) мезоны, гипероны и так называемые их соответствующие античастицы. Увеличение цифры выражающей число «элементарных» частиц, показало потерю своего бывшего значения понятия «элементарность». Потому что все эти частицы не могли выполнить функцию последних «кирпичиков» в мировом здании. Находясь в таком положении, элементарные частицы старались объяснить множество и разнообразие, классифицировать с точки зрения обеспечения развития, классифицировать с точки зрения обеспечения развития достижений научного познания в этой области. Осуществление таких классификаций связано с описанием свойств и основных характеристик элементарных частиц.
В настоящее время определено богатство свойств известных наук элементарных частиц. Причем у многих этих свойств нет аналогов среди известных свойств макроскопических объектов.[9] Основные характеристики элементарных частиц, описанных абстрактным языком математики, следующие: масса, заряд, средний период существования, спин, изотропный спин, одиночность, парность, лептиновый заряд, заряд бориона, взаимное влияние. Постараемся дать характеристики этим свойством элементарных частиц.
Одно из самых главных свойств, характеризующих элементарные частицы – масса. Отметим, что масса покоя элементарных частиц определяется относительно массы покоя электрона (me=9,1×10–31 кг). В настоящее время более широко распространена классификация элементарных частиц в зависимости от величины их массы покоя. Согласно этой классификации все элементарные частицы длятся на 4 группы:
1) легкие элементарные частицы – лептоны. Сюда входят электрон, нейтрино и их античастицы – позитрон, антинейтрино, а так же положительные и отрицательные мю-мезоны. За исключением последних лептоны перед вступлением во взаимное влияние стабильны и в свободном состоянии существуют более 1020 лет. Мю-мезоны же не являются стабильными частицами, прожив две стомиллионные секунды распадаются, превращаются в электрон, нейтрон и антинейтрон. Масса покоя нейтрино и антинейтрино очень мала, взятые вместе они равны 0,0005 части массы электрона.
2) частицы средней массы – мезоны. Сюда входят положительные, отрицательные и нейтральные пи-мезоны с массой 270 me – масса покоя, и некоторые виды кА-мезоны с массой 970 me. Все мезоны нестабильны, обладают очень маленьким периодом существования (до 7-19 секунд).
3)тяжелые частицы – нуклоны. Сюда входят протон, нейтрон и их античастицы – антипротон и антинейтрон. Протон и антипротон стабильны, нейтрон и антинейтрон – нестабильные частицы, обладают относительно длинным периодом существования – 17 минут.
4) гипероны – самые тяжелые частицы. В эту группу входит очень много частиц и античастиц. Масса гиперонов от 2182 me до 2585 me. Срок существования всех гиперонов одинаков – 10–10 секунды.
Иногда нуклоны и гипероны объединяют в единую группу под названием барионы. В эту группу также можно включит образующий особую группу и являющийся квантом электромагнитного поля фотон. Несмотря на то что подобная классификация элементарных частиц не раскрывает объединяющие их основные закономерности, в любом случае она предоставляет возможность изучить целый ряд свойств и превращений частиц и даже предсказать существование некоторых частиц.
Необходимо отметить, что строение материи и неисчерпаемость свойств находят себя не только в постепенном увеличении числа известных частиц, но и также в менее важном факте взаимного превращения частиц «элементарной» материи. Определение общности (дуализма) в свойствах частиц материи поля также привело к мысли об их взаимном превращении. Уже спустя некоторое время после открытия позитрона (1932-й год) стало известно, что пары материи электрон-позитрон, в определенных условиях объединяясь, первращаются в кванты света – фотоны, являющиеся частицами электромагнитного поля, и образуются из них. Затем стало известно, что подобное взаимное превращение происходит не только между являющимися двумя видами материи частицами вещества и поля, но и также между самими частицами вещества. В результате стало ясно, что частицы материи не неизменны и не просты, они могут превращаться друг в друга в процессе взаимного влияния, могут образовываться и поглощаться со стороны различных комплексов частиц.
Другое важное свойство элементарных частиц – электрический заряд, отражающий их связь с электромагнитным полем. Одна часть известных частиц обладает положительным, другая часть – отрицательным зарядом, часть частиц не имеет электрического заряда. Кроме фотона и обоих мезонов каждой частицы соответствует античастица противоположного заряда. Причина того, что различные элементарные частицы не имеют обязательно одинаковых показателей электрического заряда и что некоторые элементарные частицы лишены электрического заряда, нам пока не известна. Очень возможно, что это проявление еще не обнаруженных глубоких внутренних закономерностей элементарных частиц общности в структуре частиц.[10]
Одна из существенных физических характеристик элементарных частиц – период их существования.
Согласно периоду существования элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансные) частицы. Стабильных частиц пять: фотон, электронный нейтроно, мьонный нейтроно, электрон и протон. В структуре макротел стабильные частицы играют решающую роль. Остальные частицы не стабильны. Эти частицы, расположенные в интервале среднего существования от 10–10 до 10–24 секунды, в конечном счете делятся на другие частицы. Квазистабильные элементарные частицы с средними периодами существования 10–10 до 10–24 секунды называются резонансами. Из-за маленького периода существования эти частицы не могут покинуть атом или ядро атома и распадаются на другие частицы. Существование резонансных частиц было только теоретически вычислено и заметить их в реальном эксперименте пока невозможно.
Еще одна важная характеристика частиц – спин. Спин – это совершенно новое свойство частиц присущее только им и не имеющее аналога в макроскопической физике, описание его как момента механического импульса является само по себе грубым и неточным. Мы можем смотреть на спин как на особое «вращение», аналогичное вращению частицы в макромире. Спин элементарных частиц измеряется единицами и его невозможно ни увеличить, ни уменьшить. Спин определяет общий характер типа входящей в частицу статистики (статистика Бозе-Эйнштейна и Ферми-Дирака) и учения описывающего ее движение. Спин протона, нейтрона и электрона равен ½-э, спин фотона – 1-э. Частицы с половинчатым спином подчиняются статистике Ферми-Дирака и называются фермионами, частицы с полным спином подчиняются статистике Бозе-Эйнштейна и называются бозонами. Известно, что в одной и той же ситуации, когда внезапно фермион уже не может быть возможным, в этой же ситуации может быть несколько бозонов. Таким образом, фермионы ведут себя как «индивидуалисты», бозоны – как «коллективисты». Несмотря на то, что это свойство внутренней природы элементарных частиц еще полностью не изучено, в настоящее время определена связь этих свойств со свойствами симметрии и асимметрии пространства.
Спин рассматривают как проявление степени внутренней самостоятельности в движении элементарных частиц. Таким образом, каждая элементарная частица характеризуется 4 степенями самостоятельности: три из них – степени внешней свободы, выражающие перемещение частицы в пространстве; одна – внутренняя степень свободы спина. Существование спина также говорит о сложной структуре частицы и определенном типе внутренних связей.
Одним из важных свойств элементарных частиц также является магнитный момент. Это свойство встречается как у заряженных, так и у беззарядных частиц. Предполагается, что определенная часть магнитного момента заряженных частиц обусловлена их расположением в пространстве. Например, предполагается, что магнитный момент протонов и нейтронов обусловлено созданным током, собравшимся вокруг них облаками мезонов. Давайте шире рассмотрим эту проблему.
Известно, что несмотря на то, что у нейтрона нет электрического заряда, у него есть в определенном количестве магнитный момент. Это показывает, что магнитный момент частицы не должен в основном определяться ее внутренней структурой. В данном случае как должно объясняться создание магнитного момента нейтрона? Предполагается, что в связи с тем, что нейтрон – нестабильная частица, он диссоциирует на протон и на положительный мезонквант поля мезона, и приблизительно 25% своего существования находится в таком положении. Поэтому нейтрон приобретает 25% магнитного момента положительного пимезона. Наблюдаемый в эксперименте магнитный момент нейтрона очень близок к числу, вычисленному теоретически.
Элементарные частицы кроме электрического заряда характеризуются дополнительно зарядами лептона и бариона. Лептоновский заряд всех лептонов принимается за +1, барионовский заряд всех барионов принимается за +1. Парность – также одна из важных характеристик элементарных частиц. Эта величина относится к правой и левой симметриям. В теории элементарных частиц координаты каждой частицы характеризуются волновой функцией y, которая может менять и не менять отметку этих координат как зеркальное отражение (x® –x, u® –u, z® –z). В первом случае функция y ассиметрична или одиночная функция, парность соответствующей частицы +1, во втором случае функция y симметрична или парная, но парность частицы принимается за –1.
Одной из очень важных характеристик элементарных частиц является также взаимное превращение, сопровождаемое излучением и поглощением квантов поля, соответствующего элементарным частицам в период взаимного влияния. Эти процессы, отличающиеся друг от друга интенсивностью протекания, обусловливают деление присущего элементарным частицам взаимного влияния на 4 вида: сильное, электромагнитное, слабое и гравитационное взаимные влияния.
Свойства элементарных частиц в основном определяются сильным электромагнитным и слабым взаимными влияниями.[11]
Сильные взаимные влияния происходят на уровне ядра атома, их составные части состоят из взаимного притяжения и отталкивания. Называемые силами ядра силы взаимного влияния распространяются на очень маленькое расстояние – 10–13 см. Сильные взаимные влияния прочно связывая в определенных условиях протоны и нейтроны, создают характеризующиеся высокой связывающей энергией материальную систему – ядро атома.
Несмотря на то, что электромагнитные взаимные влияния слабее сильных взаимных влияний примерно в 1000 раз, радиус их влияния близится к бесконечности. Этот вид взаимного влияния характерен для электрически заряженных частиц. Носитель электромагнитного взаимного влияния – свободный от электрического заряда и массы покоя фотона. Фотон является квантом электромагнитного поля. Посредством электромагнитных взаимных влияний, объединяя ядро атома и электрон в единую систему, создаются атомы, объединяясь, атомы создают молекулы. Электромагнитные взаимные влияния являются основными взаимными влияниями, сопровождающимися химическими и биологическими процессами.
Слабые взаимные влияния существуют между различными частицами. Слабые взаимные влияния, связанные с процессом спонтанного распада частиц, например, с процессом превращения нейтрона в ядре на протон, электрон и антинейтрино (n0® p+ + e– +n), может распространяться на очень маленькое расстояние (10–15 – 10–22 см). Согласно современному научному знанию большинство частиц только за счет слабых взаимных влияний нестабильны.
Гравитационные взаимные влияния – чрезмерно слабые силы, которые принимаются во внимание в теории элементарных частиц. Для сравнения отметим, что они слабее сильных взаимных влияющих сил в 1040 раз. Однако для ультрамаленьких расстояний (в порядке 10–33 см) и ультрабольших энергий гравитационные силы приобретают существенное значение, по своей силе они приобретают достойный вид для сравнения с другими видами взаимного влияния. В космических масштабах гравитационные взаимные влияния играют решающую роль. Радиус влияния этих сил неограничен.
В природе между элементарными частицами действует не один, а иногда в одно и то же время несколько типов взаимного влияния и свойства и структура частиц определяется общностью всех типов взаимного влияния, принимающих участие. Например, протон, входящий в адронный тип элементарных частиц, принимает участие в сильном взаимном влиянии, и в электромагнитном взаимном влиянии в связи с тем, что он является электрически заряженной частицей. С другой стороны, протон может зародиться в процессе b распада нейтрона, то есть в слабых взаимных влияниях, таким образом, он связан со слабыми взаимными влияниями. И наконец, протон как материальное образование, обладающее массой, принимает участие в гравитационных взаимных влияниях. В отличие от протона целый ряд элементарных частиц принимают участие во всех типах взаимного влияния, а только в некоторых их типах. Например, нейтрон в силу того, что он является, незаряженной частицей он не принимает участия в электромагнитных взаимных влияниях, а электрон и мю-мезоны – в сильных взаимных влияниях. Фундаментальные взаимные влияния являются причиной превращения частиц – их уничтожения и зарождения. Например, в результате столкновения нейтрона и протона образуются два нейтрона и один положительный пимезон.
Срок превращения элементарных частиц зависит от взаимовлияющей силы. Ядерные реакции, связанные с сильными взаимными влияниями, происходят за 10-24 – 10-23 секунды. Это, период когда элементарная частица переходит в частицу высокой энергии и приобретает скорость, близкую к скорости света, размеры порядка 10-13 см. Обусловленные электромагнитными взаимными влияниями изменения происходят за 10-21 – 10-19 секунды, обусловленные слабыми взаимными влияниями изменения (например, процесс распада элементарных частиц) – за 10-10 секунды.
К периоду протекания различных изменений, происходящих в микромире, можно подходить с точки зрения рассуждений о создающих взаимных влияниях.
Кванты взаимного влияния элементарных частиц реализуются посредством соответствующих этим частицам физических полей. Под полем в современной квантовой теории понимается система частиц, меняющихся в числе (половые кванты). Состояние, когда поле, и вообще, полевые кванты существуют с самой малой энергией, называется вакуумом. Частицы электромагнитного поля (фотоны) в вакууме в состоянии возбуждения теряют механические свойства, которые они содержат и которые присущи корпускулярной материи (например во время движения тело не чувствует трения).
Вакуум не содержит простые виды материи, однако, не смотря на это он не пустота в истинном смысле слова, так в вакуумном возбуждении возникают кванты электромагнитного поля – фотоны, реализующие электромагнитное взаимное влияние. В вакууме в дополнении электромагнитному полю существуют другие физические поля, в том числе пока не отмеченное в эксперименте по так называемым гравитонным экспериментам гравитационное поле.
Квантовое поле – совокупность квантов, носит дискретный характер. Так взаимные влияния элементарных частиц, их взаимные превращения, излучение и поглощение фотонов носит дискретный характер и происходит только в ситуации квантатирования. В результате возникает такой вопрос: в чём конкретно проявляется непрерывность поля, его континуальность? Как в квантовой электродинамике, так и в квантовой механике состояние поля описывается однозначно не наблюдаемыми реальными явлениями, а только посредством волновой функции, связанной с взаимным понятием. Квадрат модуля этой функции показывает возможность наблюдать рассматриваемые физические явления.
Основная проблема квантовой теории поля – описание различных типов взаимных влияний частиц в соответствующих уравнениях. Эта проблема нашла своё решение пока только в квантовой электродинамике, описывающей взаимные влияния электронов, позитронов и фотонов. Для сильных и слабых взаимных влияний пока не создана квантовая теория поля. В настоящее время эти виды взаимного влияния описываются не строгими методами. Хотя известно, что невозможно понять элементарные частицы если они не находятся в соответствующей физической теории, невозможно понять их структуру, определяемую структурой этих теории. Поэтому проблема структуры элементарных частиц еще до конца не решена.1 Современная физика в настоящий период доказывает существование сложных частиц, которые обладают внутренним строением частиц, считающихся «элементарными». Стало известно, что протон и нейтрон в результате происходящих в них виртуальных процессов подвергаются внутренним превращениям. В результате опытов, проведённых по изучению строения протонов, было определено, что протон, считавшийся до последнего времени неделимым, самым простым и бесструктурным в действительности является сложной частицей. В его центре находится плотное ядро, называющиеся «керн», оно окружёно положительными пи-мезонами.
Сложность строения «элементарных» частиц была доказана выдвинутой в 1964 году американским учёным Гель-Манном и независимо от него шведским учёным Цвейгом гипотезой кварков. Согласно этой гипотезе элементарные частицы с отношениями, характеризующимися сильными взаимными влияниями (адроны: протон, нейтрон, гипероны), должны формироваться из кварков-частиц, заряд которых равен одной третьей или двум третьим заряда электрона. Таким образом, теория показывает, что у формирующих частицы отмечённых кварков электрический и барионный заряд должен выражаться дробным числом. Действительно, называемые кварками частицы пока не обнаружены и остаются гипотетическими обитателями микромира на нынешнем уровне развития науки.
Таким образом, с одной стороны ясно, что элементарные частицы обладают особой структурой, с другой стороны, характер этой структуры ещё остаётся неясным. Из вышеприведенных данных становится ясным, что элементарные частицы вовсе не элементарные, они обладают внутренней структурой, могут делиться и превращаться друг в друга. Мы ещё очень мало знаем обоих строении. Таким образом, на сегодняшний день основываясь на целый ряд фактов, мы можем утверждать, что материя элементарных частиц – новый вид, качественно отличающийся от более сложных частиц (ядро, атом, молекула). В тоже время это различие настолько существенно, что используемые нами при изучении ядер, атомов, молекул, макроскопических тел категории и выражения («простой» и «сложный», «внутренняя структура», «сформированный») и могут применяться к элементарным частицам. Понятия «простой и сложный», «составляющие части», «структура», «целый» являются, в общем относительными понятиями. Например, несмотря на то, что атом обладает сложным строением, и структура его состоит из ядерного и электронного ярусов, по сравнению с входящей в его состав молекулой является более простым.
В иерархии структур материальных систем ядро атома, атом, молекула, макроскопические тела сами создают структурный единый уровень. Поэтому элементы тела по сравнению с элементами следующего уровня являются более простыми, выступают как их составные части. С другой стороны они являются более сложными по сравнению с элементами, расположенными на более низких уровнях и являющимися их составными частями.
Все системы, начиная с ядра атома до тех самых больших размеров, обладают таким свойством: в каждой из них можно отделить структурные элементы, формирующие рассматриваемые тела и являющиеся более простыми по сравнению с элементами на более низком уровне на составляющие его части. По своему значению процессы объедения и разделения одинаковы. Например молекулы данного химического вещества состоят из определенного количества атомов и могут распасться на них в определенных условиях. В этом случае масса сложного целого больше массы каждой составляющей его части. Это последнее положение не верно для элементарных частиц. Так, продукты распада элементарных частиц не являются проще делимых, ещё точной «преобразующихся» частиц. Они также являются элементарными частицами. Согласно современным представлениям продукты распада вместе порождающими их частицами располагаются на едином уровне иерархии. Например, нейтрон в определённых условиях делится на протон, электрон и антинейтрона (n0 ®p+ + e- + ). Хотя нейтрон не сложнее и не проще протона, электрона и антинейтрона. Кроме того, протон и электрон можно получить и в результате других реакций. Поэтому можно сказать, что возможность каждой элементарной частицы состоит в том, что она может быть «составной частью» других элементарных частиц.
С другой стороны, не так важно чтобы на каждым элементарном уровне целое состояло бы такого большого скопления. В этом случае масса целого может быть даже в несколько раз меньше масс его составляющих. Например, в целом ряде случаев в результате объедения нюклона и антинюклона получается мезон, масса которого меньше массы любого из них. Эта аномалия объясняется тем, что во время создания элементарной частицы масса, поглощающая выделенную энергию , может быть настолько велика, что в результате продукты реакции вовсе не похожи на исходную частицу. Поэтому в мире элементарных частиц понятия «простой и сложный», «составная часть», «структура», «целый» приобретают совсем другое значение, нежели в атомной физике и в классической физике.
Специфика элементарных частиц также проявляется в энергетических взаимных влияниях. Начиная макроскопическими объектами и кончая ядром атома энергия всех материальных систем формируется из двух составляющих: особой, соответствующей массе тела (Е=mc2) и энергии связи составляющих его элементов. Не смотря на то, что эти виды энергии неотделимы друг от друга, они полностью отличаются по своей природе. Специальная энергия объектов намного превосходит энергию их связи, ее можно отделить всё составляющую часть. Например, за счёт внешней энергии молекулу можно разделить на атомы (Н2О®Н+О+Н), однако в этом случае в самих атомах не произойдет изменение, бросающееся в глаза.
В элементарных частицах эта проблема приобретает другой вид. Вся энергия элементарных частиц не делится на специальную и связующую. Поэтому не смотря на то, что элементарные частицы не обладают внутренней структурой, они не могут делиться на составляющие их части. Элементарные частицы не содержат внутренних частиц, остающихся в большей или в меньшей степени неизменными.
Согласно современным представлениям структура элементарных частиц описывается посредством беспрерывно рождающихся и беспрерывно делящихся «виртуальных» частиц. Например, аннигиляция мезона (от латинского слова «annihilatio» - уничтожение) формируется из беспрерывно создающихся и затем исчезающих виртуальных нуклонов и виртуальных антинуклонов. Формальные выдвижение понятия виртуальной частицы показывает, что внутреннюю структуру элементарных частиц не возможно описать посредством других частиц.
Пока не создана удовлетворяющая физиков теория происхождения и структуре элементарных частиц. Целый ряд видных ученых пришли к мысли о том, что эту теорию можно создать, принимая во внимание только космические условия. Идея о зарождении элементарных частиц из вакуума в силовом, электромагнитном и гравитационном полях приобретает существенное значение. Потому что взаимосвязь микро, макро – и мегамира находит воплощение только в этой идее. В мегамире структура и взаимные превращения элементарных частиц обусловлены фундаментальными взаимовлияниями. Очевидно, что для того чтобы адекватно описать структуру материального мира, необходимо разработать аппарат новых понятий.